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In this paper, we introduce and study an iterative algorithm via inertial and viscosity techniques to find a common solution of a
split generalized equilibrium and a variational inequality problem in Hilbert spaces. Further, we prove that the sequence generated
by the proposed theorem converges strongly to the common solution of our problem. Furthermore, we list some consequences of
our established algorithm. Finally, we construct a numerical example to demonstrate the applicability of the theorem. We
emphasize that the result accounted in the manuscript unifies and extends various results in this field of study.

1. Introduction

Let H, and H, be real Hilbert spaces with inner product
¢-,-» and norm || - .. Let C and Q be nonempty closed convex
subsets of H, and H,, respectively. The variational inequality
problem (in short, VIP) is to find x* € C such that

(Bx",y -x")20, VyeC, (1)

where B: C — H, is a nonlinear mapping. The solution set
of VIP (1) is denoted by Q. It is introduced by Hartman and
Stampacchia [1].

In 1994, Blum and Oettli [2] introduced and studied the
following equilibrium problem (in short, EP): find x* € C
such that

G,(x",y)=0, VyeC, (2)

where G;: C x C — R is a bifunction. The solution set of
EP (3) is denoted by Sol (EP(3)).

In the last two decades, EP (2) has been generalized and
extensively studied in many directions due to its importance;
see, for example [3-7], for the literature on the existence and

iterative approximation of solution of the various general-
izations of EP (2).

Censor et al. [8] introduced the split feasibility problem
(in short, SpFP) in finite-dimensional Hilbert spaces for
modelling of inverse problems that arise from phase re-
trievals and in medical image restoration as

find x* € Csuchthat Bx™ € Q, (3)

where B: H; — H, is a bounded linear operator.

In this paper, we consider the following split generalized
equilibrium problem (in short, S,GEP):

Let G;,b;: CxC — R and G,,b,: QxQ — R be
nonlinear mappings, and B: H; — H, be a bounded linear
operator, then SpGEP is to find x* € C such that

G, (x",x)+ b (%,x") = b (x",x")>0, VxeC, (4)

and such that
y" = Bx" € QsolvesG, (y", y) + b, (1, y") = ¢ (¥, y") 20,
Vy €eQ.
(5)
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If we take b;,b, =0, then S,GEP becomes split equi-
librium problem (in short, S,EP) as

G, (x",x)=0, VxeC, (6)
and such that

y" =Bx" € QsolvesG,(y",y)>0, VyeQ. (7)

When looked separately, (4) is the generalized equilib-
rium problem (GEP) and we denote its solution set by Sol
(GEP(4)). The S,GEP(4) and (5) constitute a pair of gen-
eralized equilibrium problems which have to be solved so
that the image y* = Bx* under a given bounded linear
operator B of the solution x* of the GEP(4) in H, is the
solution of another GEP (4) in another space H,. We denote
the solution set of GEP (5) by Sol (GEP (5)). The solution set
of S,GEP (4) and (5) is denoted Dby
I' = {p € Sol(GEP (4)): Bp € Sol(GEP(5))}.

SpGEP (4) and (5) generalize multiple-sets split feasi-
bility problem. It also includes as special case, the split
variational inequality problem, which is the generalization of
split zero problems and split feasibility problems, see for
details [9-12].

In 2008, Mainge [13] introduced the following inertial
Krasnosel’skii-Mann algorithm by combining Krasno-
sel’skii-Mann algorithm and the inertial extrapolation:

{ t,=x,+0,(x,—x,_1) }

(8)
Xn+1 = (1 - nn)tn + nnTtn’

for each n>1. He proved that the sequence {x,} generated
by algorithm (8) converges weakly to a fixed point of T' under
some conditions. Recently, Bot et al. [14] studied the con-
vergence analysis of the inertial Krasnosel’skii-Mann al-
gorithm for approximating a fixed point of nonexpansive
mapping T by getting rid of some conditions used in the
main result of Mainge [13]. Recently, Dong et al. [15, 16]
introduced the inertial hybrid algorithm and established a
strong convergence theorem for approximating a fixed point
of nonexpansive mapping T in the setting of Hilbert space.
For further study of some generalization of iterative algo-
rithm (8), see for instance [17, 18]. Very recently, Monairah
et al. [19] introduced and studied a hybrid iterative algo-
rithm to approximate a common solution of generalized
equilibrium problem, variational inequality problem, and
fixed point problem in the framework of a 2 uniformly
convex and uniformly smooth real Banach space. The in-
ertial method has been studied by many researchers. The
results and other related ones analyzed the convergence
properties of inertial type algorithms and demonstrated their
performance numerically on some imaging and data analysis
problems, see for details [20-23].

Motivated by the work given in [6, 13, 24], we propose an
iterative algorithm via inertial and viscosity techniques to
find a common solution of a split generalized equilibrium
and a variational inequality problem in Hilbert spaces. We
obtained the strong convergence for the proposed algorithm.
Further, we give some consequences of the main result.
Finally, we discuss a numerical example to demonstrate the
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applicability of the iterative algorithm. The method and
result presented in this paper generalize and unify the
previously known related methods and results. Our result
can extend several iterative methods given in the literature.

