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)is work deals with the well-known group-theoretic graphs called coset graphs for the modular group G and its applications.)e
group action of G on real quadratic fields forms infinite coset graphs. )ese graphs are made up of closed paths. WhenM acts on
the finite field Zp, the coset graph appears through the contraction of the vertices of these infinite graphs. )us, finite coset graphs
are composed of homomorphic copies of closed paths in infinite coset graphs. In this work, we have presented a comprehensive
overview of the formation of homomorphic copies.

1. Introduction

)e study of groups via their actions has been a central
theme in group theory, since the completion of the classi-
fication of simple groups in the 1980s. )is most commonly
takes the form of actions on vector spaces and similar
commutative objects or on more elementary combinatorial
objects. It is not an exaggeration to say that the modular
group G (see [1–4]) is the single most important infinite
discrete group, through its myriad connections with number
theory, geometry, and topology. )ere is a long and ven-
erable history of studying its actions, particularly on finite
sets, which goes back to before the turn of the twentieth
century. )e modular group G has two generators f and g,
where f: x⟶ − 1/x and g: x⟶ x − 1/x are linear fractional
transformations. )e finite presentation of G is <f, g:
f2 � g3 �1>. It means that it is a free product of C2 and C3.
)e linear fractional transformation h: x⟶ 1/x extends G
to G′ because it inverts f and g; that is, h2 � (fh)2 � (gh)2 �1.
)us, extended modular group G′ has three generators f, g,
and h and its finite presentation is <f, g, h: f2 � g3 � h2 �

(fh)2 � (gh)2 �1>.

Graph theory has applications in various branches of
mathematics [5, 6]. Several topological and algebraic
structures can be studied in a more effective way by using
graphs. Graphical techniques are specifically utilized to
investigate the finitely generated groups.)e graphs prove to
be an effective and simple method to solve many mathe-
matical problems [7–9].

)e use of graphs to represent group actions has a
venerable history. Cayley [8] published the first work on this
topic. Mathematicians like Coxeter [9], Burnside [10],
Stothers [11], Everitt [12], Conder [13], Whitehead [14], and
others provided pioneering works on graphical represen-
tations of groups. )e action of a modular group on certain
objects can be represented by a certain type of graphs, called
coset graphs. )ese were introduced by Higman in 1978.
Later, in 1983, Mushtaq [15] laid their foundation. )ese
graphs consist of triangles connected to each other. )e
edges of triangles are permuted anticlockwise to represent by
g. Each vertex of a triangle is connected by f to another
vertex of the triangle (which may be the same triangle).

Moreover, the vertices of the coset graph that are fixed by
f and g are represented by heavy dots. Since (gh)2 �1 implies
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hgh− 1 � g− 1− 1, h turns around the direction of the triangles
like reflection. )us, we do not introduce h-edges in coset
graphs, so that they remain simple.

)e action ofG′ on finite field Zp is not possible because f
maps 0 to ∞. )us, we add ∞ to Zp in order to make the
action possible.

Example 1. Let us consider the action of modular group on
Z19 ∪ ∞{ }. )e permutation representations f, g, and h are

f: (0,∞)(13, 16)(1, 18)(11, 12)(2, 9)(10, 17)(3, 6)(7, 8)(4, 14)(15, 5),

g: (∞, 1, 0)(10, 18, 2)(7, 9, 3)(15, 6, 4)(16, 14, 5)(17, 11, 13)(8)(12),

h: (0,∞)(10, 2)(13, 3)(5, 4)(16, 6)(11, 7)(12, 8)(17, 9)(15, 14)(1)(18).

(1)

)e corresponding coset graph is shown in Figure 1.

Definition 1. Let Γ and Γ′ be two coset graphs; then Γ′ is a
homomorphic copy of Γ if

(i) order of Γ′ is less than the order of Γ, that is, |Γ′|< |Γ|,

(ii) u is a vertex in Γ such that (u) x� u for some x ∈ G,
and then there exists some vertex u′ ∈ Γ′ such that
(u′)x � u.

Let q′ be a real quadratic irrational number; then
q′ � ((α +

��
m

√
)/β), where m is a square-free natural

number and (α, ((α2 + m)/β), β) � 1. In [16], Mushtaq
studied the group action of G on real quadratic fields and
showed that the corresponding coset graphs are infinite.
Figure 2 shows a small patch of these graphs.

Due to the emergence of infinite graphs, the action of G

on q′ � ((α +
��
m

√
)/β) through coset graphs is not easy to

study. )erefore, the action of G on Zp ∪ ∞{ } becomes
important. )e coset graphs for Zp ∪ ∞{ } are homomorphic
copies of the infinite graphs for q′ � ((α +

��
m

√
)/β), where

m ≡ n2modp, for any natural number n. For example, the
coset graph shown in Figure 1 is the homomorphic copy of
the coset graph for ((α +

��
17

√
)/β) because 17 ≡ 62mod19.

For further details about coset graphs, we refer the
readers to [17–22].

)e main contributions of this paper are as follows:

(1) A thorough study on the formation of homomorphic
copies of coset graphs is presented

(2) We have developed a formula to compute all ho-
momorphic copies of the closed path of rank 4

2. Closed Paths in Coset Graph

Definition 2. A closed path in a coset graph containing a
vertex fixed by (fg)m1(fg− 1)m2 , . . . , (fg)mk− 1

(fg− 1)mk ∈ PSL(2, Z), where m1, m2, . . . , mk ∈ N is called a
closed path of rank k. It is denoted by (m1, m2, . . . , mk). In
[23], it has been proved that the rank of closed paths is
always even.

Remark 1. Let x, y ∈ G and (u)x � u. )en vertex (u)y is
fixed by y− 1xy.

