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In this paper, dynamic response analysis of a forced fractional viscoelastic beam under moving external load is studied.+e beauty
of this study is that the effect of values of fractional order, the effect of internal damping, and the effect of intensity value of the
moving force load on the dynamic response of the beam are analyzed. Constitutive equations for fractional order viscoelastic beam
are constructed in the manner of Euler–Bernoulli beam theory. Solution of the fractional beam system is obtained by using
Bernoulli collocation method. Obtained results are presented in the tables and graphical forms for two different beam systems,
which are polybutadiene beam and butyl B252 beam.

1. Introduction

+eory and applications of beams are very important re-
search area due to its wide usage areas in applied sciences.
Especially after starting the space adventure of the mankind,
the demand to more resistant structures has great impor-
tance. Beams are generally modeled based on
Euler–Bernoulli beam theory, which is called classical beam
theory. +e background of beam theory goes on Newton’s
second law and some different aspects of beams, such as
modeling, analysis of bending-buckling, and reinforcement
and control, are hot topics of research papers since the
beginning of the nineteenth century. +e books can provide
a general overview about the Euler–Bernoulli beam theory,
please see [1–3]. Some important studies related to beams
modeled in the sense of classical beam theory are also
summarized as follows, but not limited to [4–15]. +e beam
systems in [1–15] have the integer order derivatives of the
state function. In the beginning of 1930s, fractional deriv-
ative was introduced for describing the constitutive relation
of some beammaterials [16], and after 1980s, since fractional
order equations have good memory and can be used to
describe material properties more accurately with fewer

parameters, they are considered to be good mathematical
models for describing the dynamic mechanical behavior of
materials [17]. In [18], the dynamic behavior of the thin
plates resting on a fractionally damped viscoelastic foun-
dation subjected to a moving point load is investigated and
results show that the damping of the foundation system
increases with increasing the order of the fractional deriv-
ative, which leads to a decrease in the dynamic response. In
[19], the dynamic response spectra of fractionally damped
viscoelastic beams subjected to concentrated moving load
are presented and results reveal that with an increase in the
order of the fractional derivative, the system damping of the
system increases and the dynamic amplification factor
(DAF) decreases, especially in the dynamic zone of the sweep
parameter. In [20], the precise integration method (PIM) is
extended to numerically integrate the equation of motion
with fractional terms, which offers high accuracy and ob-
tained numerical results indicate the viscoelastic dampers
can enhance the seismic performance of structures signifi-
cantly. In [21], the nonstationary free vibration and non-
linear dynamic behavior of the viscoelastic nanoplates are
analyzed. Obtained results show that the viscoelastic model-
based vibration is nonstationary unlike the elastic model.
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Moreover, the damping mechanism of the viscoelasticity is
amplitude dependent and the contribution of the viscoelastic
damping terms at higher forcing conditions becomes no-
ticeable. On the other hand, several numerical methods are
developed and employed for better analyzing the fractional
mechanical systems. Widely used methods for fractional
systems are finite element method [22], Galerkin method
[23], variational iteration method [24], and multiscale
method [25, 26]. Especially, papers existing in the literature,
which include a solution method for analyzing the dynamic
response of a fractional order beam system, can be shortly
listed as [19, 27–30]. In [19], the authors combined Galerkin
method and Newton–Raphson method for analyzing the
vibration of a fractional beam equation and they compared
the results for only seeing the effects of fractional or integer
derivatives. In [27], the author considered the dynamic
response analyzing of a fractional order viscoelastic beam by
means of green function method. In [27], the author only
compared the results based on changes on the fractional
derivative between (0, 1). In [28], the authors employed the
Adomian decomposition method for solving a fractional
beam equation and they only observed the effect of the order
of fractional derivative. In [29], the authors used the dy-
namic green function method for analyzing the dynamic
response in a fractional beam equation and the beam
equation does not include the damping term. Results are
simulated for only indicating the effects of order of fractional
derivative. In [30], the author employed the green function
method for a fractional viscoelastic beam system subjected to
a base excitation. After obtaining the solution, the author
compared the results corresponding to different fractional
order derivative. By comparing the present study with the
studies existing in the literature, objectives of the present
study are expressed as follows:

(i) In this paper, Bernoulli collocation method is firstly
employed for analyzing the fractional viscoelastic
beam equation. In the literature, especially for the
fractional beam systems, green function method,
Galerkin method, Newton–Raphson method,
Adomian decomposition method, and Bernoulli
collocation method in this paper were used, but by
comparing these five methods, it is clear that Ber-
noulli collocation method is new and has less
computational process and less work.

