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In this paper, we are concerned with the multiple-sets split common fixed-point problems whenever the involved mappings are
demicontractive. We first study several properties of demicontractive mappings and particularly their connection with directed
mappings. By making use of these properties, we propose some new iterative methods for solving multiple-sets split common
fixed-point problems, as well as multiple-sets spit feasibility problems. Under mild conditions, we establish their weak con-
vergence of the proposed methods.

1. Introduction

$e split common fixed-point problem (SCFP) requires
finding an element in a fixed-point set such that its image
under a linear transformation belongs to another fixed-point
set. Formally, it consists in finding x ∈ H1 such that

x ∈ F(U), Ax ∈ F(T), (1)

where A: H1⟶ H2 is a bounded linear mapping from a
Hilbert space H1 into another Hilbert space H2, and F(U) and
F(T) are respectively the fixed-point sets of nonlinear map-
pings U: H1⟶ H1 and T: H2⟶ H2. Specially, if U and T

are both metric projections, then problem (1) is reduced to the
well-known split feasibility problem (SFP) [1]. Actually, the
SFP can be formulated as finding x ∈ H1 such that

x ∈ C, Ax ∈ Q, (2)

where C⊆H1 and Q⊆H2 are nonempty closed convex sets,
and mapping A is as above. $ese two problems recently
have been extensively investigated since they play an im-
portant role in various areas including signal processing and
image reconstruction [2–6].

We assume throughout the paper that problem (1) is
consistent, which means that its solution set is nonempty.
Censor and Segal [7] studied problem (1) when U and T are

directed mappings. In this situation, they proposed the
following method:

xn+1 � U xn − τnA
∗
(I − T)Axn􏼂 􏼃, (3)

where A∗ is the conjugate of A, I stands for the identity
mapping, and τn is a properly chosen stepsize. It is shown that
if τn is chosen in (0, 2/‖A‖2), then (7) converges weakly to a
solution of (1). Subsequently, this result was extended to more
general cases (see, e.g., [8–17]). Since the choice of the stepsize
is related to ‖A‖, thus to implement (7), one has to compute (or
at least estimate) the norm ‖A‖, which is generally not easy in
practice. Away avoiding this is to adopt variable stepsize which
ultimately has no relation with ‖A‖ [9, 10, 18]. In this con-
nection, Wang and Cui [10] proposed the following stepsize:

τn �

(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
2, (I − T)Axn

����
����≠ 0;

0, (I − T)Axn

����
���� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

On the other hand, Wang [19] proposed a new method:

xn+1 � xn − τn (I − U)xn + A
∗
(I − T)Axn􏼂 􏼃, (5)

where τn􏼈 􏼉 ⊂ (0,∞) is chosen such that
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τn �
(I − U)xn

����
����
2

+ (I − T)Axn

����
����
2

(I − U)xn + A
∗
(I − T)Axn

����
����
2. (6)

It is clear that the selection of stepsizes (8) and (6) does
not rely on the norm ‖A‖, which in turn improves the
performance of the original algorithm. Assume that U and T

are both directed such that I − T and I − U are demiclosed at
0. It is shown that the sequence xn􏼈 􏼉 generated by (7) and (8)
or (5) and (6) converges weakly to a solution of problem (1).

Now, let us consider the multiple-sets split common
fixed-point problem (MSCFP) that is more general than the
SCFP. Formally, it consists in finding x ∈ H1 such that

x ∈ ∩
t

i�1
F Ui( 􏼁, Ax ∈ ∩

s

j�1
F Tj􏼐 􏼑, (7)

where t and s are two positive integers, A: H1⟶ H2 is a
bounded linear mapping from a Hilbert space H1 into
another Hilbert space H2, and F(Ui) and F(Tj) are re-
spectively the fixed-point sets of nonlinear mappings
Ui: H1⟶ H1, i � 1, 2, . . . , t and Tj: H2⟶ H2,

j � 1, 2, . . . , s. Specially, if these nonlinear mappings are
all metric projections, problem (7) is reduced to the well-
known MSFP [20]. Actually, it can be formulated as the
problem of finding x ∈ H1 such that

x ∈ ∩
t

i�1
Ci, Ax ∈ ∩

s

j�1
Qj, (8)

where t and s are two positive integers, A: H1⟶ H2 is as
above, and Ci􏼈 􏼉

t

i�1 ⊂ H1 and Qj􏽮 􏽯
s

j�1 ⊂ H2 are two classes of
nonempty convex closed subsets.