Suppose that u1 and u2 are any two vertices in a closed
path C, such that (u1)x1 � u1 and (u2)x2 � u2. Let
(u1)x3 � u2; then x− 1

1 x3 also maps u1 to u2. Clearly, x3 and
x− 1
1 x3 are the only possible paths to travel from u1 to u2. By

contraction of vertices u1 and u2, we mean u1 and u2 merge
to form a node u � u1 � u2 such that u � u1 � u2 is fixed by
both x3 and x− 1

1 x3. )is can be done by making a closed path
C′ containing u such that (u)x3 � u and then by applying
x− 1
1 x3 on u such that x− 1

1 x3 ends at u. Consequently, a graph
c is evolved, which is a homomorphic copy of C. Note that,
in addition to u1 and u2, there are some other pairs of
vertices in C, which also compose c by contraction. In fact,
during the formation of c by contracting u1 and u2, some
more pairs also get contracted. How many are they? )e
following theorems help to calculate this number.
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Figure 1: )e coset graph of Z19 ∪ ∞{ }.
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Theorem 1 (see [24]). Let a homomorphic copy c of C be
formed by contracting its vertices u1 and u2. %en c is ob-
tainable also by contracting the pair (u1)x, (u2)x for some
x ∈ G.

Theorem 2 (see [24]). %e number of pairs to obtain c is
equal to the number of elements x ∈ G, such that (u1)x and
(u2)x lie in C.

Example 2. Consider a closed path (see Figure 3) containing
a vertex v which is a fixed point of (fg)4(fg− 1)3.)us, it is a
rank two closed path, denoted by (4, 3).

Figure 4 represents the homomorphic copy of (4, 3)

generated through contraction of vertices u and v.

3. Formation of Homomorphic Copies through
Contraction of Vertices

)e coset graphs are made up of closed paths. )e vertices of
infinite graphs are contracted in a specific manner to evolve
finite coset graphs. )erefore, a question arises: how many
distinct homomorphic copies can be created by contracting
all pairs in a closed path? In this work, we have developed a
technique to find all homomorphic copies of the closed paths
(m1, m2, m3, m4), where m1 >m2 >m3 and m2 � m4, in coset
graphs. Diagrammatically (m1, m2, m3, m4), where
m1 >m2 >m3 and m2 � m4, is shown in Figure 5.

In the remaining part of the paper, we denote the closed
path (m1, m2, m3, m4), where m1 >m2 >m3 and m2 � m4, by
ψ. )roughout this paper, the mirror image of any homo-
morphic copy c is denoted by c∗. If
x � fgκ1fgκ2 , . . . , fgκn ∈ PSL(2, Z), where κi � 1 or − 1,
then let x∗ � fg− κ1fg− κ2 , . . . , fg− κn . If x fixes any vertex u,
then the vertex fixed by x∗ is u∗.

Remark 2. Since (gh)2 �1 implies hgh− 1 � g− 1, h turns
around the direction of the triangles like reflection. If c is
obtained by contracting vertices u1 and u2 of any closed path
C, then the mirror image c∗ of c can be created by

contracting u∗1 and u∗2 . It should be noted that u1 and u2 do
not need to lie in the same closed path C. From Figure 5, we
have

s
∗
i � s3m1− (i− 1),

t
∗
j � v3m2− (j− 1),

u
∗
k � u3m3− (k− 1),

v
∗
l � t3m4− (l− 1),

(2)

for i � 1, 2, 3, . . . , 3m1, j � 1, 2, 3, . . . , 3m2, k � 1, 2, 3, . . . ,

3m3, and l � 1, 2, 3, . . . , 3m4. )us, for each vertex u in ψ,
there exists a vertex u∗ in ψ.

v

u

Figure 3: )e closed path (4, 3).

v = u

Figure 4: A homomorphic copy of (4, 3).
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Figure 2: An overview of the small portion of infinite graphs.
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Remark 3. Some homomorphic copies have symmetry about
the vertical axis; that is, they have the same orientations as those
of their mirror images. In other words, they are mirror images
of themselves. )e homomorphic copy c of any circuit C
having a vertex u fixed by x1, x2 has a symmetry about vertical
axis if and only if c contains a vertex u∗ fixed by x∗1 ,x∗2 .

3.1. Proposed Scheme. Since ψ has 3(m1 + m2 + m3 + m4)

number of vertices, the total number of pairs in ψ is
3(m1 + m2 + m3 + m4)

2􏼠 􏼡. We contract a pair of vertices

u1, u2 of ψ such that a homomorphic copy c is obtained. By
using )eorem 2, we find all pairs of vertices in ψ, which
form c; let those be n in numbers. Now, we have two
possibilities:

(i) If by contracting u1 and u2 vertices u∗1 and u∗2 are not
contracted, then c does not possess a vertical sym-
metry. )erefore, c∗ consumes n more pairs of
vertices of ψ.

(ii) If u1, u2 and u∗1 ,u∗2 are contracted all together, then c

has a symmetry about vertical axis. )erefore, c∗ does
not consume any pair. )us, c has n pairs of vertices.

Next, we contract ψ at one of the remaining pairs and the

process continues until all 3(m1 + m2 + m3 + m4)

2􏼠 􏼡 pairs

are exhausted.
Let i1 � 0, 1, 2, . . . , m2 − 1. First, we contract vertex s3m1

with vertices s3i1+1 and the following result is obtained.

Theorem 3. If vertex s3m1
is contracted with vertices s3i1+1,

then m2 distinct homomorphic copies αi1
of ψ are obtained.

Furthermore, there are 3(m2
2 + 3m2 − 2) pairs of vertices for

these homomorphic copies.

