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In this paper, we focus on the degree of the greatest common divisor (gcd) of random polynomials over Fq. Here, Fq is the finite
field with q elements. Firstly, we compute the probability distribution of the degree of the gcd of random and monic polynomials
with fixed degree over Fq. )en, we consider the waiting time of the sequence of the degree of gcd functions. We compute its
probability distribution, expectation, and variance. Finally, by considering the degree of a certain type gcd, we investigate the
probability distribution of the number of rational (i.e., in Fq) roots (counted with multiplicity) of random and monic polynomials
with fixed degree over Fq.

1. Introduction

1.1. Background. )e greatest common divisor (gcd)

function is very basic in number theory. It has also been
considered in the view of probability theory. For an integer
n≥ 2, suppose the random variables X1, . . . , Xm, . . . are
independent and uniformly distributed on 1, 2, . . . , n{ }. In
1880s, Cesàro [1, 2] first considered the probability distri-
bution of the gcd of random integers and showed that

limn⟶∞P gcd X1, . . . , Xr( 􏼁 � l( 􏼁 �
1

ζ(r)

1
l
r, (1)

for r≥ 2 and 1≤ l≤ n, where ζ is the Riemann zeta function.
Diaconis and Erdös [3] gave a more precise asymptotic
formula for the case r � 2, which is

P gcd X1, X2( 􏼁 � l( 􏼁 �
1

ζ(2)

1
l
2 + O

log(n/l)
nl

􏼠 􏼡, (2)

for 1≤ l≤ n as n⟶∞. One may refer to [4–7], for more
related works. In 2013, Fernández and Fernández [8] con-
sidered the waiting time for the gcd sequence:

G1 � X1, G2 � gcd X1, X2( 􏼁, . . . , Gm � gcd X1, . . . , Xm( 􏼁, . . . .

(3)

Let T(n) be the subscript at which the sequence Gm􏼈 􏼉m∈N
reaches the value 1 for the first time. )ey computed the
expectation of T(n) and showed that

limn⟶∞E T
(n)

􏼐 􏼑 � 2 + 􏽘
∞

m�2
1 −

1
ζ(m)

􏼠 􏼡 ≈ 2.7052. (4)

Besides random integers, it is also natural to study
random polynomials. One interesting topic in this area is to
understand the behavior of the number of certain type of
roots of random polynomials. For example, Kac [9] con-
sidered the number of real roots of random polynomials
over the real number field R. One may refer to [10] for a
recent progress.

In this paper, we focus on the degree of the gcd of
random polynomials over the finite field Fq, where q≥ 2 is a
prime power.

1.2. Our Results. In the polynomial ring Fq[T], we use M

and Mn to denote the sets of all monic polynomials and
monic polynomials with degree n≥ 0, respectively. We also
use deg(f) to denote the degree of a polynomial f.

For integers n≥ 1 and r≥ 2, we define
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X(n, q, r) ≔ deg gcd f1, f2, . . . , fr( 􏼁( 􏼁, (5)

where fi, 1≤ i≤ r, are independent and uniformly distrib-
uted on Mn. We derive the following probability distribu-
tion of X(n, q, r).

Theorem 1. For any integers n≥ 1 and r≥ 2, the mass
function of X � X(n, q, r) is

P(X � l) �
An,q,r(l)

q
(r−1)l

, l � 0, 1, . . . , n, (6)

where

An,q,r(l) �

1 −
1

q
r− 1, 0≤ l≤ n − 1,

1, l � n.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

With the help of )eorem 1, we investigate the waiting
time of the sequence:

G
(n,q)
1 � deg f1( 􏼁, G

(n,q)
2 � deg gcd f1, f2( 􏼁( 􏼁, . . . , G

(n,q)
m

� deg gcd f1, . . . , fm( 􏼁( 􏼁, . . . ,

(8)

where f1, f2, . . . are independent and uniformly distributed
on Mn, n≥ 1. Observe that this sequence is decreasing.

For an integer 0≤ s< n, define the random variable T
(n,q)
s

to be the subscript at which the sequence G
(n,q)
m􏽮 􏽯

m∈N reaches
a value not exceeding s for the first time. We compute the
probability distribution of T

(n,q)
s and then derive its ex-

pectation E(T
(n,q)
s ) and variance V(T

(n,q)
s ).