2. Preliminaries

In this section, we collect some concepts and results which
are required for the presentation of the work. Let symbols
— and — denote strong and weak convergence,
respectively.

For every point x € H,, there exists a unique nearest
point to x in C denoted by P.x such that

||x - PCx“ <lx-yl, VyeC. (9)

The mapping P is called the metric projection of H,
onto C. It is well known that P, is nonexpansive and satisfies

£

Vx,y € H,.
(10)

(x=y,Pcx—Pry)=> ”ch - Py

Moreover, Ppx is characterized by the fact that Pox € C
and

(x = Pcx,y —Pcx)<0, VyeC. (11)

This implies that

lx = yl* > ||x - ch||2 + ||y - ch||2, Vx e H,,Vy e C.
(12)
In a real Hilbert space H, it is well known that
Ax + (1= D)yl* = Al + (1 = Dllyl* = A(1 = Vllx = yI,
Vx,y € HyandA € [0,1],
(13)

lx + yI* <llxl® + 2<y, x + ¥), Vx,y € H,. (14)

Definition I (see [25]). A multivalued mapping M: H, —
2t s called monotone if for all x,y € H;, u € Mx and
v € My such that

{x—y,u—-v)=0. (15)

Definition 2 (see [25]). A multivalued monotone mapping
M: H, — 2" is maximal if the graph (M), the graph of M,
is not properly contained in the graph of any other
monotone mapping.

Remark 1. It is known that a multivalued monotone
mapping M is maximal if and only if for (x,u) € H; x H,,
{x - y,u—v) 20, for every (y,v) € Graph (M) implies that
u € Mx.

Lemma 1 (see [26]). Let {x,} and {u,} be bounded sequences
in a Banach space E and let 3, be a sequence in (0,1) with
0 <liminf, | p, <limsup,_ . f3, <1. Suppose x,,; = (1 -
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By + Bux, for all integers n>0 and limsup,
(”yn+1 - yn"_”xn+1 - xn”) < 0. ’Z-hen)

lim ||y, - x,| =0. (16)

Lemma 2 (see [27]). Let {b,} be a sequence of nonnegative real
numbers such that there exists a subsequence {bn,} of {b,} such
that b, <b,, , Vi € N. Then, there exists a nondecreasing se-

quence {m j} of N such thatlim;__,,m; = co and the following
properties are satisfied by all (sufficiently large) numbers j € N
bm]_ < bij,

(17)
b;<b,,.
]

In fact, m; is the largest number n in the set
{1,2,3,...,j} such that b, <b,,;.

Lemma 3 (see [28]). Assume that D is a strongly positive self-
adjoint bounded linear operator on a Hilbert space H, with
coefficient >0 and 0 <p < ID|". Then, |I - p D] <1 - py.

Lemma 4 (see [29]). Assume that {a,} is a sequence of
nonnegative real numbers such that

a1 < (1-y,)a,+06, n=0, (18)

where {y,} is a sequence in (0,1) and {8,} is a sequence in R
such that

(l) Zﬁil Yn = 005

(ii) limsup,,__,, (8,/y,) <00r Y2 18,] < + co.

a, =0.

n—oo'n

Then, lim

Assumption 1. Let G;: CxC — Randb;: CxC — R
be bimappings satisfying the following conditions:

1) G, (x,x) =0, Vx € G;

(2) Gy is monotone, i.e.,

G, (x, ) +G,(y,x)<0, Vx,yeC. (19)

(3) For each y € C, x — G, (x, y) is weakly upper
semicontinuous;

(4) For each x € C, y — G, (x, y) is convex and lower

semicontinuous;
(5) b, (.,.) is weakly continuous and b, (., y) is convex;

(6) b, is skew-symmetric, i.e.,
b, (x,x) = b, (x,¥)+b,(y,y) — b, (y,x) =0, (20)
Vx,y € C.

7894 (o) = 79 ()| < ey = 6, + I =i 7L (x) - x|

3
(Gp.by)
Now, we define T, : H, — C as follows:
T(G) (2) ={x € C: G, (%, y) + b, (3,x) — by (x, X)
1
+;(y—x,x—z)20, Vy e C},
(21)

where r is a positive real number.

Lemma 5 (see [30]). Let C be a nonempty closed convex
subset of Hilbert space H,. Let G;,b;: CxC — R be
nonlinear mappings satisfying Assumption 1. Assume that for
each z € H, and for each x € C, there exists a bounded subset
D.cC and z, € C such that for any y € C,D,,

G (32:) + b1 (20 y) = b1 (12 y) +%<Zx ~ .y -2 <0,
(22)
Let the mapping T pe defined by (21). Then, the
following conclusions hold:
(i) Tr(G"¢‘) (z) is nonempty for each z € H;
(ii) T,(G"¢‘) is single-valued;

(iii) T O is a firmly nonexpansive mapping, i.e., for all
z,,2, € Hy,

2
|7 z1) -1 () (23
(T (2) =T (2)), 2, - 22).