Proof. Let D1 � αi1
: i1 � 0, 1, 2, . . . , m2 − 1􏽮 􏽯 be the set of

homomorphic copies of ψ obtained by contracting s3m1
with

s3i1+1. In Figure 5, it can be seen that
(fg)m2(fg− 1)m3(fg)m4(fg− 1)i1f and g− 1(fg− 1)m1− i1− 1

are the possible paths between s3m1
and s3i1+1. )erefore,

vertex s3m1
� s3i1+1 in D1 is fixed by

(fg)m2(fg− 1)m3(fg)m4(fg− 1)i1f and g− 1(fg− 1)m1− i1− 1.
It is also clear from Figure 5 that E1 �

f, fg− 1, fg, fgf, fgfg− 1,􏼈 (fg)2, . . . , (fg)i1 , (fg)i1f,

(fg)i1fg− 1, (fg)i1+1, g, g− 1, e} is the set of elements x of the
modular group such that, for all x ∈ E1, both (s3m1

)x and
(s3i1+1)x lie in ψ. Since |E1| � 3(i1 + 2), by )eorem 2, there
are 3(i1 + 2) pairs in ψ to form αi1

.
Next, we show that all homomorphic copies αi1

of ψ in
D1 are different and no copy of these is a mirror image of
another.

Let αj, αk ∈ D1; then αj is evolved by contracting s3m1
and s3j+1, whereas αk is obtained by contracting s3m1

and
s3k+1. Now αj � αk if and only if there exists an element x in
E1 such that (s3m1

)x � s3m1
and (s3j+1)x � s3k+1. One can see

that only e ∈ E1 maps s3m1
to itself, but (s3j+1)e≠ s3k+1.

Now suppose that αj � α∗k ; then there must exist some x

in E1 which sends s3m1
to s∗3m1

� s1 and s3j+1 to
s∗3k+1 � s3(m1− k). But E1 does not contain such element. )is
means that all diagrams in D1 are distinct. )us, |D1| � m2
and there are 3􏽐

m2− 1
i1�0 (i1 + 2) pairs of vertices to create αi1

.
Now we check how many diagrams in D1 have a

symmetry about vertical axis. For this, let αj � α∗j ; then E1
contains an element x such that

s3m1
􏼐 􏼑x � s

∗
3m1

� s1,

s3j+1􏼐 􏼑x � s
∗
3j+1 � s3 m1− j( ),

or s3m1
􏼐 􏼑x � s

∗
3j+1 � s3 m1− j( ),

s3j+1􏼐 􏼑x � s
∗
3m1

� s1.

(3)

)is is possible only if i1 � 0; in this case, we have e ∈ E1
such that (s3m1

)e � s∗1 and (s1)e � s∗3m1
� s1. So, we conclude

that only α0 has a symmetry about vertical axis; that is, α0 and
its mirror image α∗0 have the same orientations, and all other
m2 − 1 homomorphic copies in ψ do not possess a vertical
symmetry. Hence there are 6􏽐

m2− 1
i2�1 (i2 + 2) + 6 � 3 (m2

2 +

3m2 − 2) pairs to form D1 � αi1
: i1 � 0, 1, 2, . . . ,􏽮 m2 − 1}.

We obtain all the results by using the same technique, so,
from now onwards, instead of providing proofs of the
theorems, we will present tables, which give the necessary
information of the family of homomorphic copies evolved.

Let i2 � 1, 2, . . . , m2 − 1. We contract the pair t3m2
and

t3i2+1 and obtain the following result. By using)eorem 1, one
can see that these vertices are not contracted in)eorem 3. □

Theorem 4. If vertex t3m2
is contracted with vertices t3i2+1,

then m2 − 1 distinct homomorphic copies αi2
′ of ψ are ob-

tained. Furthermore, there are 3(m2
2 + 3m2 − 4) pairs of

vertices for these homomorphic copies.

Table 1 shows the complete information of the family of
homomorphic copies αi2

′. )e information provided in Ta-
ble 1 can be verified by the same technique used in the proof
of )eorem 3.

Let us contract u3m3
with u3i3+1, where

i3 � 0, 1, 2, . . . , m3 − 1. By using )eorem 1, it can be easily
verified that these pairs of vertices are not utilized in the
previous theorems.

Theorem 5. If vertex u3m3
is contracted with vertices u3i3+1,

then m3 distinct homomorphic copies αi3
″ of ψ are obtained.

Furthermore, there are 3(m2
3 + 3m3 − 2) pairs of vertices for

these homomorphic copies.

All details of the family of homomorphic copies αi3
″ have

been provided in Table 2.
Next, we contract s3m1

with t3i1+1 and formulate the
following )eorem.

Theorem 6. If vertex s3m1
is contracted with vertices t3i1+1,

then m2 distinct homomorphic copies βi1
of ψ are obtained.

Furthermore, there are 3(m2
2 + 3m2) pairs of vertices for these

homomorphic copies.
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For complete information of βi1
, see Table 3.

Now we contract vertex s3m1
with vertices u3i3+1, where

i3 � 0, 1, 2, . . . , m3 − 1, and acquire the following result.

Theorem 7. If vertex s3m1
is contracted with vertices u3i3+1,

then m3 distinct homomorphic copies βi3
′ of ψ are obtained.

Furthermore, there are 3(m2
3 + 3m3) pairs of vertices for these

homomorphic copies.

Table 4 provides all information regarding homomor-
phic copies βi3

′, evolved in )eorem 7.
)e following theorem is evolved by contracting s3m1

with v3i4+1, where i4 � 0, 1, 2, . . . , m4 − 1.

Theorem 8. If vertex s3m1
is contracted with vertices v3i4+1,

then m4 distinct homomorphic copies βi4
″ of ψ are obtained.

Furthermore, there are (3/2)(m2
4 + 3m4) pairs of vertices for

these homomorphic copies.

)e complete information of the family of homomorphic
copies βi4

″ obtained in )eorem 8 is given in Table 5.
)e next theorem is obtained by contracting t3m2

with
s3i5+1, where i5 � 1, 2, . . . , m1 − 1.