(ii) In the literature, the authors only considered and
discussed the effects of order of fractional derivative
on the dynamic response. But, we discussed both the
effects of the order of fractional order derivative and
the effects of damping coefficient term and the effect
of density of moving force load. So, it is said that the
present study has wider perspective than other
studies.

(iii) Also, in the literature, results are obtained for one
beam system. In this paper, effects of order of
fractional derivative, effects of damping coefficient
term, and the effect of density of moving force load
are observed and compared for two different beam

systems which are polybutadiene beam and butyl
B252 beam.

For theoretical and experimental review about the
fractional Euler–Bernoulli beams, please see [31]. Specifi-
cally, in the present paper, displacement analysis of a forced
fractional viscoelastic beam is studied. External moving
force load perfectly moves on the beam with the velocity v(t)

from the left edge to the right edge of the beam.+e solution
of the fractional beam system is obtained by means of
Bernoulli collocation method. +e main advantage of the
Bernoulli collocationmethod is that employing the Bernoulli
polynomials is easier than Chebyshev, Bessel polynomials,
and Haar wavelets [32–34]. +ese advantages of Bernoulli
polynomials provide us for obtaining the solution by making
less computational process in shorter time. In the step of
employing the Bernoulli collocation method, some external
moving force loads having different load intensities are
considered and also the effects of internal damping and
fractional order of the derivative are searched for a fractional
beam system. In the simulations, two different beam sys-
tems, which are polybutadiene beam and butyl B252 beam,
are taken into account for being compared each other in the
aspects of internal damping effects and resistance to effect of
external moving force. Comparison results of the beam
systems are presented in tables and graphics. +e rest of the
paper is organized as follows: in the next section, definition
of the displacement analysis problem for a fractional vis-
coelastic beam is presented and scheme of the beam is
overviewed. In the third section, short definition of the
fractional derivative in the Caputo sense is introduced. In the
fourth section, Bernoulli collocation method is explained
and adopted to the present problem. In the fifth section,
obtained results are given and discussions are made in the
light of employing the Bernoulli collocation method to
fractional viscoelastic beam system.

2. Definition of the Problem

+e motion equation of the fractional viscoelastic homo-
geneous beam is obtained by considering the
Euler–Bernoulli beam theory by ignoring shear deformation
factor and rotary inertia of the beam.+e beam is considered
as a uniform viscoelastic beam and mechanical energy
dissipation inside the beam is modeled by fractional order
differential equations. By taking into account the [35], stress-
strain constitutive relation of a fractional viscoelastic beam is
given as follows:

σ � Eε(t) + Ec
′Dc

t [ε(t)] � E ε + μc

d
cε(t)

dt
c , (1)

in which E is the Young’s modulus of the viscoelastic beam,
μc is the damping coefficient, and D

c
t is the fractional de-

rivative operator with the order c with respect to t. +e
simply supported viscoelastic beam initially is at rest and
nondeformed. +e beam is subjected to a horizontally
moving constant force load with the velocity v(t) from the
left edge to right edge of the beam, respect to x axis. In the
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light of [27], let us introduce the formulation of a fractional
viscoelastic beam structure illustrated in Figure 1.