Inspired by the works mentioned above, we are aimed to
introduce and analyze iterative methods for solving the
MSCFP inHilbert spaces.We first study several properties of
demicontractive mappings and especially find its connection
with the directed mapping. By making use of these prop-
erties, we propose a new iterative algorithm for solving the
MSCFP, as well as MSFP. Under mild conditions, we obtain
the weak convergence of the proposed algorithm. Our results
extend the related works from the case of two-sets to the case
of multiple-sets.

2. Preliminary

$roughout the paper, assume that H, H1, H2 are real
Hilbert spaces, and F(T) denotes its fixed-point set of a
mappingT.$e following formula plays an important role in
the subsequent analysis.

Lemma 1 (see [21]). Let s, t ∈ R and x, y ∈ H. It then follows
that

‖tx + sy‖
2

� t(t + s)‖x‖
2

+ s(t + s)‖y‖
2

− ts‖x − y‖
2
. (9)

We next recall the definition of several important classes
of nonlinear mappings.

Definition 1 (see [21]). Let T be a mapping from H into H.

(i) T is nonexpansive if

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ H. (10)

(ii) T is firmly nonexpansive if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2

− ‖(I − T)x − (I − T)y‖
2
, ∀x, y ∈ H.

(11)

(iii) T is k-strictly pseudocontractive (k< 1) if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2

+ k‖(I − T)x − (I − T)y‖
2
, ∀x, y ∈ H.

(12)

Definition 2 (see [21]). Let T: H⟶ H be a mapping with
F(T)≠∅.

(i) T is quasinonexpansive if

‖Tx − y‖≤ ‖x − y‖, ∀(x, y) ∈ H × F(T). (13)

(ii) T is directed if

‖Tx − y‖
2 ≤ ‖x − y‖

2
− ‖(I − T)x‖

2
, ∀(x, y) ∈ H × F(T). (14)

(iii) T is k-demicontractive (k< 1) if

‖Tx − y‖
2 ≤ ‖x − y‖

2
+ k‖((I − T))x‖

2
,

∀(x, y) ∈ H × F(T).
(15)

It is clear that a directed mapping is − 1-demicontractive,
while a quasinonexpansive mapping is 0-demicontractive. It
is also clear that a firmly nonexpansive mapping is
− 1-strictly pseudocontractive, while a nonexpansive map-
ping is 0-strictly pseudocontractive.

It is well known that a mapping T is firmly nonexpansive
if and only if 2T − I is nonexpansive (cf. [21]). Analogously,
we can easily get the following lemma, which presents a
characteristic of directed mappings by using quasino-
nexpansive mappings.

Lemma 2 A mapping T is directed if and only if 2T − I is
quasinonexpansive.

We now study properties of demicontractive mappings.

Lemma 3 (see [22]). Let T: H⟶ H be k-demicontractive
(k< 1) with F(T)≠∅. ,en, the following hold.
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(i) 〈Tx − z, (I − T)x〉≥ 0, ∀z ∈ F(T), x ∈ H;
(ii) 〈x − z, (I − T)x〉≥ ‖(I − T)x‖2, ∀z ∈ F(T),

x ∈ H.

Lemma 4. For each i � 1, 2, . . . , t, assume that Ti: H⟶ H

is ki-demicontractive with ki < 1. Let T � 1/2􏽐
t
i�1ωi

((1 + ki)I + (1 − ki)Ti), where 0<ωi < 1, 􏽐
t
i�1ωi � 1. If

∩ t
i�1F(Ti) is nonempty, then

F(T) � ∩
t

i�1
F Ti( 􏼁. (16)

Proof. We first show ∩ t
i�1F(Ti)⊆F(T). Pick x ∈ ∩ t

i�1F(Ti).
It then follows that

Tx �
1
2

􏽘

t

i�1
ωi 1 + ki( 􏼁x + 1 − ki( 􏼁Tix( 􏼁

�
1
2

􏽘

t

i�1
ωi 1 + ki( 􏼁x + 1 − ki( 􏼁x( 􏼁

�
1
2

􏽘

t

i�1
ωi2x � x.