Theorem 9. If vertex t3m2
is contracted with vertices s3i5+1,

then m1 − 1 distinct homomorphic copies β″′i5 of ψ are ob-
tained. Furthermore, there are (3/2)(m2

1 + 3m1 − 4) pairs of
vertices for these homomorphic copies.

All details of the generated homomorphic copies are
given in Table 6.

Now we contract vertex t3m2
with vertices u3i6+1 for all

i6 � 1, 2, . . . , m3 − 1.

Theorem 10. If vertex t3m2
is contracted with vertices u3i6+1,

then m3 − 1 distinct homomorphic copies βiv
i6
of ψ are ob-

tained. Furthermore, there are 3(m2
3 + 3m3 − 4) pairs of

vertices for these homomorphic copies.

)e complete information of the family of homomorphic
copies βiv

i6
is provided in Table 7.

In the following theorem, u3m3
is contracted with t3i1+1.

Theorem 11. If vertex u3m3
is contracted with vertices t3i1+1,

then m2 distinct homomorphic copies βv
i1
of ψ are obtained.

Furthermore, there are (3/2)(m2
2 + 3m2) pairs of vertices for

these homomorphic copies.

All details of homomorphic copies βv
i1
can be found in

Table 8.
Let us now contract vertex v3m4

with vertices u3i6+1, where
i6 � 1, 2, . . . , m3 − 1.

Table 1: Necessary information regarding homomorphic copies
αi2
′􏽮 􏽯.

)e pairs that are contracted (t3m2
, t3i2+1)

Family of homomorphic copies evolved D2 � αi2
′􏽮 􏽯

|D2| m2 − 1
Number of pairs for each αi2

′ 3(i2 + 2)

Number of homomorphic copies that have
vertical axis of symmetry 0

Total number of pairs for D2 3(m2
2 + 3m2 − 4)

Table 2: Necessary information regarding homomorphic copies
αi3
″􏽮 􏽯.

)e pairs that are contracted (u3m3
, u3i3+1)

Family of homomorphic copies evolved D3 � αi3
″􏽮 􏽯

|D3| m3
Number of pairs for each αi3

″ 3(i3 + 2)

Homomorphic copies possessing vertical axis
of symmetry Only α0″

Total number of pairs D3 3(m2
3 + 3m3 − 2)

Table 3: Necessary information regarding homomorphic copies
βi1

􏽮 􏽯.

)e pairs that are contracted (s3m1
, t3i1+1 )

Family of homomorphic copies evolved D4 � βi1
􏽮 􏽯

|D4| m2
Number of pairs for each βi1

m2
Homomorphic copies possessing vertical axis of
symmetry No one

Total number of pairs for D4 3(m2
2 + 3m2)

Table 4: Necessary information regarding homomorphic copies
βi3
′􏽮 􏽯.

)e pairs that are contracted (s3m1
, u3i3+1)

Family of homomorphic copies evolved D5 � βi3
′􏽮 􏽯

|D5| m3
Number of pairs for each βi3

′ 3(i3 + 2)

Homomorphic copies possessing vertical axis of
symmetry No one

Total number of pairs for D5 3(m2
3 + 3m3)

Table 5: Necessary information regarding homomorphic copies
βi4
″􏽮 􏽯.

)e pairs that are contracted (s3m1
, v3i4+1)

Family of homomorphic copies evolved D6 � βi4
″􏽮 􏽯

|D6| m4
Number of pairs for each βi4

″ 3(i4 + 2)

Homomorphic copies possessing vertical axis
of symmetry All βi4

″

Total number of pairs for D6 (3/2)(m2
4 + 3m4)

Table 6: Necessary information regarding homomorphic copies
βi5
″􏽮 􏽯.

)e pairs that are contracted (t3m2
, s3i5+1)

Family of homomorphic copies evolved D7 � βi5
″􏽮 􏽯

|D7| m1 − 1
Number of pairs for each βi5

″ 3(i5 + 2)

Homomorphic copies possessing vertical
axis of symmetry All β″′i5
Total number of pairs for D7 (3/2)(m2

1 + 3m1 − 4)

Journal of Mathematics 5



Theorem 12. If vertex v3m4
is contracted with vertices u3i6+1,

then m3 − 1 distinct homomorphic copies βvi
i6
of ψ are ob-

tained. Furthermore, there are (3/2)(m2
3 + 3m3 − 4) pairs of

vertices for these homomorphic copies.

All information related to the homomorphic copies
created in )eorem 12 is given in Table 9.

Let us contract vertex s3m1
with vertices s3i7+1, where

i7 � m2 + 1, m2 + 2, . . . , m1 − 1. Consequently, we have the
following theorem.

Theorem 13. If vertex s3m1
is contracted with vertices s3i7+1,

then m1 − m2 − 1 distinct homomorphic copies ci7
of ψ are

obtained. Furthermore, there are 6(m2 + 2)(m1 − m2 − 1)

pairs of vertices for these homomorphic copies.

Table 10 completely describes the family of homomor-
phic copies evolved in )eorem 11.

Suppose that ε1 �
0, if m1 + m3 is even
1, if m1 + m3 is odd

􏼨 and

i8 � m3 + 1, m3 + 2, . . . , ((m1 + m3 − ε1)/2). Let us contract
v3m4

with s3i8+1 to obtain )eorem 14.

Theorem 14. If vertex v3m4
is contracted with vertices s3i8+1,

then (1/2)(m1 − m3 − ε1) distinct homomorphic copies ci8
′ of ψ

are obtained. Furthermore, there are 3(m3 + 2)(m1 − m3 − 1)

pairs of vertices for these homomorphic copies.

All information of the homomorphic copies evolved in
)eorem 14 is provided in Table 11.

)e following theorem emerges as a result of contracting
v3m4

with t3i9+1, where i9 � m3 + 1, m3 + 2, . . . , m2 − 1.