Aρ
z
2
w(t, x)

zt
2 + EIμc

d
c

dt
c

z
4
w(t, x)

zx
4  + EI

z
4
w(t, x)

zx
4 � Pδ(x − v(t)), (2)

in which w is the deflection of the viscoelastic beam in
C � (t, x): t ∈ (0, tf), x ∈ (0, ℓ){ }, t is the time variable, tf is
the final time observed duration, x is the space variable, ℓ is
the length of the viscoelastic beam, A is the cross-section
area of the structure, ρ is the material mass density of the
viscoelastic beam, I is the axial moment of inertia of the
beam, P is a constant showing intensity of the external
moving force load, δ is the Dirac-delta function, and v(t) is
the velocity of the moving force load with the condition
0≤ v(t)≤ ℓ. Equation (2) is subjected to the following
boundary conditions:

w(t, x) � 0, wxx(t, x) � 0 atx � 0, ℓ, (3)

and the following initial conditions:

w(t, x) � w0(x), wt(t, x) � w1(x) at t � 0, (4)

in which w0(x) ∈ H1(0, ℓ) � w0(x) ∈ L2(0, ℓ): zw0(x)/
zx ∈ L2(0, ℓ)}, w1(x) ∈ L2(0, ℓ). L2(C) means to square-
integrable functions space in the manner of Hilbert in the
domain C in the Lebesgue sense with the following norm
and inner product:

‖η‖
2

� <η, η>, <η, ρ>C � 
C
ρη dC. (5)

Let us assume that

w(t, x) � 
N

n�1
zn(t)

�
2

√
sin

nπx

ℓ
 . (6)

After substituting the equations (6) into (2) and mul-
tiplying both sides of equation (2) with

�
2

√
sin(nπx/ℓ),

integrating on (0, ℓ), we obtain the following ordinary
differential equation as follows:

Aρzn
″(t) + EI(nπ)

4μc

d
c

dt
czn(t)  + EI(nπ)

4
zn(t) � P

�
2

√
sin

nπv(t)

ℓ
 , n � 1, . . . , N. (7)

Equation (7) is subjected to the following initial
conditions:

zn(0) �
�
2

√

ℓ

0
w0(x)sin

nπx

ℓ
 dx, zn

′(0) �
�
2

√

ℓ

0
w1(x)sin

nπx

ℓ
 dx. (8)

3. TheFractionalDerivative in theCaputo Sense

Definition. +e Caputo definition of the fractional-order
derivative is

D
c
f(x) �

1
Γ(n − c)


x

0

f
(n)

(t)

(x − t)
c+1−n

dt, n − 1< c≤ n, n ∈ N, (9)

where c> 0 is the order of the derivative and n is the smallest
integer greater than c. For the Caputo derivative, we have
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D
c
C � 0, C is constant,

D
c
x

q
�

0, for q ∈ N0 and q<⌈c⌉,

Γ(q + 1)

Γ(q + 1 − c)
x

q− c
, for q ∈ N0 and q≥ ⌈c⌉ or q ∉ N and q>⌊c⌋.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

4. Bernoulli Collocation Method

+e recurrence relation of the Bernoulli polynomials is
defined by

Bn(x) � 2xBn−1(x) + Bn−2(x). (11)

For n≥ 3., B1(x) � 1, B2(x) � 2x. +e first few Bernoulli
polynomials are

B1(x) � 1, (12)

B2(x) � x −
1
2
,

B3(x) � x
2

− x −
1
6
,

B4(x) � x
3

−
3
2
x
2

+
x

2
.

⋮

(13)

Our goal is to get the approximate solution as the
truncated Bernoulli series defined by

y(x) � 
N+1

n�1
cnBn(x), (14)

where Bn(x) denotes the Bernoulli polynomials;
cn(1≤ n≤N + 1) are the unknown coefficients for Bernoulli
polynomial, and N is any positive integer which possess
N≥m. Let us assume that linear combination of Bernoulli
polynomials equation (14) is an approximate solution of
equation (7). Our purpose is to determine the matrix forms
of equation (7) by using (14). Firstly, we can write Bernoulli
polynomials (12) in the matrix form

