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For any given graph G, we say W⊆V(G) is a resolving set or resolves the graph G if every vertex of G is uniquely determined by its
vector of distances to the vertices inW.)emetric dimension ofG is theminimum cardinality of all the resolving sets.)e study of
metric dimension of chemical structures is increasing in recent times and it has application about the topology of such structures.
)e carbon atoms can bond together in various ways, called allotropes of carbon, one of which is crystal cubic carbon structure
CCC(n). )e aim of this article is to find the metric dimension of CCC(n).

1. Introduction

Let G be a simple connected graph and let
W � w1, w2, . . . , wk􏼈 􏼉 be an ordered subset of the set of vertices
V(G) of G. )e distance d(u, v) of two vertices of G is the
length of shortest path between u and v.)e representation of a
vertex u of G with respect to W is the k-vector
(d(u, w1), d(u, w2), . . . , d(u, wk)) and it is denoted as
r(u|W). )e set W is called the resolving set or to resolve G if
the representation of distinct vertices is distinct.)at is, if u and
v are two distinct vertices, then r(u|W)≠ (v|W). )e metric
dimension of a graph is the cardinality of the minimal resolving
set and it is denoted as β(G). As there may be many different
resolving subsets in V(G) of different sizes, the study of the
minimal one is important and it has been studied over the years.
Some authors also use the term basis for G which is a resolving
set withminimum cardinal number (see [1]).)is work is about
a study of resolving sets in chemical structural graphs.

)e metric dimension of a general metric space was in-
troduced in 1953 in [2], but at that time, it attracted little at-
tention. )en, about twenty years later, it was applied to the
distances between vertices of a graph [3–5]. Since then, it has
been frequently used in graph theory, chemistry, biology, ro-
botics, and many other disciplines. For some literature studies,
see [6–9].

From many parameters for the study of graphs, the
metric dimension is one of those that has many applications,
and these applications are diverse like in pharmaceutical
chemistry [10, 11], robot navigation [12], and combinatorial
optimization [13]. A chemical compound or material can be
represented by many graph structures, but only one of them
may express its topological properties. )e chemists require
mathematical forms for a set of chemical compounds to give
distinct representations to distinct compound structures.
)e structure of chemical compounds or materials can be
represented by a labeled graph whose vertex and edge labels
specify the atom and bond types, respectively. )us, a graph
theoretic interpretation of this problem is to provide rep-
resentations for the vertices of a graph in such a way that
distinct vertices have distinct representations.

At very high pressures of above 1000GPa (gigapascal),
one of the forms of carbon, namely, diamond, is predicted to
transform into the so-called C8 structure, a body-centered
cubic structure with 8 atoms in the unit cell. )is cubic
carbon phase might have importance in astrophysics. Its
structure is known in one of the metastable phases of silicon
and is similar to cubane. )e structure of this phase was
proposed in 2012 as carbon sodalite [14]. In 2017, Baig et al.
[15] modified and extended this structure and named it
crystal cubic carbon CCC(n). We are taking all the notations
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as they were in [15]. )e structure of crystal cubic carbon
consists of cubes.

)e molecular graph of crystal cubic carbon CCC(n) for
the second level is depicted in Figure 1. Its structure starts
from one unit cube and then by attaching cubes at each
vertex of the unit cube by an edge. For the third level, the
CCC(3) is constructed by attaching cube to each vertex of
cubes of CCC(2) having degree 3 or you can say by attaching
cubes by an edge to all the white vertices of CCC(2). So, at
each level, a new set of cubes is attached by edges to the white
vertices of cubes of the preceding level. )e third level of
CCC(n) is displayed in Figure 2 which is constructed and

presented in a most suitable manner to explain the structure
of CCC(n).