Theorem 15. If vertex v3m4
is contracted with vertices t3i9+1,

then m2 − m3 − 1 distinct homomorphic copies ci9
″ of ψ are

obtained. Furthermore, there are 6(m3 + 2)(m2 − m3 − 1)

pairs of vertices for these homomorphic copies.

Table 12 shows the complete information of all homo-
morphic copies created in )eorem 15.

Suppose that i10 � 1, 2, . . . , m1 − 1 and i11 � 1, 2, . . . ,

m2 − 1. Let us contract s3i10+1 with t3i11
and obtain the fol-

lowing results.

Theorem 16. If vertices s3i10+1 are contracted with vertices
t3i11

, then (m1 − 1)(m2 − 1) distinct homomorphic copies
δ(i10 ,i11) of ψ are obtained. Furthermore, there are 12(m1 −

1)(m2 − 1) pairs of vertices for these homomorphic copies.

All necessary details of the family of homomorphic
copies evolved in this process are provided in Table 13.

Let i12 � 1, 2, 3, . . . , ((m3 − ε2 − 2)/2), where

ε2 �
0, if m3 is even
1, if m3 is odd

􏼨 . )e following results have been

constructed by contracting s3i10+1 with u3i12
.

Theorem 17. If vertices s3i10+1 are contracted with vertices
u3i12

, then (1/2)(m1 − 1)(m3 − ε2 − 2) distinct homomorphic

Table 7: Necessary information regarding homomorphic copies
βiv

i6
􏽮 􏽯.

)e pairs that are contracted (t3m2
, u3i6+1)

Family of homomorphic copies evolved D8 � βiv
i6

􏽮 􏽯

|D8| m3 − 1
Number of pairs for each βiv

i6
3(i6 + 2)

Homomorphic copies possessing vertical axis
of symmetry No one

Total number of pairs for D8 3(m2
3 + 3m3 − 4)

Table 8: Necessary information regarding homomorphic copies
βv

i1
􏽮 􏽯.

)e pairs that are contracted (u3m3
, t3i1+1)

Family of homomorphic copies evolved D9 � βv
i1

􏽮 􏽯

|D9| m2
Number of pairs for each βv

i1
3(i1 + 2)

Homomorphic copies possessing vertical axis
of symmetry All βv

i1

Total number of pairs for D9 (3/2)(m2
2 + 3m2)

Table 9: Necessary information regarding homomorphic copies
βvi

i6
􏽮 􏽯.

)e pairs that are contracted (v3m4
, u3i6+1)

Family of homomorphic copies evolved D10 � βvi
i6

􏽮 􏽯

|D10| m3 − 1
Number of pairs for each βvi

i6
3(i6 + 2)

Homomorphic copies possessing vertical
axis of symmetry All βvi

i6

Total number of pairs for D10 (3/2)(m2
3 + 3m3 − 4)

Table 10: Necessary information regarding homomorphic copies
ci7

􏽮 􏽯.

)e pairs that are contracted (s3m1
, s3i7+1)

Family of homomorphic copies evolved D11 � ci7
􏽮 􏽯

|D11| m1 − m2 − 1
Number of pairs for each ci7

3(m2 + 2)

Homomorphic copies possessing
vertical axis of symmetry No one

Total number of pairs for D11 6(m2 + 2)(m1 − m2 − 1)

Table 11: Necessary information regarding homomorphic copies
ci8
′􏽮 􏽯.

)e pairs that are contracted (v3m4
, s3i8+1)

Family of homomorphic copies
evolved D12 � ci8

′􏽮 􏽯

|D12| (1/2)(m1 − m3 − ε1)
Number of pairs for each ci8

′ 3(m3 + 2)

Homomorphic copies possessing
vertical axis of symmetry

No one if m1 + m3 is odd
and

c((m1+m3)/2)
′ if m1 + m3 is
even

Total number of pairs for D12 3(m3 + 2)(m1 − m3 − 1)
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copies δ(i10 ,i12)
′ of ψ are obtained. Furthermore, there are

6(m1 − 1)(m3 − ε2 − 2) pairs of vertices for these homo-
morphic copies.

See Table 14 for complete information of the homo-
morphic copies.

Recall that i13 � 1, 2, . . . , m1 − 1 and

ε2 �
0 if m3 is even
1 if m3 is odd

􏼨 . Let ε3 �
0 if m1 is even
1 if m1 is odd

􏼨 , and we

obtain the following theorem by contracting s3i13+1 with
u3((m3− ε2)/2).

Theorem 18. If vertices s3i13+1 are contracted with vertex

u3((m3− ε2)/2), then ((m1 − ε2)/2) if m3 is even
m1 − 1 if m3 is odd

􏼨 distinct

homomorphic copies δ(i13 ,((m3− i3)/2))
″ of ψ are obtained. Fur-

thermore, there are 6(m1 − 1) if m3 is even
12(m1 − 1) if m3 is odd

􏼨 pairs of

vertices for these homomorphic copies.

All information related to the homomorphic copies
created in )eorem 18 is provided in Table 15.

Now we contract t3i14+1 with u3i15
, where

i14 � 1, 2, . . . , m2 − 1 and i15 � 1, 2, . . . , m3 − 1, so that
)eorem 19 is evolved.

Theorem 19. If vertices t3i14+1 are contracted with vertices
u3i15

, then (m2 − 1)(m3 − 1) distinct homomorphic copies
δ″′(i14 ,i15) of ψ are obtained. Furthermore, there are 12(m2 −

1)(m3 − 1) pairs of vertices for these homomorphic copies.

For complete details about the homomorphic copies
evolved in )eorem 19, see Table 16.

Let i16 � 1, 2, 3, . . . , m4 − i14. )e following theorem is
obtained by contracting t3i14+1 with v3i16

.