B(x) � T(x)M, (15)

where B(x) � [B1(x) B2(x) · · · BN+1(x)], T(x) � (1 x x2

x3 . . . xN), C � (c1 c2 · · · cN+1)
T, and

M �

1 −
1
2

1
6

0 −
1
30

0
1
42

0 −
1
30

0 1 −1
1
2

0 −
1
6

0
1
6

0

0 0 1 −
3
2

1 0 −
1
2

0
2
3

0 0 0 1 −2
5
3

0 −
7
6

0

0 0 0 0 1 −
5
2

5
2

0 −
7
3

0 0 0 0 0 1 −3
7
2

0

0 0 0 0 0 0 1 −
7
2

14
3

0 0 0 0 0 0 0 1 −4

0 0 0 0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

+e matrix form of equation (14) by a truncated Ber-
noulli series is given by

y(x) � B(x)C. (17)

By using equations (15) and (17), the matrix relation is
expressed as

y(x) � yN(x) � T(x)MC,

y
(c)

(x) � y
(c)
N (x) � T(x)X(c)(x)D(c)MC,

y′′(x) � y
′′
N(x) � T(x)D2MC,

(18)

Length of the beam

Viscoelastic beam

x

P
v (t)

Figure 1: Schematic of the viscoelastic beam under moving force load P with the velocity v(t).
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where

X(c)(x) � 0, x
1− c

, x
2− c

, . . . , x
N− c

 , (19)

D �

0 1 0 0 0 0 · · · 0
0 0 2 0 0 0 · · · 0
0 0 0 3 0 0 · · · 0
0 0 0 0 4 0 · · · 0
0 0 0 0 0 5 · · · 0
0 0 0 0 0 0 · · · 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ N

0 0 0 0 0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,D0
�

1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0
0 0 0 0 0 0 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T �

T x0( 

T x1( 

⋮
T xN( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1 x0 . . . x
N
0

1 x1 . . . x
N
1

1 ⋮ . . . ⋮
1 xN . . . x

N
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D(c) �

0 0 0 · · · 0

0
Γ(2)

Γ(2 − c)
0 · · · 0

0 0
Γ(3)

Γ(3 − c)
· · · 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · ·
Γ(N)

Γ(N − c)
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.

(20)

By using equation (18), we obtain the following relation:

Y(k)
(x) � T(x)DkMC. (21)

By substituting the Bernoulli collocation points given by

xi � a +
(b − a)i

N
, i � 0, 1, . . . , N, (22)

into equation (21), we obtain

Y(k)
xi(  � T xi( DkMC, k � 0, c, 2. (23)

and the compact form of the relation (23) becomes

Y(k)
� TDkMC, k � 0, c, 2. (24)

In this way, the unknown Bernoulli coefficients cn,

n � 1, 2, . . . , N + 1 are obtained by solving the system.
+en, these coefficients are substituted into (14), and the
approximate solution is obtained. For more details, see
[36].

5. Simulation Results and Discussion

Bernoulli collocation method for obtaining the solution of
fractional viscoelastic beam equation is employed. Hence,
displacement analysis of a forced fractional viscoelastic beam
is investigated by taking into account the different moving
force loads, different values of internal damping coefficient,
and different values of fractional order of derivative. Ob-
tained results are simulated and presented in the tables and

graphical forms. +e velocity, from left to right, of the ex-
ternal moving force on beam v(t) is considered as sin(πt). In
order to observe the dynamic response of the viscoelastic
beams under the different intensity of external moving force,
the intensity constant of the external moving force load on
the beam is involved to computation as P � 1, 25, 50. Also,
the values in Tables 1–6 are computed on x � 0.5, which is
the middle point of the fractional viscoelastic beams. Ob-
served duration of time is tf � 1. In the first case, forced
displacement analysis of a polybutadiene beam is observed
for different values of moving force load and results are
presented in Table 1. +e length and material density of the
fractional viscoelastic beam are taken into account as ℓ � 1m