(iv) Fix(T °"") = Sol(GEP(4));
(v) Sol(GEP(4)) is closed and convex.
Further, assume that G,: QxQ — Randb,:
QxQ — R satisfy Assumption 1. For s>0 and for all
u € H,, define a mapping 70, H, — Q as follows:

TS(Gz’bz) (u) ={v € Q: G,(v,w) + b, (w,v) — b, (v,v)
X (24)
+;(w—v,v—u>20, Yw € Q}-

Then, we easily observe that T80 i nonempty, single-
valued, firmly nonexpansive, fix(Ts(Gz’bz)) = Sol (GEP (5)),
and Sol (GEP (5)) is closed and convex.

Lemma 6 (see [30]2. Let G, and b, satisfy Assumption 1 and
let the mapping T 50 pe defined by (21). Let x,,x, € H,
and r{,1,>0, then

—_ (25)
L)



3. Main Result

In this section, we prove a strong convergence theorem
based on the proposed iterative algorithm to approximate
a common solution of S,GEP (4), (5), and VIP (1)
(Algorithm 1).

Theorem 1. Let C and Q be two nonempty closed convex
subsets of Hilbert spaces H, and H,, respectively. Let
B: H, — H, be a bounded linear operator. Assume that
G:CxC—R, G:QxQ—R, b:CxC— R, and
b, QxQ — R are nonlinear mappings satisfying As-
sumption 1 and G, is upper semicontinuous in the first ar-
gument. Assume that ® =IT'NQ+ . Let g: H) — H, bea
contraction ~mapping with constant « € (0,1) and
D: C — H, be a t-inverse strongly monotone mapping. Let
{x,} be generated by Algorithm 1 and satisfy the following
conditions:

(i) lim,, 11, = 0, X2 11, = 00;
(ii) lim,__, (6,/n,)llx, = x,_1 1 = 0;
(iii) {6,,} < [0, 6], for some 6> 0 and 8, c (0,27);
(iv) liminf r, > 0andlim

n—oo'n n—»oolrrwl - rnl =0;

() {A,} R, suchthata<),<b< (1/L),whereL=|B|*.

Then, the sequence {x,} converges strongly to some q € ©,
where q = Pg (g9)q.

Proof. We divide the proof into several steps.
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i, al <t~ alf -2, -2, 7 - 1)m, |

(26)
Thus,
e, —al <t - 4l (27)
We estimate
“tn - CI” = ”xn - 671 (xn—l - xn) - q”
< [xn = al + 0, ]}x = x4 (28)
6,
o= al o Yk,
From condition (ii), 3N, >0 such that
z""xn—xnlnle, Vnzl. (29)
By (27)-(29), we have
|, = al < |1t - 4l < |}x. - a + 7N+ (30)

Since the mapping I — §,B is nonexpansive, therefore

[vs = al =[[Pc (1= 8,D)u, - q]
<|(1-2,D)u, - (I-46,D)p| < |u, - 4|

Step 1. We show that {x,} is bounded. Let (31)
qe®=TnQ, then q= T,(ncl’b‘)q and )
Bq = T\**) (Bg). Applying the similar steps used in We estimate
Theorem 1 [6], we obtain
%1 = all =129 (x) + (1 = 1,)v, =g
=[1, (g (x) =) + (1 = 1) (v, = 9)|
Sr]n"g(xn) _q" +(1 _nn)"Vn_q" (32)
<tlg (%) = 9 @] + 19 (@) = qll + (1 = n,)|[v, — g
< tpax, =l + 149 (@) = qll + (1 = ) |v, g,
Using (30) and (31) in the above inequality, we have
%t = all < (1= (1= @) |x, — ql| + 1Ny + 1,19 (q) - gl
N _
=(1 _(1_“)’1n)"xn_q"+r/an +(l_a)’7n%‘q)¢)q" (33)
< maxx, g, Ny +lg(@) —al __ max]x, - g, N, +llg(q) —ql

l1-«a

1-«
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Initialization: choose x,,x, € H, to be arbitrary.
Iterative Steps: given the current iterate x,, compute:
Step 1. Compute ¢, = x,, — 6, (x,_; — x,,)

Step 2. Compute u, = TG0 (¢, + A, B* (T %) — 1)Bt,)
Step 3. Compute v, = P (u,, — 6,Du,,) ’

and calculate the next iterate x,,,; as follows:

Xn+1 = Nng (x,) + (1- qn)vn

Set n:==n+1 and go to Step 1.

ALGORITHM 1: Iterative algorithm.

Thus, {x,} is bounded. Also, {u,}, {v,}, and {t,} are Step 2. We show that (1-#,)A, (1-A,L)[(T % by)—
bounded. DBt | < llx,—ql* = 1%,.; —ql* +%,N,, forsome N, >0.