All the new attached cubes, at each level, will be called
the outermost layer of cubes or outermost level of cubes, or
you can say at each level, the cubes with white vertices will be
called the outermost layer. As in CCC(2), the outermost
layer of cubes consists of 8 cubes. Because there are 7 × 8
vertices of degree 3, so in CCC(3), the outermost layer of
cubes will consist of 7 × 8 cubes. Similarly, this procedure is
repeated to get the next level. )e cardinality of vertices and
edges in CCC(n) is given below, respectively.

|V(CCC(n))| � 2 24􏽘
n

r�3
23 − 1􏼐 􏼑

r−3
+ 31 23 − 1􏼐 􏼑

n−2
+ 2 􏽘

n−2

r�0
23 − 1􏼐 􏼑

r
+ 3
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⎩

⎫⎬

⎭,

|E(CCC(n))| � 4 24􏽘
n

r�3
23 − 1􏼐 􏼑

r−3
+ 24 23 − 1􏼐 􏼑

n−2
+ 2 􏽘

n−2

r�0
23 − 1􏼐 􏼑

r
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⎧⎨

⎩

⎫⎬
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(1)

)ere are some articles that describe the different to-
pological properties of CCC(n) structure, the famous of
those topological indices are Randic, ABC, and Zagreb in-
dices and other degree-based indices of CCC(n) which are
computed in [15–18]. In the articles [19, 20], theauthors
calculated eccentricity and Szeged-type topological indices
of CCC(n). )e aim of this article is to compute the metric
dimension of CCC(n). Note that if W � w1, w2, . . . , wk􏼈 􏼉 is
the ordered set of vertices of a graph G, then ξth component
of r(c|W) is 0⟺ c � wξ . )us, in order to show that W is a
resolving set, it suffices to verify that r(a|W)≠ r(b|W) for
each pair of distinct vertices a, b ∈ V(G)\W.

2. Main Result

In this section, we will present the main result about the
β(CCC(n)). But before going further, let us discuss the very
simple case of CCC(1) which is just a cube. We claim that
β(CCC(1)) � 3 indeed is true, let us see how.

Assume that β(CCC(1)) � 1, and because of symmetry,
we can take any vertex of cube to be the resolving set as in
Figure 3(a), say W � a{ }, then r(b|W) � r(c|W), which is a
contradiction. So, β(CCC(1))> 1. Assume that
β(CCC(1)) � 2. )en, there are two possibilities for the
elements of the resolving set W of CCC(1) because of its
symmetric shape. )e possible cases are as follows:

(I) )e two elements of W are the vertices on the main
diagonal of CCC(1).

(II) )e two elements of W are on the same face of the
cube. In this case, the both elements are either on the
main diagonal of a face or on the same edge of a face.

Without loss of generality, we can assume that W �

a, f􏼈 􏼉 for case (I). For case (II) without loss of generality, we
can assume W � a, c{ } and W � b, c{ }, respectively. )en,
Figures 3(b)–3(d) show that β(CCC(1))≠ 2; the ordered
pairs in these Figures denote the representations of the

vertices. )us, from Figure 3(e), it is proved that
β(CCC(1)) � 3.

Now, we will prove the main result of this article.

Theorem 1. %e metric dimension of crystal cubic carbon
structure CCC(n) is 7n−2 × 16, for all n≥ 2, that is,
β(CCC(n)) � 7n−2 × 16,∀n≥ 2.

Proof. Let G � CCC(n) be the crystal cubic carbon structure
and n≥ 2. To show that the β(CCC(n)) � 7n−2 × 16 firstly,
we will show that β(CCC(n))≥ 7n−2 × 16. Let Qn be a cube
on the outermost layer of CCC(n), as depicted in Figure 4
(note that there are no cubes attached to the vertices
b1, b2, b3, c1, c2, c3, and u). In other words, all these vertices
are of degree 3 and they belong to only one cube which is Qn.
Observe that the red vertex of cube Qn is attached with red
edge to a cube Qn−1 of the preceding level at its blue vertex.
Also, note that d(b1, a) � 1 � d(b2, a) � d(b3, a) and
d(c1, a) � 2 � d(c2, a) � d(c3, a) and d(u, a) � 3.