(17)

Since x is chosen arbitrarily, we have ∩ t
i�1F(Ti)⊆F(T).

It suffices to show that F(T)⊆∩ t
i�1F(Ti). Fix

z ∈ ∩ t
i�1F(Ti) and choose any x ∈ F(T). Since Tx � x and

Ti is ki-demicontractive, we have

0 � 4〈Tx − x, x − z〉

� 2􏽘
t

i�1
ωi 1 − ki( 􏼁〈Tix − x, x − z〉

≥ 􏽘
t

i�1
ωi 1 − ki( 􏼁

2
Tix − x

����
����
2
.

(18)

$us, 􏽐
t
i�1ωi(1 − ki)

2‖x − Tix‖2 � 0. Since ωi(1 − ki)> 0, we
have ‖x − Tix‖ � 0 for all i � 1, 2 . . . t. Moreover, since x is
chosen arbitrarily, we get F(T)⊆ ∩ t

i�1F(Ti). Hence, the
proof is complete. □

Lemma 5. For each i � 1, 2 . . . t, assume that Ti: H⟶ H is
ki-demicontractive with ki < 1. Let T � 1/2􏽐

t
i�1ωi((1 + ki)

I + (1 − ki)Ti), where 0<ωi < 1, 􏽐
t
i�1ωi � 1. If ∩ t

i�1F(Ti) is
nonempty, then T is directed. Moreover, if for each
i � 1, 2 . . . t, I − Ti is demiclosed at 0, then I − T is also
demiclosed at 0.

Proof. By Lemma 4, we have F(T) � ∩ t
i�1F(Ti)≠∅. By

Lemma 2, it suffices to show that 2T − I � 􏽐
t
i�1ωi(kiI + (1 −

ki)Ti) is quasinonexpansive. To this end, fix any
(x, z) ∈ H × F(T). By Lemma 1 and the property of dem-
icontractions that

kix + 1 − ki( 􏼁Tix( 􏼁 − z
����

����
2

� ki(x − z) + 1 − ki( 􏼁 Tix − z( 􏼁
����

����
2

� ki‖x − z‖
2

+ 1 − ki( 􏼁 Tix − z
����

����
2

− ki 1 − ki( 􏼁 I − Ti( 􏼁x
����

����
2

≤ ki‖x − z‖
2

+ 1 − ki( 􏼁 x − zi

����
����
2

+ ki I − Ti( 􏼁x
����

����
2

􏼒 􏼓 − ki 1 − ki( 􏼁 I − Ti( 􏼁x
����

����
2

� ‖x − z‖
2
,

(19)

hence ‖(kix + (1 − ki)Tix) − z‖≤ ‖x − z‖ for all i � 1, 2 . . . t.
It then follows that

‖(2T − I)x − z‖ � 􏽘
t

i�1
ωi kix + 1 − ki( 􏼁Tix( 􏼁 − z

���������

���������

≤ 􏽘

t

i�1
ωi kix + 1 − ki( 􏼁Tix( 􏼁 − z

����
����

≤ 􏽘
t

i�1
ωi‖x − z‖

� ‖x − z‖.

(20)

$us, 2T − I is quasinonexpansive, which implies T is
directed.

Let us now prove the second assertion. By Lemma 4, we
have F(T) � ∩ t

i�1F(Ti)≠∅. Let xn􏼈 􏼉 ⊂ H be such that
xn⇀x and ‖xn − Txn‖⟶ 0 as n⟶∞. Fix z ∈ F(T).
Since Ti is ki-demicontractive, we have

4〈Txn − xn, xn − z〉 � 2􏽘
t

i�1
ωi 1 − ki( 􏼁〈Tixn − xn, xn − z〉

≥ 􏽘
t

i�1
ωi 1 − ki( 􏼁

2
Tixn − xn

����
����
2
.