Theorem 2. Suppose integer n≥ 1; then, for integers 0≤ s< n

and m≥ 2, the mass function of T
(n,q)
s is

P T
(n,q)
s � m􏼐 􏼑 �

1
q

(m− 2)(s+1)
1 −

1
q

s+1􏼠 􏼡, (9)

and furthermore, we have

E T
(n,q)
s􏼐 􏼑 �

2q
s+1

− 1
q

s+1
− 1

, andV T
(n,q)
s􏼐 􏼑 �

q
s+1

q
s+1

− 1􏼐 􏼑
2.

(10)

It is a little bit surprising that the expectation and
variance of T

(n,q)
s are independent of the degree n. Using

SageMath, we verify this for s � 0, 1 and some (n, q) by
doing numerical experiments with 106 times. )e results are
listed in Table 1 (expectation) and Table 2 (variance).

Enlightened by the proof of )eorem 1, we use the
degree of gcd to study the number of rational roots (counted
with multiplicity) of a random polynomial f ∈ Fq[T], where
f is uniformly distributed onMn, n≥ 1. Denote this number
by N(n, q); then, we have the following result.

Theorem 3. For an integer n≥ 1, the mass function of N �

N(n, q) is

P(N � l) �

l + q − 1

q − 1
⎛⎝ ⎞⎠

1
q

l
􏽘

0≤i≤min n−l,q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

,

(11)

for 0≤ l≤ n.

)e method for proving )eorem 3 is also valid if we
consider the number of distinct rational roots of a random
polynomial f ∈Mn. )is number is investigated by
Leont’ev in [11], where combinational methods are used.
Comparatively, our method has more flavor of number
theory, and we hope it can be used for other roots’
counting problems.

Notations: we use P(A) to denote the probability of an
event A and use E(X) and V(X) to denote the expectation
and variance of a random variable X. We also use Fq to
denote the finite field with q elements and use Fq[T] to
denote the polynomial ring over Fq.

2. Preliminaries

)e Mo
..
bius function for monic polynomials is defined by

μ(f) � (−1)r if f is a product of r distinct monic irreducible
polynomials and μ(f) � 0 if f is not square free. For any
f ∈M, we have

􏽘

d∈M
d|f

μ(d) �
1, f � 1,

0, otherwise.
􏼨

(12)

For the mean value of μ(f) over Mn, it is well known
that

􏽘
f∈Mn

μ(f) �

1, n � 0,

−q, n � 1,

0, n≥ 2.

⎧⎪⎪⎨

⎪⎪⎩
(13)

For a polynomial f in Fq[T], we defined its norm by
‖f‖ :� qdeg(f). We derive the following two results, which
are needed in proving Proposition 1.

Lemma 1. For integers r, k≥ 1, we have

􏽘

h∈M
0≤deg(h)≤n

degk
(h)

‖h‖
r � 􏽘

0≤l≤n

l
k

q
(r−1)l

, for n≥ 0,

􏽘

d∈M
0≤deg(d)≤n

μ(d)

‖d‖
r � 1 −

1
q

r− 1, for n≥ 1.

(14)
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Proof. Note that

􏽘

h∈M
0≤deg(h)≤n

degk
(h)

‖h‖
r � 􏽘

h∈M
0≤deg(h)≤n

degk
(h)

q
rdeg(h)

� 􏽘
0≤l≤n

l
k

q
rl

􏽘
h∈Ml

1.

(15)

)en, the first statement follows by noting

􏽘
h∈Ml

1 � q
l
. (16)

For the second statement, we have

􏽘

d∈M

0≤ deg(d)≤ n

μ(d)

‖d‖
r � 􏽘

d∈M

0≤ deg(d)≤ n

μ(d)

q
rdeg(d)

� 􏽘
0≤l≤n

1
q

rl
􏽘

d∈Ml

μ(d).

(17)
)is together with (13) gives our desired result. □

)e following lemma is used in the proof of Proposition 2.

Lemma 2. For integer n≥ 1, suppose
Q � Qn,q(T): � 􏽑α∈Fq

(T − α)n and h ∈M with h|Q and
0≤ deg(h)≤ n − 1. 1en, we have

􏽘

d∈M,d|Q/h

0≤ deg(d)≤ n−deg(h)

μ(d)

‖d‖
� 􏽘

0≤i≤min n−deg(h),q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

.