and ρ � 160 kg/m3, respectively. +e cross-sectional area A

is 0.72m2, moment of inertia J is (0.1)4/12, and Young’s
modulus E is 8.15 × 105 for a fractional viscoelastic poly-
butadiene beam. Also, the order of fractional derivative c is
evaluated as 0.528 for the results in Figure 2 and Tables 1 and
3. By observing Figure 2, it is concluded that while the
intensity of the external moving load force increases,
namely, P is 1 to 25 and 50, the displacement of the fractional
viscoelastic polybutadiene beam also increases. Also, parallel
observation results to Figure 2 are obtained by taking into
account Table 1. For example, on the moment t � 0.5, the
amount of the displacement of the polybutadiene beam is
measured as 0.001 1 for P � 1, 0.028 for P � 25, and 0.056
for P � 50. +is observation is valid the entire time interval
t � 0, . . . , 1 for polybutadiene beam. Also, the effect of
internal damping on the displacement is presented in
Table 3 for polybutadiene beam. +e internal damping
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coefficient is evaluated from 0.2 to 1 and by examining
Table 3; it reveals that when internal damping coefficient
increases, the displacement of the polybutadiene beam

decreases under the same conditions. +e effect of the
fractional order to system is observed from Table 5 and it
can be concluded that while increasing the values of the

Table 2: Some values of w(t, x) for P � 1, 25, 50 (for a butyl B252 beam).

t wP�1 wP�25 wP�50

0.1 0.000 020 2 0.000 505 3 0.001 010 7
0.2 0.000140 7 0.003 517 7 0.007 035 4
0.3 0.000 3701 0.009 2531 0.018 506 4
0.4 0.000 6421 0.016 053 0 0.0321061
0.5 0.000 886 5 0.022164 5 0.044 328 9
0.6 0.001 070 9 0.026 772 4 0.053 544 8
0.7 0.001 207 9 0.0301981 0.060 396 2
0.8 0.001 345 0 0.033 624 9 0.067 249 8
0.9 0.001 515 9 0.037 899 2 0.075 798 4
1.0 0.001 581 7 0.039 544 7 0.079 089 3

Table 1: Some values of w(t, x) for P � 1, 25, 50 (for a polybutadiene beam).

t wP�1 wP�25 wP�50

0.1 0.000 025 2 0.000 632 0 0.001 264 0
0.2 0.0001761 0.004 402 5 0.008 805 0
0.3 0.000 463 7 0.011 593 4 0.023186 8
0.4 0.000 805 8 0.020145 2 0.040 290 4
0.5 0.001 115 0 0.027 877 2 0.055 754 5
0.6 0.001 350 9 0.033 774 5 0.067 549 0
0.7 0.001 529 4 0.038 2361 0.076 4721
0.8 0.001 709 4 0.042 735 6 0.085 471 2
0.9 0.001 933 0 0.048 326 2 0.096 652 5
1.0 0.002 026 3 0.050 657 4 0.101 315 0

Table 3: Some values of w(t, x) for different values of μ for P � 1 (for a polybutadiene beam).

tμ 0.2 0.4 0.6 0.8 1.0
0.1 0.000 024 90 0.000 024 24 0.000 023 62 0.000 023 03 0.000 022 48
0.2 0.000170 50 0.000161 04 0.000152 42 0.000144 54 0.000137 32
0.3 0.000 440 42 0.000 402 52 0.000 369 54 0.000 340 70 0.000 315 37
0.4 0.000 748 72 0.000 659 75 0.000 586 20 0.000 524 91 0.000 473 41
0.5 0.001 011 32 0.000 856 73 0.000 735 83 0.000 640 02 0.000 56311
0.6 0.001 194 99 0.000 973 52 0.000 810 05 0.000 687 00 0.000 592 56
0.7 0.001 323 26 0.001 044 56 0.000 850 35 0.000 711 06 0.000 608 30
0.8 0.001 459 32 0.001 136 46 0.000 922 48 0.000 774 52 0.000 667 97
0.9 0.001 645 41 0.001 287 75 0.001 058 63 0.000 902 75 0.000 790 71
1.0 0.001 713 62 0.001 340 71 0.001 112 91 0.000 964 62 0.000 862 85