We estimate

||xn+1 - q“z < ”n“g (xn) - q"2 + (1 - ’1n)||vn - q"2
2
<tu(l9(x0) - 9@ +1g(@ - ql)” + (1 = 5,)|v, - al
<u(alx, —af +lg(@ —al)’ + (1 ~1,)|v, ~ g’

2 2 (34)
Srln("xn _q" +||Q(‘1)“1||) +(1 _rln)"Vn_q"
2 2 2
=l = all” + m.(2]x, — alllg (@) - all +1g (@) —al*) + (1 = 1,)|v,, — 4]
< ’1n“xn - qnz + (1 - ﬂn)||un - q||2 +1,N,, forsomeN,>0.
2 2
Using (26) in the above inequality, we get ”t” B q" = ("x” B q" + U”Nl)
2
enen = alf <l —al + (1= )1 - alf =xu —all” + 7 (2N, [, — gl + 7,N7)
—(1 =g (1= M,L) KTr(ncm) _ I)Btnnz N, <||x, - q||2 +1,N;, forsome N, >0.
(36)

(35)

By (35) and (36), we h
From (30), we obtain y (35) and (36), we have

||xn+1 - q"2 < 71n||xn - qnz + (1 - 11”)”)(” - q|l2 + ’1nN3
2
- (1 - I/In)/ln (1 - AnL)”<Tr(nG2)b2) - I>Btn“ +1,N, (37)

=[es =l + 1N = (1 =), (1 - ?tnL)‘KTff”bz) -1 )Btnll2 1N,

which yields that where N, = N, + N;.
2 Step 3. We show that
(1 - ’/In)/ln (1 - AnL)"(Tr(,,GZ’hZ) - I>Btn P

(38)
<[tus = all =l —al” + N,

(1 - ’7n)||”n - tn”Z < nxn - qllz _"xn+1 - q"z + nnN4

#2(1 = n s, - al B (755 - 1)B, | )
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Using the concept of firmly nonexpansive of Tr(nGz’bz), we

have

2
[, =l =7 (e, + 2,8 (7)< 1)B, ) - o]
=[ree (5, 40,8 (1) 1B, 10|
<{u,—qt, + AnB*<T,(nG2’¢2) - I)Btn -q

t,+1,B" (Tr(nGZ’%) - I)Btn - q“2

= gl +>
_Eun q +§

2
! u,—q-t,- /\nB*(TT(nGZ"’SZ) - I)Btn + q”

2
_ 1 2 1 1 * T(G2,¢2) 2 (40)
=l al + 5t - a+ 2,8 ( ( —I)Btn
I AHB*<T,(GZ’¢2) - I)Bt,,“Z
2 n
1 1 1ol s ’
=l - al’ + Sl - al + 2] B (r}fm - I)Btnu
+<{t, — g, AnB*<Tr(nG2’¢2) - I)Btn> - %"un - t,,“z
- %)tf, B*(TT(nGz,gbz) - I)Btn ’ +(u, - tn,)tnB*<Tr(nG2>¢2) - I)Btn>
_1 2, 1 21 2 LB (1(64)
= Mo =l + Sl = al = Sl = + 0, - @, 0,3 (L) - 1),
which implies that
Jo = al’ <[l = all oo, = £ + 20, - @.,8° (T 1),
(41)
<t = alP ~[, = £ + 200, s, - al B (L5 - 1), |
Using (41) in (35), we get
||xn+1 - q"Z < ’7n||xn - q"2 + (1 - ’771)||tn - q|l2 - (1 - ’7n)||un - tn“z
(42)

B* (T}Gv%) - I)Btn

+ 200, (1= 11,) [, — |+ 1N
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Using (36), in the above inequality,

||xn+1 - q”2 < ﬂn”xn - q|l2 + (1 - I/In)"xn - q"2 + ﬂnN3 - (1 - ﬂn)uun - tn"z
B’ (Tr(fz%) - I>Btn||

+2p, (1= 1,)|u, — 4| )
43

= “xn - q||2 - (1 - ﬂn)"un - tn"2

+ zﬂn (1 - nn)ilun - q“ B* (Tr(nGz:‘/’z) - I)Btn" + ﬂnN4’

which implies Step 4. We show that

(1= 1)t = tull <[ = al* ~ %1 — 4l
+2u, (1= 1,) |, - 4

B’ <T,(G2’¢2) - I)Btn +1,N,.

(44)

s = al* < (1= (1 = )%, —gf* + (1 = ),

) (45)

l-«a

N
X ]
-«

0
9@ - X — ) + ,7— (BRI :

for some N > 0. We estimate

e =all” =, + 6,(x0 — x,1) -l
=[x = all” + 26, ¢x, = 4. %, = x> + Gl = x|
<l = all + 26, = alllv, = %01 |+ G, - 2, (46)
=l = all + Ol = a2l = all + Bl =, ])

< ”xn - q”z + 6,,||x,, - xn_1||N, for some N > 0.