(18)

Proof. Note that

􏽘

d∈M,d|Q/h

0≤ deg(d)≤ n−deg(h)

μ(d)

‖d‖
� 1 + 􏽘

d∈M,d|Q/h

1≤ deg(d)≤ n−deg(h)

μ(d)

q
deg(d)

.

(19)
Let deg(d) � i; then, by the definition of μ(d) and Q, we

have that d is of the form

d � 􏽙
i

j�1
T − αj􏼐 􏼑, 1≤ i≤min n − deg(h), q􏼈 􏼉, (20)

for some distinct αj ∈ Fq, 1≤ j≤ i. From this, we derive that

􏽘

d∈M,d|Q/h

1≤ deg(d)≤ n−deg(h)

μ(d)

q
deg(d)

� 􏽘

1≤i≤min n−deg(h),q{ }

−
1
q

􏼠 􏼡

i

􏽘

d satisfies (20)

d|Q/h

1.

(21)
Note that deg(h)≤ n − 1; then, we have

􏽘

d satisfies (20)
d|Q/h

1 �
q

i
􏼠 􏼡.

(22)

)en, our required result follows by combining (21) and
(22) with (19). □

3. Proof of Theorem 1

We first compute the kth power moments of X � X(n, q, r).

Proposition 1. For any integers n, k≥ 1 and r≥ 2, we have

Table 1: Numerical results for the expectation E(T
(n,q)
s ).

n (q, s) � (2, 0) (q, s) � (3, 0) (q, s) � (4, 1) (q, s) � (5, 1)

1 3.000922 2.500092 NA. NA.
2 3.002260 2.500115 2.066650 2.041783
3 2.998854 2.500166 2.066424 2.041758
4 2.998771 2.499346 2.066466 2.041767
5 2.999041 2.500160 2.066895 2.041485
⋮ ⋮ ⋮ ⋮ ⋮
)eoretical 3.000000 2.500000 2.066666 2.041666

Table 2: Numerical results for the variance V(T
(n,q)
s ).

n (q, s) � (2, 0) (q, s) � (3, 0) (q, s) � (4, 1) (q, s) � (5, 1)

1 2.006609 0.748455 NA. NA.
2 2.013104 0.748523 0.071244 0.043498
3 1.992205 0.747423 0.070657 0.043345
4 1.988979 0.747273 0.070883 0.043402
5 1.997586 0.749603 0.071586 0.043045
⋮ ⋮ ⋮ ⋮ ⋮
)eoretical 2.000000 0.750000 0.071111 0.043402
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E X
k
(n, q, r)􏼐 􏼑 � 􏽘

0≤l≤n

An,q,r(l)l
k

q
(r−1)l

, (23)

where An,q,r(l) is given by (7).

Proof. By the definition of the kth moment, we have

E X
k

􏼐 􏼑 �
1

q
rn 􏽘

fi∈Mn,1≤ i≤ r

degk gcd f1, . . . , fr( 􏼁( 􏼁. (24)

It follows that

E X
k

􏼐 􏼑 �
1

q
rn 􏽘

h∈M

0≤ deg(h)≤ n

degk
(h) 􏽘

fi∈Mn,1≤ i≤ r

gcd f1 ,...,fr( )�h

1.

(25)

)en, for the inner sum on the right-hand side of (25),
we can write

􏽘

fi∈Mn,1≤ i≤ r

gcd f1 ,...,fr( )�h

1 � 􏽘

fi∈Mn,h|fi

1≤ i≤ r

􏽘

d∈M

d|gcd f1/h,...,fr/h( )

μ(d),

(26)

where we have used (12). Changing the order of the sum-
mations, we obtain

􏽘

fi∈Mn,1≤ i≤ r

gcd f1 ,...,fr( )�h

1 � 􏽘

d∈M

0≤ deg(d)≤ n−deg(h)

μ(d) 􏽘

f ∈Mn

dh|f

1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r

� 􏽘

d∈M

0≤ deg(d)≤ n−deg(h)

μ(d)q
r(n− deg(dh))

. (27)

It follows that

􏽘

fi∈Mn,1≤ i≤ r

gcd f1 ,...,fr( )�h

1 �
q

rn

‖h‖
r 􏽘

d∈M

0≤ deg(d)≤ n−deg(h)

μ(d)

‖d‖
r .

(28)

Inserting (28) to (25) gives

E X
k

􏼐 􏼑 � 􏽘

h∈M

0≤ deg(h) ≤ n

degk
(h)

‖h‖
r 􏽘

d∈M

0≤ deg(d)≤ n−deg(h)

μ(d)

‖d‖
r .