Table 4: Some values of w(t, x) for different values of μ for P � 1 (for a butyl B252 beam).

tμ 0.2 0.4 0.6 0.8 1.0
0.1 0.000 019 90 0.000 019 35 0.000 018 85 0.000 018 37 0.000 017 91
0.2 0.000136 09 0.000128 33 0.000121 26 0.000114 82 0.000108 94
0.3 0.000 350 96 0.000 319 92 0.000 293 02 0.000 269 58 0.000 249 07
0.4 0.000 595 32 0.000 522 71 0.000 463 02 0.000 413 52 0.000 37212
0.5 0.000 801 77 0.000 67617 0.000 578 62 0.000 501 79 0.000 440 45
0.6 0.000 943 91 0.000 764 93 0.000 633 94 0.000 536 04 0.000 461 36
0.7 0.001 040 91 0.000 81711 0.000 662 68 0.000 552 79 0.000 472 22
0.8 0.001 459 32 0.000 88619 0.000 717 38 0.000 601 55 0.000 667 97
0.9 0.001 285 91 0.001 002 83 0.000 823 34 0.000 701 97 0.000 518 57
1.0 0.001 333 74 0.001 041 33 0.000 864 75 0.000 750 70 0.000 615 00

6 Journal of Mathematics



Table 5: Some values of w(t, x) for different values of c for P � 1 (for a polybutadiene beam).

tc 0.2 0.4 0.6 0.8 1.0
0.1 0.000 025 28 0.000 025 28 0.000 025 28 0.000 025 27 0.000 025 27
0.2 0.00017611 0.00017610 0.000176 09 0.000176 07 0.000176 04
0.3 0.000 463 79 0.000 463 76 0.000 463 71 0.000 463 63 0.000 463 49
0.4 0.000 805 96 0.000 805 88 0.000 805 75 0.000 805 56 0.000 805 26
0.5 0.001 115 39 0.001 115 23 0.001 114 99 0.001 114 65 0.001 11416
0.6 0.001 351 46 0.001 351 20 0.001 350 84 0.001 350 34 0.001 349 69
0.7 0.001 53010 0.001 529 73 0.001 529 25 0.001 528 64 0.001 527 88
0.8 0.001 710 24 0.001 709 78 0.001 709 20 0.001 708 52 0.001 707 72
0.9 0.001 933 99 0.001 933 45 0.001 932 81 0.001 932 09 0.000 790 71
1.0 0.002 027 31 0.002 026 71 0.002 026 06 0.002 025 38 0.001 931 32

Table 6: Some values of w(t, x) for different values of c for P � 1 (for a butyl B252 beam).

tc 0.2 0.4 0.6 0.8 1.0
0.1 0.000 020 21 0.000 020 21 0.000 020 21 0.000 020 21 0.000 020 21
0.2 0.000140 71 0.000140 71 0.000140 70 0.000140 69 0.000140 66
0.3 0.000 37016 0.000 37014 0.000 37011 0.000 370 06 0.000 369 97
0.4 0.000 642 21 0.000 64216 0.000 642 08 0.000 641 96 0.000 641 77
0.5 0.000 886 76 0.000 886 66 0.000 886 51 0.000 886 29 0.000 885 98
0.6 0.001 071 19 0.001 071 02 0.001 070 79 0.001 070 48 0.001 070 07
0.7 0.001 208 33 0.001 208 09 0.001 207 79 0.001 207 41 0.001 206 93
0.8 0.001 345 49 0.001 345 20 0.001 344 84 0.001 344 41 0.001 343 92
0.9 0.001 516 53 0.001 516 20 0.001 515 80 0.001 515 36 0.001 514 89
1.0 0.001 582 39 0.001 582 02 0.001 581 62 0.001 581 21 0.001 580 82
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Figure 2: Continued.
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Figure 2: Displacements of a polybutadiene beam for P � 1, 25, 50.
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Figure 3: Displacements of a butyl B252 beam for P � 1, 25, 50.
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fractional derivative, the value of the displacement is de-
creasing. In the second case, a butyl B252 beam is taken into
account by the coefficients; the cross-sectional area A is
0.72m2, moment of inertia J is (0.1)4/12, and Young’s
modulus E is 1.05 × 106. +e order of fractional derivative c