Theorem 20. If vertices t3i14+1 are contracted with vertices
v3i16

, then (1/2)m2(m2 − 1) distinct homomorphic copies
δiv

(i14 ,i16) of ψ are obtained. Furthermore, there are 6(m2 − 1)2

pairs of vertices for these homomorphic copies.

All important information regarding δiv
(i14 ,i16) is provided

in Table 17.
Recall that ε3 �

0 if m1 is even
1 if m1 is odd

􏼨 , and let

i17 � 1, 2, 3, . . . , ((m1 − 2 − ε3)/2) and i18 � i17 + 1,

i17 + 2, . . . , m1 − i17. In )eorem 21, we contract vertices
s3i17+1 with vertices s3i18

to create homomorphic copies
μ(i17 ,i18).

Theorem 21. If vertices s3i17+1 are contracted with vertices
s3i18

, then (1/4)(m2
1 − 2m1 + ε3) distinct homomorphic copies

μ(i17 ,i18) of ψ are obtained. Furthermore, there are 3(m2
1 −

3m1 + 2) pairs of vertices for these homomorphic copies.

All information about the family of homomorphic copies
evolved in )eorem 21 is given in Table 18.

Now, let us contract vertices t3i19+1 with t3i20
, where i19 �

1, 2, 3, . . . , m2 − 2 and i20 � i19 + 1, i19 + 2, i19 + 3,

. . . , m2 − 1.

Theorem 22. If vertices t3i19+1 are contracted with vertices
t3i20

, then (1/2)(m2 − 2)(m2 − 1) distinct homomorphic
copies μ(i19 ,i20)

′ of ψ are obtained. Furthermore, there are
6(m2 − 2)(m2 − 1) pairs of vertices for these homomorphic
copies.

Table 19 provides all information regarding μ(i19 ,i20)
′ .

Recall that ε2 �
0 if m3 is even
1 if m3 is odd

􏼨 and let i21 �

1, 2, 3, . . . , ((m3− 2 + ε2)/2) and i22 � i21 + 1, i21 + 2,

i21 + 3, . . . , m3 − i21. )e next theorem is obtained by con-
tracting u3i21+1 with u3i22

Theorem 23. If vertices u3i21+1 are contracted with vertices
u3i22

, then (1/4)(m2
3 − 2m3 + ε2) distinct homomorphic copies

μ(i21 ,i22)
″ of ψ are obtained. Furthermore, there are 3(m2

3 −

3m3 + 2) pairs of vertices for these homomorphic copies.

Table 12: Necessary information regarding homomorphic copies
ci9
″􏽮 􏽯.

)e pairs that are contracted (v3m4
, t3i9+1)

Family of homomorphic copies evolved D13 � ci9
″􏽮 􏽯

|D13| m2 − m3 − 1
Number of pairs for each ci9

″ 3(m3 + 2)

Homomorphic copies possessing
vertical axis of symmetry No one

Total number of pairs for D13 6(m3 + 2)(m2 − m3 − 1)

Table 13: Necessary information regarding homomorphic copies
δ(i10 ,i11)􏽮 􏽯.

)e pairs that are contracted (s3i10+1 , t3i11
)

Family of homomorphic copies evolved D14 � δ(i10 ,i11)􏽮 􏽯

|D14| (m1 − 1)(m2 − 1)

Number of pairs for each δ(i10 ,i11) 6
Homomorphic copies possessing vertical
axis of symmetry No one

Total number of pairs for D14 12(m1 − 1)(m2 − 1)

Table 14: Necessary information regarding homomorphic copies
δ(i10 ,i12)
′􏽮 􏽯.

)e pairs that are contracted (s3i10+1 , u3i12
)

Family of homomorphic copies
evolved D15 � δ(i10 ,i12)

′􏽮 􏽯

|D15| (1/2)(m1 − 1)(m3 − ε2 − 2)

Number of pairs for each δ(i10 ,i12)
′ 6

Homomorphic copies possessing
vertical axis of symmetry No one

Total number of pairs for D15 6(m1 − 1)(m3 − ε2 − 2)
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All details of the generated homomorphic copies are
given in Table 20.

Now suppose that i23 � 1, 2, 3, . . . , ((m1 − ε3)/2). )e
following results have been constructed by contracting s3i23+1
with s3i23

.

Theorem 24. If vertices s3i23+1 are contracted with vertices
s3i23

, then (1/2)(m1 − ε3) distinct homomorphic copies ](i23 ,i23)

of ψ are obtained. Furthermore, there are 3(m1 − 1) pairs of
vertices for these homomorphic copies.

See Table 21 for complete details of the evolved ho-
momorphic copies.

Now, we contract t3i24+1 with t3i24
, where

i24 � 1, 2, 3, . . . , m2 − 1.

Theorem 25. If vertices t3i24+1 are contracted with vertices
t3i24

, then m2 − 1 distinct homomorphic copies ](i24 ,i24)
′ of ψ are

obtained. Furthermore, there are 6(m2 − 1) pairs of vertices
for these homomorphic copies.

)e complete information of the family of homomorphic
copies ](i24 ,i24)

′ obtained in )eorem 25 is given in Table 22.
Suppose that i25 � 1, 2, 3, . . . , ((m3 − ε2)/2). Let us

contract u3i25+1 and u3i25
and obtain the following results.

Theorem 26. If vertices u3i25+1 are contracted with vertices
u3i25

, then (1/2)(m3 − ε2) distinct homomorphic copies
](i25 ,i25)
″ of ψ are evolved. Furthermore, there are 3(m3 − 1)

pairs of vertices for these homomorphic copies.

All information of the family of homomorphic copies
](i25 ,i25)
″ evolved in )eorem 26 is provided in Table 23.
Lastly, we contract 4 pairs of vertices to evolve 4 ho-

momorphic copies.