(29)

)e contribution of those h with deg(h) � n is equal to

􏽘
h∈Mn

degk
(h)

‖h‖
r �

n
k

q
rn 􏽘

h∈Mn

1 �
n

k

q
(r−1)n

. (30)

By Lemma 1, the contribution of those h with
0≤ deg(h)≤ n − 1 is equal to

1 −
1

q
r− 1􏼠 􏼡 􏽘

0≤l≤n−1

l
k

q
(r−1)l

. (31)

Hence, we have

E X
k

􏼐 􏼑 �
n

k

q
(r−1)n

+ 1 −
1

q
r− 1􏼠 􏼡 􏽘

0≤l≤n−1

l
k

q
(r−1)l

, (32)

which is our desired result. □

Now, we are ready to prove )eorem 1. Suppose
MX(t): � E(etX) is the moment generating function of X;
then, we have

MX(t) � 􏽘
∞

k�0

t
k

k!
E X

k
􏼐 􏼑. (33)

It follows from Proposition 1 that

MX(t) � 􏽘
∞

k�0

t
k

k!
􏽘
0≤l≤n

An,q,r(l)l
k

q
(r−1)l

⎛⎝ ⎞⎠ � 􏽘
0≤l≤n

An,q,r(l)

q
(r−1)l

e
lt
. (34)

)en, our desired result follows from the relationship
between the moment generating function and the generating
function of X.

4. Proof of Theorem 2

For an integer 0≤ s< n, note that the event G
(n,q)
m ≤ s􏽮 􏽯 �

X(n, q, m)≤ s􏼈 􏼉 coincides with the event T
(n,q)
s ≤m􏽮 􏽯 for

each m≥ 2. Hence, by )eorem 1, we have

P T
(n,q)
s ≤m􏼐 􏼑 � 􏽘

0≤l≤s
P(X(n, q, m) � l) � 1 −

1
q

(m− 1)(s+1)
.

(35)

)is gives the mass function in )eorem 2.
By the definition of the expectation of T

(n,q)
s , we have

E T
(n,q)
s􏼐 􏼑 � 􏽘

∞

m�2
mP T

(n,q)
s � m􏼐 􏼑 � 2P T

(n,q)
s > 1􏼐 􏼑 + 􏽘

∞

m�2
P T

(n,q)
s >m􏼐 􏼑. (36)
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It follows from (35) that

E T
(n,q)
s􏼐 􏼑 � 2 + 􏽘

∞

m�2

1
q

(m− 1)(s+1)
�
2q

s+1
− 1

q
s+1

− 1
. (37)

To deal with V(T
(n,q)
s ), we write

V T
(n,q)
s􏼐 􏼑 � E T

(n,q)
s􏼐 􏼑

2
􏼒 􏼓 − E T

(n,q)
s􏼐 􏼑􏼐 􏼑

2
. (38)

For E((T
(n,q)
s )2), we have

E T
(n,q)
s􏼐 􏼑

2
􏼒 􏼓 � 􏽘

∞

m�2
m

2
P T

(n,q)
s � m􏼐 􏼑 � 4P T

(n,q)
s > 1􏼐 􏼑 + 􏽘

∞

m�2
(2m + 1)P T

(n,q)
s >m􏼐 􏼑. (39)

It follows from (35) again that

E T
(n,q)
s􏼐 􏼑

2
􏼒 􏼓 � 4 + 2 􏽘

∞

m�2

m

q
(m− 1)(s+1)

+ 􏽘

∞

m�2

1
q

(m− 1)(s+1)
�
4q

2(s+1)
− 3q

s+1
+ 1

q
s+1

− 1􏼐 􏼑
2 ,

(40)

where we have used

􏽘

∞

m�2

m

q
(m− 1)(s+1)

�
2q

s+1
− 1

q
s+1

− 1􏼐 􏼑
2. (41)

Inserting (37) and (40) into (38) yields our desired result.

5. Proof of Theorem 3

We first compute the kth power moments of N � N(n, q).

Proposition 2. For any integers n, k≥ 1, we have

E N
k
(n, q)􏼐 􏼑 � 􏽘

0≤l≤n

l + q − 1

q − 1
⎛⎝ ⎞⎠

l
k

q
l

􏽘

0≤i≤min n−l,q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

.