Let W � w1, w2, . . . , wk􏼈 􏼉 be a resolving set of CCC(n).
We claim that at least two vertices of Qn belong to W.
Suppose on contrary that no vertex of Qn belongs to W and
let r(a|W) be a representation of vertex a ∈ V(Qn). Note
that all the shortest paths from any vertex of Qn to any vertex
of W contain the vertex a of Qn. So, we can say that all such
paths pass through vertex a (path may end at it). )en,

r b1|W( 􏼁 � d b1, w1( 􏼁, d b1, w2( 􏼁, . . . , d b1, wk( 􏼁( 􏼁

� d a, w1( 􏼁 + 1, d a, w2( 􏼁 + 1, . . . , d a, wk( 􏼁 + 1( 􏼁

� d b2, w1( 􏼁, d b2, w2( 􏼁, . . . , d b2, wk( 􏼁( 􏼁

� r b2|W( 􏼁;

(2)

this is a contradiction. Now, assume that exactly one vertex
from the set V(Qn) belongs to W. Without loss of generality,
we can assume that this common vertex is w1.
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Case 1. If w1 � a, then

r b1|W( 􏼁 � 1, d b1, w2( 􏼁, . . . , d b1, wk( 􏼁( 􏼁

� 1, d b2, w2( 􏼁, . . . , d b2, wk( 􏼁( 􏼁

� r b2|W( 􏼁, a contradiction.

(3)

Case 2. If w1 � b1, then d(c1, w1) � 1 � d(c2, w1)

r c1|W( 􏼁 � 1, d c1, w2( 􏼁, . . . , d c1, wk( 􏼁( 􏼁

� 1, d c2, w2( 􏼁, . . . , d c2, wk( 􏼁( 􏼁

� r c2|W( 􏼁, again a contradiction.

(4)

Figure 1: Crystal cubic carbon structure CCC(2).

Central cube

Figure 2: Crystal cubic carbon structure CCC(3), with CCC(1) as the central cube.
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Similar contradictions appear for w1 � b2 and w1 � b3,
let us look at it.
Case 3. If w1 � b2, then d(c1, w1) � 1 � d(c3, w1)

r c1|W( 􏼁 � 1, d c1, w2( 􏼁, . . . , d c1, wk( 􏼁( 􏼁

� 1, d c3, w2( 􏼁, . . . , d c3, wk( 􏼁( 􏼁

� r c3|W( 􏼁, a contradiction.

(5)

Case 4. If w1 � b3, then d(c2, w1) � 1 � d(c3, w1)

r c2|W( 􏼁 � 1, d c2, w2( 􏼁, . . . , d c2, wk( 􏼁( 􏼁

� 1, d c3, w2( 􏼁, . . . , d c3, wk( 􏼁( 􏼁

� r c3|W( 􏼁, a contradiction.

(6)

Case 5. If w1 � c1, then d(b1, w1) � 1 � d(b2, w1)

r b1|W( 􏼁 � 1, d b1, w2( 􏼁, . . . , d b1, wk( 􏼁( 􏼁

� 1, d b2, w2( 􏼁, . . . , d b2, wk( 􏼁( 􏼁

� r b2|W( 􏼁, a contradiction.

(7)

Case 6. If w1 � c2, then d(b1, w1) � 1 � d(b3, w1)

r b1|W( 􏼁 � 1, d b1, w2( 􏼁, . . . , d b1, wk( 􏼁( 􏼁

� 1, d b3, w2( 􏼁, . . . , d b3, wk( 􏼁( 􏼁

� r b3|W( 􏼁, a contradiction.