Using (14), we calculate

[s60s1 = all” =19 (5,) + (1 = 1,10, =

=[14(9(x) = 9(@) + (1 = 1,) (w, = @) + 1, (9 (D - D[

<1, (9(x) = 9@) + (1 = 1,) (= DI + 21,9 (@) — G X1 — @) .
<nllg(x,) - g @I + (1= n) |, — al” + 21,¢9 (D ~ @ X1 — D
<ol = al” + (1 =1,)u = al” +21,(9(@) — 4 %0 —

<tpotx, = a* + (1 = m)tn —all” + 27,49 (@) ~ @ X1 — @)-
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From (46) and (47), we have

||xn+1 - q“z = (1 - (1 - “)ﬂn)nxn - q“z + en"xn - xn—lnN + 2’771 <g (q) — 4 Xpe1 — q>

= (1 —-(1- oc)qn)“xn - q“z +(1-a)y, (48)
0, N
| T 9@~ @ — )+ = x|
im [, -] =0 61

Step 5. We show that lim,_,|x, — gl = 0.
To show it, we have the two cases as follows: Now,

Case 1. 'There exists meN such that
llx,0q — qll2 <|x, - q||2, Vn>m. This shows that
lim llx, — qll exists, and by step 2, we have

6
[ = tull = Ol = | = 22 6 = a1 — 0,
n
n

n—=aoo
lim ”(T}Gvbz) - I>Btn>” -0, (49) e
n—s00 n (52)
Thanks to step 3 and (49), we obtain Next, prove that lim, _|u, —v,| = 0.
lim |u, —t,]| = 0. (50) By (47), we have
Since ||x,,; — u,ll = n,llu,, — g (x,)|, therefore
s = al” <maalx, = al” + (= 1) v =l + 21,¢9 (@) = @ Xy - D
= ﬂnanxn - q“2 + (1 - ﬂn)"vn - q"2 + 2’7n<(’ Xne1 — 61> (53)
<naalx, =g+ (1= n)]v. - al +2n.0"
We set { = f(q) — q and let p > 0 be a suitable constant
with o >sup,{l{ll, llx, — gll} in the above inequality.
Thus,
[ —ql*< (1= ﬂn){lch (4, ~ A,Bu,) = Pc(q - ?tan)Ilz} 1, - gl + 21,07
< (1 - ”n){“un - q"2 + )Ln (An - 2)’)”B”n - Bqnz} + rln"xn - q"2 + 2’7n92 (54)

< (1= )]l = 5 + 4, O = 20)[ B — B} + - =7 + 20,

< (1 - ’/In)/\n (An - 2)/)“314" - Bq"2 +I|xn - qllz + 2’11192‘
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(1 - nn)/\n (ZV - /\n)HBun - Bquz (55) nli_n}OO"Bun - Bq“ =0. (56)

<[ = al” =1 -l + 200", We compute

“Vn - q“Z = "PC (un - )LnBun) - PC (q - Aan)Hz

<, = 4> (u, = A,Bu,) - (q - 1,B9))

<3 1l - alf +e, - A,3,) -~ (a- A,Ba)[” =13, - ,) + A, (B, - B[}

<= alf . =l =0 - ) 4, (B, - B} )
<\t —al* =¥ — wa|” = 22| Bu, — Bq||” +21,,<v,, — w1, Bv,, — Bg)

< Jut =" % = sl + 20 =10 Brt, — Ag]

<l =l =, =l + 2, v, = | B, — Ag])

By (53), we get

||xn+l - q"Z < (1 - An)”Vn - qnz + An"xn - q"z + 2’7n92

2 2 2 2 (58)
< (=A%, =l =1 = sl + 2, = B, ~ Bal} + Al =l + 21,0%
which implies
(1 - An)"vn - un"2 < "xn - ‘1"2 _nxn+1 - q“2 +2 (1 - An)/\nuvn - un” "Bun - Bq“ + 2’7n92' (59)
Using (56) and the given conditions, we get Since {u,,} is bounded, there exists a subsequence {”n,}
I ~0 of {u,} which converges weakly to some p e C.
ninoo"Vn - u”" o (60) Without loss of generality, we can assume that u, —p

such that
From (50)-(52) and (60), we have . .
limsup{(g - Dq,u,, — q) = ilLr%o((g -Dq,u, — ).

[Peer =l < loeues = st ot = 2]+t = 20 — 0. s
(62)
asn — ©o.
(61) We prove that p e TN Q.

Since u,, = T,(nGI’bl)dn where d, :==t, + A, B* (Tr(nGz’bz) -I)

We prove that limsup,_,,{(g —I)g,x,, — q) <0. Bf.. we have

1
G, (u,,u) + by (u,u,) = b, (u,,u,) + - u—uyu,—d,y>0, YueC, (63)

n
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which implies that

1
bl (u’ un) - bl (un’ un) + r_ <u Uy Uy — dn> 2 Gl (u’ un)’

Yu € C (using monotonocity of G, ).
(64)

Hence,

bl(u, unk) - bl(unk, unk) +{u—-u,, M) > Gl(u, unk),

M
Yu e C.
(65)

Letu, = (1 - t)w + tu, forall t € (0, 1]. Sinceu € C and
w € C, we get u, € C and from (65), we have

0<Gy (11t ) = by (1, ) + by (1610,

_ (T(GZ ) _ I)Btn
% +1,B° i ‘
.