Theorem 27

(i) Let η1 be the homomorphic copy of ψ obtained by
contracting s1 and t1. %en there are 6(m2 + m3 +

2) pairs of vertices for η1.
(ii) Let η2 be the homomorphic copy obtained by con-

tracting s1 and u1. %en there are 3(m2 + 2m3 + 2)

pairs of vertices for η2.
(iii)) Let η3 be the homomorphic copy obtained by con-

tracting s1 and v1. %en there are 6(m2 + 1) pairs of
vertices to generate η3.

(iv) Let η4 be the homomorphic copy obtained by con-
tracting t1 and u1.%en there are 6(m3 + 1) pairs of
vertices for η4.

Let Γ �

0 if m1 andm3 are odd
4 if m1 andm3 are even
− 1 if m1 is even andm3 is odd or vice versa

⎧⎪⎨

⎪⎩
.

We are now in a position to prove the main theorem of this
paper.

Table 15: Necessary information regarding homomorphic copies
δ(i13 ,((m3 − i3)/2))
″􏽮 􏽯.

)e pairs that are
contracted (s3i13+1, u3((m3 − ε2)/2))

Family of homomorphic
copies evolved D16 � δ(i13 ,((m3 − i3)/2))

″􏽮 􏽯

|D16|
((m1 − ε2)/2) if m3 is even
m1 − 1 if m3 is odd

􏼨

Number of pairs for each
δ(i13 ,((m3 − i3)/2))
″ 6

Homomorphic copies
possessing vertical axis of
symmetry

δ((m1/2),(m3/2))
″ if m1 and m3 are even

and no one otherwise

Total number of pairs for
D16

6(m1 − 1) if m3 is even
12(m1 − 1) if m3 is odd

􏼨

Table 16: Necessary information regarding homomorphic copies
δ(i14 ,i15)
″􏽮 􏽯.

)e pairs that are contracted (t3i14+1, u3i15
)

Family of homomorphic copies evolved D17 � δ(i14 ,i15)
″􏽮 􏽯

|D17| (m2 − 1)(m3 − 1)

Number of pairs for each δ(i14 ,i15)
″ 6

Homomorphic copies possessing vertical
axis of symmetry No one

Total number of pairs for D17 12(m2 − 1)(m3 − 1)

Table 17: Necessary information regarding homomorphic copies
δiv

(i14 ,i16)􏽮 􏽯.

)e pairs that are contracted (t3i14+1, v3i16
)

Family of homomorphic copies evolved D18 � δiv
(i14 ,i16)􏽮 􏽯

|D18| (1/2)m2(m2 − 1)

Number of pairs for each δiv
(i14 ,i16) 6

Homomorphic copies possessing vertical axis
of symmetry No one

Total number of pairs for D18 6(m2 − 1)2

Table 18: Necessary information regarding homomorphic copies
μ(i17 ,i18)􏽮 􏽯.

)e pairs that are contracted (s3i17+1, s3i18
)

Family of homomorphic copies evolved D19 � μ(i17 ,i18)􏽮 􏽯

|D19| (1/4)(m2
1 − 2m1 + ε3)

Number of pairs for each μ(i17 ,i18) 6
Homomorphic copies possessing vertical
axis of symmetry (1/2)(m1 − 2 + ε3)

Total number of pairs for D19 3(m2
1 − 3m1 + 2)

Table 19: Necessary information regarding homomorphic copies
μ(i19 ,i20)
′􏽮 􏽯.

)e pairs that are contracted (t3i19+1, t3i20
)

Family of homomorphic copies evolved D20 � μ(i19 ,i20)
′􏽮 􏽯

|D20| (1/2)(m2 − 2)(m2 − 1)

Number of pairs for each μ(i19 ,i20)
′ 6

Homomorphic copies possessing vertical
axis of symmetry No one

Total number of pairs for D20 6(m2 − 2)(m2 − 1)
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Theorem 28. %ere are (1/4) m2
1 + 4m2

2+􏼈 m2
3 + 4(m1m2 +

m2m3) + 2m1m2 + 8m2 + 4m3 + Γ} numbers of distinct ho-
momorphic copies of ψ by contracting all the pairs in ψ.

Proof. Let us contract the following pairs of vertices:

(i) s3m1
and s3i1+1

(ii) t3m2
and t3i2+1

(iii) u3m3
and u3i3+1

(iv) s3m1
and t3i1+1

(v) s3m1
and u3i3+1

(vi) s3m1
and v3i4+1

(vii) t3m2
and s3i5+1

(viii) t3m2
and u3i6+1

(ix) u3m3
and t3i1+1

(x) v3m4
and u3i6+1

(xi) s3m1
and s3i7+1

(xii) v3m4
and s3i8+1

(xiii) v3m4
and t3i9+1

(xiv) s3i10+1 and t3i11

(xv) s3i10+1 and u3i12

(xvi) s3i13+1 and u3((m3− ε2)/2)

(xvii) t3i14+1 and u3i15

(xviii) t3i14+1 and v3i16

(xix) s3i17+1 and s3i18

(xx) t3i19+1 and t3i20

(xxi) u3i21+1 and u3i22

(xxii) s3i23+1 and s3i23

(xxiii) t3i24+1 and t3i24

(xxiv) u3i25+1 and u3i25

(xxv) s1 and t1

(xxvi) s1 and u1

(xxvii) s1 and v1

(xxviii) t1 and u1

)en, by )eorems 3 to 27, we obtain the set

Table 20: Necessary information regarding homomorphic copies μ(i21 ,i22)
″􏽮 􏽯.

)e pairs that are contracted (u3i21+1, u3i22
): i21 � 1, 2, 3, . . . , ((m3 − 2 + ε2)/2) and

i22 � i21 + 1, i21 + 2, i21 + 3, . . . , m3 − i21
Family of homomorphic copies evolved D21 � μ(i21 ,i22)

″􏽮 􏽯

|D21| (1/4)(m2
3 − 2m3 + ε2)

Number of pairs for each μ(i21 ,i22)
″ 6

Homomorphic copies possessing vertical axis of symmetry (1/2)(m3 − 2 + ε2)
Total number of pairs for D21 3(m2

3 − 3m3 + 2)

Table 21: Necessary information regarding homomorphic copies ](i23 ,i23)􏽮 􏽯.