(8)

Case 7. If w1 � c3, then d(b2, w1) � 1 � d(b3, w1)

r b2|W( 􏼁 � 1, d b2, w2( 􏼁, . . . , d b2, wk( 􏼁( 􏼁

� 1, d b3, w2( 􏼁, . . . , d b3, wk( 􏼁( 􏼁

� r b3|W( 􏼁, a contradiction.

(9)

Case 8. If w1 � u, then d(b1, w1) � 1 � d(b3, w1)

r b1|W( 􏼁 � 1, d b1, w2( 􏼁, . . . , d b1, wk( 􏼁( 􏼁

� 1, d b3, w2( 􏼁, . . . , d b3, wk( 􏼁( 􏼁

� r b3|W( 􏼁, a contradiction.

(10)

)e contradiction in all the cases proved our claim. So, at
least two vertices from the vertex set of Qn are in the re-
solving set W of CCC(n). Since Qn was taken arbitrary, so W

contains at least two vertices from each of the cube in the
outermost layer of cubes of CCC(n). By the construction of
CCC(n), we can see that at each step or at each level, the
cubes in CCC(n) are increased by a number equal to 7
multiplied by the number of cubes in the outermost layer of
the previous level. For example, in CCC(2), we have 8 cubes
in the outer layer, and in CCC(3), we have 7 × 8 cubes in the
outermost layer. )us, there are exactly 7n−2 × 8 cubes in the
outermost layer of CCC(n). Since from each such cube there
are at least two vertices in W, so β(CCC(n))≥ 7n−2 × 16. □

a

f

c, (c|W) = (1)

b, r(b|W) = (1)

dg

h

e

(a)

a

f

(1, 2)

(1, 2)

(1, 2)(2, 1)

(2, 1)

(2, 1)

(b)

(2, 2)

c

b

(2, 2)(3, 1)

(1, 3)

(1, 1)

(1, 1)

(c)

a

(3, 2)

c

(1, 2)

(1, 2)(2, 1)

(2, 3)

(2, 1)

(d)

(2, 2, 3)

w1

(2, 2, 1)(1, 3, 2)

(1, 1, 2)

w3

w2

(3, 1, 2)

(e)

Figure 3: )e graph of CCC(1) with all options of possible resolving sets.

a

u

b2

b1

b3c3

c2

c1

Figure 4: An arbitrary cube Qn in the outermost layer of cubes of
CCC(n).
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2.1. Second Part of Proof. In this part, we will show that
β(CCC(n))≤ 7n−2 × 16. Let W � w1, w2, . . . , wk􏼈 􏼉 be the
collection of all the vertices of type b1 and b2 just like we have
discussed in part one of the proof and depicted in Figure 4.
)en, k � 7n−2 × 16. We claim that W is a resolving set of
CCC(n). )e representations of the two arbitrary vertices of
CCC(n) can be compared in five different cases and they are
discussed as follows:

(1) )e two arbitrary selected vertices are on the same
cube in the outermost level of CCC(n) (see Figure 4).

(2) )e two arbitrary selected vertices are on the same
cube, but this cube is not the outer most cube and
neither the central cube (i.e., CCC(1)), as depicted in
Figure 5.

(3) )e two arbitrary selected vertices are on the central
cube, as displayed in Figure 6.

(4) )e two arbitrary selected vertices are on a chain of
cubes with one end being the cube of the outermost
level (see Figure 7).

(5) )e two arbitrary selected vertices are on distinct
chains of cubes and those chains are connecting at a
cube which we can call a branching cube. As
explained in Figure 8, in which B cube is the
branching cube, S-cube and T-cube are on different
chains each containing one of the selected vertices.