3 L0

).

u k
- <ut - unk’

(66)

Since B* is bounded linear, it follows from (49), (50),
(60), and hmlnfr >0 that ((u tnk)/rnk) — 0 and
B*((T( 2b2) —I)Bt 1) — 0 and so

b, (up p) = by (p ) <Gy (g p). (67)
Now, for t >0,
0=G, (“t’ “t)

=G, (upu,) + (1 = )Gy (uy, p)
>tG, (upuy) + (1= 0)[by (1, p) = by (P, p)]  (68)
>tGy (upu,) + (1= )t [by (u, p) — by (p, p)]

2G, (upu) + (1= 1) [by (1, p) = by (ps ).
Letting t — 0, we have
G, (pu) + b, (u,p) b, (p,p)=0, YueC. (69)

This implies that p € Sol (GEP (4)).

Next, we show that Bp e Sol(GEP(5)). Since
lu, -t — 0,u,—p as n — oo and {t,} is boun-
ded, there exists a subsequence {t, | of {t,} such that

Journal of Mathematics

t,,—p and since B is a bounded linear operator so that

Bt, —Bp.

it follows that
— 7(Goby)

Vy, = Tr, 7' Bt,, .

>

Now, setting v, = Bt T(G2 2) By
from (49), lim;__,,v,, =0 and Bt, -

Therefore, from Lemma 5, we have
Z) + bl(z’ u”k) - bl(”"k’ u”k)

v (e (Bt, -, ). (Bt,, -

3

G,(Bt, -,

v, )= Bt,) >0, VzeQ

(70)

Since G, is upper semicontinuous in the first argument,
taking limit superior to the above inequality as
k — o0 and using condition, we obtain

G, (Bp,z) + bl(z, unk) - bl(unk, unk) >0, VzeQ,

(71)

which means that Bp € Sol (GEP (5)) and hence p € T.
—oolltt, = v, |l = 0 and
ool — t,ll = 0, there exist subsequences {un[}
and {vni} of {u,} and {v,}, respectively such that u, —p
and v, —p.

Next, we prove p € Q. Since lim
lim

Define the mapping M as

, if )
M(Z)Z{D(z)+Nc(p) itpeC 72)
, ifp¢C,

where N (p) = {v € Hy;: {(p —u,v) >0, Vu € C} is the
normal cone to C at p € H,. In this case, the mapping M
is maximal monotone and hence 0 € Mp mapping if
and only if p € Sol(VIP(1)). Let (p,v) € graph(M).
Then, we have ve Mp=Dp+ Nc(p) and hence
v—=Dp € Nq(p). So, we have {p —u,v—Dp) >0, for

allu € C. On the other hand, from v, = P (u,, — 6§, Du,))
and p € C, we have
{(u, - 8,Du,) = v,,v, — py>0. (73)
This implies that
{(z -, V”(;“"+Dun>20. (74)

n

Since {(z-u,v-Dz)>0, for all z€C and v, €C,
using monotonicity of D, we have
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{z - Vo vy >{z - Vs Dp)

2<z—vni,Dz) —z-v,,

={z - vy, Dz — D“n,) +{z -

u,
“+ Du,)

Vv, — U,
Vy, DV, = Du,, ) =<z = v,,,— 5

Vi, — Uy,
>z = v,,Dv, — Du, )<{{z = v, ).

Since D is continuous therefore on taking limit
i — 00, we have (z — p,v) >0. Since M is maximal
monotone, we have p € M~!(0) and hence p € Q.
Thus, p e TNQ.

Since g = Pg (g)g, therefore from (62),

limsup{(g -~ g, u, = q) = lim (g ~D)g, p ~q) <0.

n—-00

(76)

Using Lemma 4, (76), and the given conditions in step
4, we get x,, — g, where q = Pg (g)q.

Case 2. There exists a subsequence {le -4l }
{lIx, —ql?} such that |x, —ql*<llx, - ql*VieN.
Thus, by Lemma 2, 3 is a nondecreasing sequence m; of
N such that lim m; = 0o and

j—00"j

(1 - nmj)“””% - t"‘j"2 = ||ij -

Hence,

lim ” M tmj" =0. (81)

n—~oo

By the similar steps of case 1, we get

al |
+ 2(1 —1,, ) o |,

<7ImN4+2<1_’7m> m"

o, =l <, -l
2
s =l < e, -l

By step 2, we get

(1 (1= (152 = 1) )|
<l =dl -,

Thus,
lim KTT(GZ’bZ) - I)Btm])” = 0.
n—aoo mj

By step 3, we obtain

2
— q” + ocm]N4 < ocij4.