)e pairs that are contracted (s3i23+1, s3i23
)

Family of homomorphic copies evolved D22 � ](i23 ,i23)􏽮 􏽯

|D22| (1/2)(m1 − ε3)
Number of pairs for each ](i23 ,i23) 3
Homomorphic copies possessing vertical axis of symmetry ]((m1/2),(m1/2))

Total number of pairs for D22 3(m1 − 1)

Table 22: Necessary information regarding homomorphic copies ](i24 ,i24)
′􏽮 􏽯.

)e pairs that are contracted (t3i24+1, t3i24
)

Family of homomorphic copies evolved D23 � ](i24 ,i24)
′􏽮 􏽯

|D23| m2 − 1
Number of pairs for each ](i24 ,i24)

′ 3
Homomorphic copies possessing vertical axis of symmetry No one
Total number of pairs for D23 6(m2 − 1)

Table 23: Necessary information regarding homomorphic copies ](i25 ,i25)
″􏽮 􏽯.

)e pairs that are contracted (u3i25+1, u3i25
)

Family of homomorphic copies evolved D24 � ](i25 ,i25)
″􏽮 􏽯

|D24| (1/2)(m3 − ε2)
Number of pairs for each ](i25 ,i25)

″ 3
Homomorphic copies possessing vertical axis of symmetry ]((m3/2),m3/2)

″
Total number of pairs for D24 3(m3 − 1)
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F �

αi1
, αi2
′, αi3
″, βi1

, βi3
′, βi4
″, β″′i5 , β

iv
i6

, βv
i1

, βvi
i6

,

ci7
, ci8
′, ci9
″, δ i10 ,i11( ), δ i10 ,i12( )

′ , δ i13 , m3− i3( )/2( )( )
″ ,

δ i14 ,i15( )
″ , δiv

i14 ,i16( ), μ i17 ,i18( ), μ i19 ,i20( )
′ , μ i21 ,i22( )

″ , ] i23 ,i23( ), ] i24 ,i24( )
′ , ] i25 ,i25( )

″ ,

η1, η2, η3, η4

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (4)

of homomorphic copies of ψ and there are

S � 3 m
2
2 + 3m2 − 2􏼐 􏼑 + 3 m

2
2 + 3m2 − 4􏼐 􏼑 + 3 m

2
3 + 3m3 − 2􏼐 􏼑 + 3 m

2
2 + 3m2􏼐 􏼑

+ 3 m
2
3 + 3m3􏼐 􏼑 +

3
2

m
2
4 + 3m4􏼐 􏼑 +

3
2

m
2
1 + 3m1 − 4􏼐 􏼑 + 3 m

2
3 + 3m3 − 4􏼐 􏼑

+
3
2

m
2
2 + 3m2􏼐 􏼑 +

3
2

m
2
3 + 3m3 − 4􏼐 􏼑 + 6 m2 + 2( 􏼁 m1 − m2 − 1( 􏼁

+ 3 m3 + 2( 􏼁 m1 − m3 − 1( 􏼁 + 6 m3 + 2( 􏼁 m2 − m3 − 1( 􏼁

+ 12 m1 − 1( 􏼁 m2 − 1( 􏼁 + 6 m1 − 1( 􏼁 m3 − ε2 − 2( 􏼁

+

6 m1 − 1( 􏼁 if m3 is even

12 m1 − 1( 􏼁 if m3 is odd

⎧⎪⎨

⎪⎩
+ 12 m2 − 1( 􏼁 m3 − 1( 􏼁 + 6 m2 − 1( 􏼁

2

+ 3 m
2
1 + 3m1 − 2􏼐 􏼑 + 6 m2 − 2( 􏼁 m2 − 1( 􏼁 + 3 m

2
3 − 3m3 − 2􏼐 􏼑

+ 3 m1 − 1( 􏼁 + 6 m3 − 1( 􏼁 + 3 m3 − 1( 􏼁 + 6 m2 + m3 + 2( 􏼁

+ 3 m2 + 2m3 + 2( 􏼁 + 6 m2 + 1( 􏼁 + 6 m3 − 1( 􏼁,

(5)

pairs to form F. S �
3(m1 + m2 + m3 + m4)

2􏼠 􏼡 is the total

number of pairs in ψ and

|F| �
1
4

m
2
1 + 4m

2
2 + m

2
3 + 4 m1m2 + m2m3( 􏼁􏽮

+ 2m1m2 + 8m2 + 4m3 + Γ􏼛.

(6)

)us, there are

1
4

m
2
1 + 4m

2
2 + m

2
3 + 4 m1m2 + m2m3( 􏼁 + 2m1m2 + 8m2 + 4m3 + Γ􏽮 􏽯,

(7)

numbers of distinct homomorphic copies obtained by
contracting all pairs in ψ. □

4. Conclusion

In this paper, we have highlighted the significance of ho-
momorphic copies of coset graphs. We show how the bigger
coset graphs get contracted to transform into their homo-
morphic copies. As a sample, we consider the closed path ψ
of rank 4; that is, ψ � (m1, m2, m3, m4), where m1 >m2 >m3

and m2 � m4, in coset graphs. We prove that the total
numbers of homomorphic copies of ψ are

1
4

m
2
1 + 4m

2
2 + m

2
3 + 4 m1m2 + m2m3( 􏼁􏽮

+ 2m1m2 + 8m2 + 4m3 + Γ􏼉.

(8)

It is hoped that the ideas presented in this study will also
help to generate the homomorphic copies of other types of
graphs for various purposes.
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