Case (1).)is can be proved by a direct computation for
the representation of all the vertices in this cube
(Figure 4). Without loss of generality, we can assume
that w1 � b1, w2 � b2 ∈W, then r(a|W) � (1, 1,

d(a, w3), . . . , d(a, wk)) and

r b3|W( 􏼁 � 2, 2, d a, w3( 􏼁 + 1, . . . , d a, wk( 􏼁 + 1( 􏼁,

r c1|W( 􏼁 � 1, 1, d a, w3( 􏼁 + 2, . . . , d a, wk( 􏼁 + 2( 􏼁,

r c2|W( 􏼁 � 1, 3, d a, w3( 􏼁 + 2, . . . , d a, wk( 􏼁 + 2( 􏼁,

r c3|W( 􏼁 � 3, 1, d a, w3( 􏼁 + 2, . . . , d a, wk( 􏼁 + 2( 􏼁,

r(u|W) � 2, 2, d a, w3( 􏼁 + 3, . . . , d a, wk( 􏼁 + 3( 􏼁.

(11)

We can see from the above that these representations
are all distinct in this case.
Case (2). Let the two arbitrary selected vertices be on
the same cube and this cube is not on the outermost
cube and neither is it the central cube. A visualization of
such cube is given in Figure 5. We can label the vertices
of this cube QA, as shown in Figure 5. Without loss of
generality, we can assume that w1, w2 are on the cube in
the outermost layer of cubes and that cube is connected
to cube QA at vertex u1 by a chain of cubes. Similarly,
we can assume that w2i−1, w2i are on the cube in the
outermost layer of cubes and those cubes are connected
to cube QA at vertices ui, i � 2, . . . , 7, by a chain of
cubes, respectively.

d u1, w1( 􏼁≠d ui, w1( 􏼁, i � 1, . . . , 7 and i≠ 1,

d u2, w3( 􏼁≠d ui, w3( 􏼁, i � 1, . . . , 7 and i≠ 2,

d u3, w5( 􏼁≠d ui, w5( 􏼁􏼁 i � 1, . . . , 7 and i≠ 3,

d u4, w7( 􏼁≠d ui, w7( 􏼁, i � 1, . . . , 7 and i≠ 4,

d u5, w9( 􏼁≠d ui, w9( 􏼁, i � 1, . . . , 7 and i≠ 5,

d u6, w11( 􏼁≠d ui, w11( 􏼁, i � 1, . . . , 7 and i≠ 6,

d u7, w13( 􏼁≠d ui, w13( 􏼁, i � 1, . . . , 7 and i≠ 7.

(12)

Also,

d a, w1( 􏼁 � d u1, w1( 􏼁 + 1,

d a, w3( 􏼁 � d u2, w3( 􏼁 + 1,

d a, w5( 􏼁 � d u3, w5( 􏼁 + 1,

d a, w7( 􏼁 � d u4, w7( 􏼁 + 2,

d a, w9( 􏼁 � d u5, w9( 􏼁 + 2,

d a, w11( 􏼁 � d u6, w11( 􏼁 + 2,

(13)

and d(a, w13) � d(u7, w13) + 3. All these computations
show that r(ui|W)≠ r(uj|W) for i≠ j and
r(a|W) ≠ r(ui|W) for i � 1, . . . , 7. )is completes the
proof in this case.
Case (3).Assume that the two arbitrary selected vertices
are on the central cube, as displayed in Figure 6, where
just like in the previous case (2), we have labeled all 8
vertices with u1, u2, . . . , u8. Again, without loss of
generality, we assume that w2i−1, w2i, i � 1, . . . , 8, are on
the cube in the outermost layer of cubes and those
outermost cubes containing w2i−1, w2i are connected to
the central cube CCC(1) at vertices ui, i � 1, 2, . . . , 8, by
a chain of cubes, respectively. )ese assumptions imply
that

a

u7

u2

u1

u3
u6

u4

u5

w1, w2

w7, w8w9, w10

w13,
w14

w11, w12 w3, w4
w5, w6

Figure 5: Arbitrary cube QA not in the outermost layer of cubes of
CCC(n) and nor the central cube. )is cube is connected to the
central cube by a chain of cubes at vertex a.
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Branching cube 

wj+1

wj

wi

wi+1

Central cube

S cube 
B cube 

T cube 

Figure 8: Branching cube and chain of cubes in CCC(n).