2
o q“  7m, N

o e

B (5 -1 |

lim "x

n—~oo

X | =0,

limsup{(g - g, x,,, —¢q) <0.

j—

By step 4, we have

“xmh1 - q"2 < (1 -(1- oc)nmj>”xm]_ - q"2 +(1-a),

2
X
1=

O,
Ky, ~ D+ Mo ”xmj = Xm
j

N
1-«af

j-1

11

(75)

(77)

(78)

(79)

(80)

(83)



12

By (77) and (83), we have

[, ~al < (1~ -om,. )

2 O,
X 1_06<g(q)—q,xm}_+1 - +a

This implies

o, -of =

2 O,
= a(g(q) G Xy, —D +11_

" (89)
N
”Xm) = Fmyy 1-a
Thus,
limsup "xmﬁ1 - q“z <0. (86)
j—00

By (77) and (86), x; — q. This completes the

proof. O

Moreover, we have the following consequences. If we
take 6, = 0, then Theorem 1 reduced to the following result
without inertial as follows:

Corollary 1. Let C and Q be two nonempty closed convex
subsets of Hilbert spaces H, and H,, respectively. Let
B: H, — H, be a bounded linear operator. Assume that
G:CxC—oR, G:QxQ— R, b:CxC— R, and
b, QxQ — R are nonlinear mappings satisfying As-
sumption 1 and G, is upper semicontinuous in the first ar-
gument. Assume that ® =I'NQ+J. Let g: H — H, bea
contraction mapping with constant « € (0,1) and
D: C — H, be a t-inverse strongly monotone mapping. Let
{x,} be generated by

x, € H,

u, = Tr(ncl’b‘)<tn +1,B" (T,(ﬂGZ’hz) - I)Btn)
v, = Pc (u, - 6,Du,)

X1 = Mug (%) + (1= 11,),

where the control sequence satisfies the following conditions:

o (87)

(l) hmn—»oonn = 0’ 2220 Ny = 005
(ii) liminf,,_ 7, >0anlim "1 =70l = 0;
(iii) {A,,} ¢ Rsuchthata<l,<b< (1/L),whereL = B|*.

n—oo !’ n+l

Then, the sequence {x,} converges strongly to some q € ©,
where q = Pg (g9)q.

Further, if we take b, b, = 0, then Theorem 1 reduced to
the following result as follows:

Journal of Mathematics

o, =l + - am,,

N (84)

1-af

X, —X
m; mj_y

7

Corollary 2. Let C and Q be two nonempty closed convex
subsets of Hilbert spaces H, and H,, respectively. Let
B: Hy — H, be a bounded linear operator. Assume that
G:CxC—R and G,: QxQ — R are nonlinear
mappings satisfying Assumption 1 (1)-(4) and G, is upper
semicontinuous  in  first argument. Assume  that
® =Y NQ+, where Y denotes the solution set of SpEP (6)
and (7). Let g: H; — H, be a contraction mapping with
constant a € (0,1) and D: C — H, be a t-inverse strongly
monotone mapping. Let {x,} be generated by

x, € Hy

u, = (%) (tn + 1B (T,(f"z) - I)Btn>
v, = Pc (u, - 6,Du,)

X1 = 1,9 (%) + (1= 11,)v,

, (88)

where the control sequence satisfies the following conditions:

(i) lim,, 11, = 0, X2 11, = 00;
(i) lim, o, (6,/n,)lIx, — x4l = 0;
(iii) {6,} < [0, 6], for some 0>0andé, c (0,21);
(iv) liminf,__, 7, >0andlim [T — Tl = 0;
(v) {1} c Rsuchthata<A,<b< (1/L),whereL = B|*.

n—soo ' n+l

Then, the sequence {x,,} converges strongly to some q € ©,
where q = Pg (g)q.

4. Numerical Illustration

Finally, to supporting our main theorem, we now give an
example in infinitely dimensional spaces L, [0, 1] such that

|- is L,-norm defined by |x| = \/J(l) |x(£)]?dt where

x(t) € L, [0, 1].

Example 1. Let H, = H, = L,[0,1] and C = Q = {x() €L,
[0,1]: jo tx (t)dt < 1}. Define mappings as follows:
(i) bounded linear operator B: H, — H, by
Bx (t) = 3x(t), Vx(t) € L,[0,1];
(ii) contraction mapping g: H, — H, by g(x(t)) =
ax (t) where a € [0,1);
(iii) nonlinear mappings
G,: QxQ — R by

G:CxC—R,
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TaBLE 1: Numerical results of 6,,.