is considered as 0.519 for Figure 3 and Tables 2 and 4. By
checking Figure 3, it is easy to see that displacements
corresponding to much bigger intensity of moving force
load are much bigger. For example, on the moment t � 0.5,
while P � 1 to P � 25, 50, corresponding displacements are
calculated as 0.00089, 0.022, and 0.044, respectively. +is is
effective along the observation duration. In Table 4, some
results related to the effect of internal damping are pre-
sented and internal damping coefficient is included in the
computation as 0.2 to 1. After looking at Table 4, it is
concluded that while internal damping coefficient de-
creases, the displacement of the butyl B252 beam increases
and relation between the effects of internal damping and
displacements is inversely proportional. +e relation be-
tween the displacement and fractional order in the system
is vice versa. As understood from Table 6, while decreasing
the values of the fractional derivative, the value of the
displacement is increasing. +ese observation results of the
present study are also compatible with the results existing
in the literature. By taking into account Tables 1–6 and
Figures 2 and 3 and comparing these two kinds of fractional
viscoelastic beams, it is seen that the polybutadiene beam
has more greater displacements than butyl B252 beam
under same conditions. Also, the effect of internal damping
coefficient is more visible on the butyl B252 beam
according to polybutadiene beam.+ese observations make
clear that butyl B252 beam is stronger and preferable than
the polybutadiene beam.

6. Conclusion

In this study, the Bernoulli collocation method as a new
solution method for obtaining the approximate solution of a
fractional viscoelastic beammodel subjected tomoving force
load is employed. Dynamic response analysis of the frac-
tional viscoelastic beam model is investigated for two dif-
ferent specific beams: polybutadiene beam and butyl B252
beam. Displacement analysis of a point on the fractional
viscoelastic beams is studied for different moving force loads
and also effect of the internal damping to displacement is
observed for different internal damping coefficients.
Moreover, dynamic response of the fractional viscoelastic
beam is examined for different values of the fractional order.
Obtained results are presented in tables and graphics and
results reveal that Bernoulli collocation method is very ef-
fective and powerful solution method for obtaining the
solution of fractional order viscoelastic beam models. After
observing Figures 2 and 3, it is easy to conclude that as the
moving force load increases, the displacement of a point on
the beams also increases. Also, numerical results, presented
in Tables 1–4, show that under the same moving force load
with the same internal damping effect, the displacement of a
point on the polybutadiene beam is greater than that cor-
responding to butyl B252 beam. Moreover, under the same

moving force load, changes in the displacements of a point
on the beams are examined in the aspect of different internal
damping effects and observations made clear that butyl B252
beam better reflects the effect of internal damping to dis-
placement of a point on the beam. By comparing polybu-
tadiene beam and butyl B252 beam, it is concluded that
polybutadiene beam is more open to destructive effects of
vibrations under the same conditions with the butyl B252
beam.
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[34] Ö. Oruç, A. Esen, and F. Bulut, “Numerical investigation of
dynamic Euler-Bernoulli equation via 3-Scale Haar wavelet
collocation method,” Hacettepe Journal of Mathematics and
Statistics, vol. 50, no. 1, pp. 1–21, 2021.

[35] R. L. Bagley and P. J. Torvik, “A theoretical basis for the
application of fractional calculus to viscoelasticity,” Journal of
Rheology, vol. 27, no. 3, pp. 201–210, 1983.

[36] B. Zogheib, E. Tohidi, and S. Shateyi, “Bernoulli collocation
method for solving linear multidimensional diffusion and
wave equations with dirichlet boundary conditions,” Ad-
vances in Mathematical Physics, vol. 2017, Article ID 5691452,
15 pages, 2017.

10 Journal of Mathematics