(42)

Proof. Proof. Let Q � Qn,q(T): � 􏽑α∈Fq
(T − α)n. Notice

that

N(n, q) � deg(gcd(f, Q)), (43)

where f is random and uniformly distributed onMn. )en,
by the definition of the kth moment, we have

E N
k

􏼐 􏼑 �
1
q

n 􏽘
f∈Mn

degk
(gcd(f, Q)). (44)

It follows that

E N
k

􏼐 􏼑 �
1
q

n 􏽘

h∈M,h|Q

0≤ deg(h)≤ n

degk
(h) 􏽘

f∈Mn

gcd(f,Q)�h

1.

(45)

For the inner sum on the right-hand side of (45), we have

􏽘

f∈Mn

gcd(f,Q)�h

1 � 􏽘

f∈Mn

h|f

􏽘

d∈M

d ∣ gcd(f/h,Q/h)

μ(d),

(46)

where we have used (12). Changing the order of the sum-
mations, we derive

􏽘

f∈Mn

gcd(f,Q)�h

1 � 􏽘

d∈M,d|Q/h

0≤ deg(d)≤ n−deg(h)

μ(d) 􏽘

f∈Mn

dh|f

1 � 􏽘

d∈M,d|Q/h

0≤ deg(d)≤ n−deg(h)

μ(d)q
n− deg(dh)

.

(47)

By (45) and (47), we obtain

E N
k

􏼐 􏼑 � 􏽘

h∈M,h|Q

0≤ deg(h)≤ n

degk
(h)

‖h‖
􏽘

d∈M,d|Q/h

0≤ deg(d)≤ n−deg(h)

μ(d)

‖d‖
.

(48)

Breaking the above sum into two sums according to
deg(h) � n or not, we have

E N
k

􏼐 􏼑 � 􏽘
1

+ 􏽘
2

, (49)

where

􏽘
1

�
n

k

q
n 􏽘

h∈Mn

h|Q

1,

􏽘
2

� 􏽘

h∈M,h|Q

0≤ deg(h)≤ n−1

degk
(h)

‖h‖
􏽘

d∈M,d|Q/h

0≤ deg(d)≤ n−deg(h)

μ(d)

‖d‖
.

(50)
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To deal with 􏽐1, note that h|Q and deg(h) � n; then, h is
of the form

h � 􏽙

q

j�1
T − αj􏼐 􏼑

rj
, (51)

for distinct αj ∈ Fq, 1≤ j≤ q, where 0≤ rj ≤ n and
r1 + · · · + rq � n. )us, we have

􏽘
1

�
n

k

q
n 􏽘

0≤ rj ≤ n,1≤ j≤ q

r1+···+rq�n

1 �

n + q − 1

q − 1
⎛⎝ ⎞⎠

n
k

q
n.

(52)

For 􏽐2, using Lemma 2, we derive

􏽘
2

� 􏽘

h∈M,h|Q

0≤ deg(h) ≤ n−1

degk
(h)

‖h‖
􏽘

0≤i≤min n−deg(h),q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

.

(53)
Let deg(h) � l; then, we have

􏽘
2

� 􏽘
0≤l≤n−1

l
k

q
l

􏽘

0≤i≤min n−l,q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

􏽘

h∈Ml

h|Q

1

� 􏽘
0≤l≤n−1

l + q − 1

q − 1
⎛⎝ ⎞⎠

l
k

q
l

􏽘

0≤i≤min n−l,q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

.

(54)

Plugging (52) and (54) into (49) yields our required
result. □

Now, we are ready to prove )eorem 3. Suppose
MN(t): � E(etN) is the moment generating function of N;
then, we have

MN(t) � 􏽘

∞

k�0

t
k

k!
E N

k
􏼐 􏼑. (55)

By Proposition 2, we derive

MN(t) � 􏽘
∞

k�0

t
k

k!
􏽘
0≤l≤n

l + q − 1

q − 1
⎛⎝ ⎞⎠

l
k

q
l

􏽘

0≤i≤min n−l,q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(56)

which gives

MN(t) � 􏽘
0≤l≤n

l + q − 1

q − 1
⎛⎝ ⎞⎠

1
q

l
􏽘

0≤i≤min n−l,q{ }

q

i

⎛⎝ ⎞⎠ −
1
q

􏼠 􏼡

i

e
tl
.

(57)

)en, our desired result follows from the relationship
between the moment generating function and the generating
function of N.
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