0, 0 0.5 (1/n) (1/n?) min{(1/n*|x, - x,,_,II), 0.5}
No. of iters 15 4 14 10 4
CPU time (s) 4106713 1.862612 3.764422 2.922132 2.023393
TaBLE 2: Numerical results of r,,.
T, 0.001 0.01 0.1 1 10
No. of iters 15 14 4 3 5
CPU time (s) 4.169121 3.927234 1.914940 1.678531 2.077360
TaBLE 3: Numerical results of a,,.
My (1/(n+1)) (1/(10m + 1)) (1/(20n + 1)) (1/(100n + 1)) (1/4/n)
No. of ites. 3 8 8 8 6
CPU time (s) 1.678531 2.710736 2.728162 2.700151 3.312465
Gy (x(0) y (1)) = G, (x (D), y (1)) =y (1) - x (1), x (D), GBI ey o
Vx(£), y () € L, [0, 1], Pe(x (1)) = el

(89)

(iv) nonlinear mappings b,;: CxC — R and b,: Q x
Q — R by

by (x(2), y (1)) = by (x(2), y (1)) =y (1), y (£))»

(90)
Vx (t), y(t) € L,[0,1].
(v) t-inverse strongly monotone mapping
D: C— H, by
Dx(t) = B'(I - Py)Bx(t), Vx(t) € C. (91)

It is obvious that G|, G,, b;, b, satisfy Assumption 1 and
G, is upper semicontinuous in the first argument by the
definition of the inner product {.,.). On the other hand, we
consider

1
OSGl(x,y)+b1(y,x)—b1(x,x)+;(y—x,x—z)

=<y—x,x>+1<y—x,x—2>
r

=(y—-x,(L+1)x—2).
(92)

This implies that Tr(G”b‘) (z(t)) =P (z(t)/ (1 +71)),
Vz(t) € L,[0,1] where

x (1), it {t,x(t)) <1

(93)

Similarly, we have T'%% (z(t)) = P.(z(t)/(1 + 1)),
Vz (t) € L, [0, 1]. For the experiments in this section, we use
the Cauchy error |x,,, — x,[> <107° for the stopping cri-
terion. We split considering all of the performances of our
algorithm in five cases.

Case I: we start computation by comparing of the al-
gorithm with different parameters 6, where

0,, ifn<N,x,#x,_,

6, =4 " ifn>Nx,Ex ., (94)
nl|x, - x|
N otherwise,

where N is the number of iteration that we want to stop.
We chooser,, =0.1,A, =6, =0.1,1, = (1/(n+ 1)), and
a=0.1 and  initializations  x, = sin(t) and
x, = (sin(#)/2). Then, the results are presented as follows:
Case II: we compare the performance of the algorithm
with different parameters r, by setting 6, = 0.5,
A,=96,=01, ,=(1/(n+1)), and o =0.1 and ini-
tializations x, = sin(t) and x, = (sin(¢)/2). Then, the
results are presented as follows:

Case III: we compare the performance of the algorithm
with different parameters 7, by setting 8, = 0.5, 7, = 1,
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TaBLE 4: Numerical results of A, and y,,.

/\n = 5n 1 0.1 0.01 0.001 0.0001
No. of iters 3 3 3 3 3
CPU time (s) 1.667450 1.672732 1.698085 1.663979 1.678559

TaBLE 5: Numerical results of a.

o4 0.001 0.1 0.5 0.9 0.999
No. of iters 7 3 8 7 7
CPU time (s) 2.512896 1.663979 2.691693 2.505802 2.631734
0.035 T T T T T L R L I A AL N R AL Tl T
0.03 -
0.025 ~
L 0.02 1
S
0,015 |- NN N L L L
0.01 -
0.005 E
4 5 6 7 8 9
Number of iterations
-e- 0,=0 ~v- 0,=1/n?
—— 0,=0.5 -8~ 0,=min{1/n%|x,-x,,|, 0.5}
-%- 6,=1/n

FIGURE 1: The Cauchy error plotting number of iterations for different parameters 0,.

Errors

Number of iterations

-eo- r,=0.001 -e- =1
-v- 1,=0.01 -»- 1,=10
—%- 1,=0.1

FIGURE 2: The Cauchy error plotting number of iterations for different parameters r,,.
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A,=96,=01, and a=01 and Iinitializations Case V: we compare the performance of the algorithm
X, =sin(t) and x, = (sin(¢)/2). Then, the results are with different parameters a by setting 0, = 0.5, r,, = 1,
presented as follows: #,= (1/(n+1)), and A, =4, =0.001 and initializa-
Case IV: we compare the performance of the algorithm tions x, = sin(t) and x, = (sin(¢)/2). Then, the results
with different parameters A, and &, by setting 6,, = 0.5, are presented as follows:

Tn = 13 My = (1/(n+ 1)),.and = 0.1 and initializations From Tables 1-5 and Figures 1-5, we noticed that in all
x = sin(#) and x, = (sin(¢)/2). Then, the results are  the above 5 cases, selecting 0, = 0.5,r, = 1,7, = (1/(n + 1)),
presented as follows: A, =9, =0.001, and & = 0.1 yields the best results.
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5. Conclusion

In this paper, we developed an iterative algorithm via inertial
and viscosity techniques to find a common solution of a split
generalized equilibrium and a variational inequality problem
in Hilbert spaces. Further, we study the convergence analysis
of our main result and point out some consequences. Finally,
we constructed a numerical example to demonstrate the
applicability of theorem and compared the performance of
algorithm by taking different parameters.
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