w15, w16

u8

u7

u2

u1

u3
u6

u4

u5

w1, w2

w7, w8w9, w10

w13,
w14

w11, w12 w3, w4
w5, w6

Figure 6: Central cube of CCC(n), that is, the cube CCC(1).

wi

wi+1

Qs cube

Qt cube

The cube on the outer most level from which
we choose our element of resolving set

Figure 7: A chain of cubes with one end being the cube of the outermost level; Qs and Qt are arbitrary cubes on the chain but not the
outermost cubes.
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d u1, w1( 􏼁≠d ui, w1( 􏼁, 1≤ i≤ 8 and i≠ 1,

d u2, w3( 􏼁≠d ui, w3( 􏼁, 1≤ i≤ 8 and i≠ 2,

d u3, w5( 􏼁≠d ui, w5( 􏼁, 1≤ i≤ 8 and i≠ 3,

d u4, w7( 􏼁≠d ui, w7( 􏼁, 1≤ i≤ 8 and i≠ 4,

d u5, w9( 􏼁≠d ui, w9( 􏼁, 1≤ i≤ 8 and i≠ 5,

d u6, w11( 􏼁≠d ui, w11( 􏼁, 1≤ i≤ 8 and i≠ 6,

d u7, w13( 􏼁≠d ui, w13( 􏼁, 1≤ i≤ 8 and i≠ 7,

d u8, w15( 􏼁≠d ui, w15( 􏼁, 1≤ i≤ 8 and i≠ 8.

(14)

So, we get the conclusion that, in this case, again
r(ui|W)≠ r(ui|W) for i≠ j and 1≤ i≤ 8, 1≤ j≤ 8.
Case (4).Now, we are going to discuss case (4). Assume
that the two arbitrary selected vertices s, t are on two
distinct cubes and those cubes are on a chain of cubes,
see Figure 7. Assume that one end of this chain is the
outermost cube containing two arbitrary resolving
elements, say w1, w2 (without loss of generality, we can
assume that those vertices are w1, w2), and the other
end is the central cube.
As depicted in Figure 7, let t be a vertex of cube Qt and s

be a vertex of cube Qs, then d(s, w1)< d(t, w1), and
therefore, r(s|W)≠ r(t|W). )is completes the proof in
this case.
Case (5). Finally, suppose that the two arbitrary selected
vertices s, t are on distinct chains of cubes and those
chains are connecting at a cube which we can call a
branching cube; this branching cube can also be the
central cube. As explained in Figure 8, in which B cube
is the branching cube, S cube and T cube are on dif-
ferent chains each containing one of the selected
vertices, that is, s ∈ V(S) and t ∈ V(T). Both of the two
cubes S and T or any one of these cube can also be the
cubes in the outermost level of cubes.

Note: in the idea of case (4), we can say that someone can
select two vertices on different cubes such that there is chain of
cube connecting them and both ends of this chain are the cubes
on the outermost level of cubes. But then, there must be a cube
(whichwe call branching cube) in this chain that connects to the
central cube by the chain of cubes.) Without loss of generality,
we can assume that wi � w1, wi+1 � w2 and wj � w3, wj+1
� w4.We can see that the length of the shortest path fromvertex
w1 to vertex t of cubeT is greater than the length of the shortest
path from vertex w1 to vertex s of cube S. )us,
d(s, w1)≠ d(t, w1), so this implies that r(s|W)≠ r(t|W).

All these five cases prove that W � w1, w2, . . . , wk􏼈 􏼉 is a
resolving set. Since there are 7n− 2 × 16 number of elements
in W, therefore the proof of theorem concludes.

3. Conclusion

In this article, we have studied the metric dimension of the
crystal cubic carbon structure and we gave a formula for its
metric dimension.We have found that the metric dimension
of CCC(n) is not constant and find its closed form.
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