(21)

Since ωi(1 − ki)> 0, we have limn‖xn − Tixn‖ � 0, which,
by our hypothesis, implies limn‖x − Tix‖ � 0 for all
i � 1, 2 . . . t, that is, x ∈ ∩ t

i�1F(Ti). By Lemma 4, the proof is
complete. □

Finally, we end this section by recalling two weak
convergence theorems of iterative methods for approxi-
mating a solution of the two-sets SCFP (1).

Theorem 1 (see [10], $eorem 3.1). (Assume that U and T

are both directed such that I − U and I − T are both demi-
closed at 0. ,en, the sequence xn􏼈 􏼉, generated by (7) and (8),
converges weakly to a solution of problem (1).
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Theorem 2 (see [19], $eorem 3.4). Assume that U and T

are both directed such that I − U and I − T are both demi-
closed at 0. ,en, the sequence xn􏼈 􏼉, generated by (5) and (6),
converges weakly to a solution of problem (1).

3. The Case for Demicontractive Mappings

In this section, we are concerned with the multiple-sets split
common feasibility problem and we assume that (7) is
consistent, which means that its solution set is nonempty.
First, motivated by (7) and (8), we propose the first algo-
rithm for solving problem (7).

Algorithm 1. Let x0 be arbitrary and choose αi􏼈 􏼉
t
i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

update the next iteration via

yn � xn − τn 􏽘

s

j�1
βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

xn+1 �
1
2

􏽘

t

i�1
αi 1 + ki( 􏼁yn + 1 − ki( 􏼁Uiyn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where τn � 0 if ‖􏽐
s
j�1βj(1 − lj)(I − Tj)Axn‖ � 0; otherwise,

τn �
􏽐

s
j�1βj 1 − lj􏼐 􏼑 I − Tj􏼐 􏼑Axn

�����

�����
2

􏽐
s
j�1βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

�����

�����
2. (23)

Theorem 3. Assume that Ui and Tj are respectively ki and
lj-demicontractive such that I − Ui and I − Tj are demiclosed
at 0 for i � 1, 2, . . . , t and j � 1, 2, . . . , s. ,en, the sequence
xn􏼈 􏼉, generated by Algorithm 1, converges weakly to a solution
of (7).

Proof. Let U � 1/2􏽐
t
i�1αi((1 + ki)I + (1 − ki)Ui) and

T � 1/2􏽐
s
j�1βj((1 + lj)I + (1 − lj)Tj). $us, we can rewrite

Algorithm 1 as

xn+1 � U xn − τnA
∗
(I − T)Axn( 􏼁, (24)

where τn � 0 if ‖(I − T)Axn‖ � 0; otherwise,

τn �
(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
2. (25)

By Lemma 5, U and T are both directed such as I − T and
I − U are demiclosed at 0. It then follows from $eorem 1
that xn􏼈 􏼉 weakly converges to a point x that satisfies
x ∈ F(U) and Ax ∈ F(T). Moreover, by Lemma 4, we
conclude that x ∈ ∩ iF(Ui) and Ax ∈ ∩ jF(Tj), that is, x is a
solution of problem (7). □

Motivated by (5) and (6), we propose the second al-
gorithm for solving problem (7).

Algorithm 2. Let x0 be arbitrary and choose αi􏼈 􏼉
t
i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

if

􏽘

t

i�1
αi 1 − ki( 􏼁 I − Ui( 􏼁xn + 􏽘

s

j�1
βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

����������

����������
� 0,

(26)

then stop; otherwise, update the next iteration via

xn+1 � xn − τn 􏽘

t

i�1
1 − ki( 􏼁 I − Ui( 􏼁xn

⎡⎣

+ 􏽘
s

j�1
βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

⎤⎥⎥⎦,

(27)

where

τn �
􏽐

t
i�1αi I − Ui( 􏼁 1 − ki( 􏼁xn

����
����
2

+ 􏽐
s
j�1βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

�����

�����
2

2 􏽐
t
i�1 1 − ki( 􏼁 I − Ui( 􏼁xn + 􏽐

s
j�1βj 1 − lj􏼐 􏼑Axn

�����

�����
2 . (28)

Theorem 4. Assume that Ui and Tj are respectively ki and
lj-demicontractive such that I − Ui and I − Tj are demiclosed
at 0 for i � 1, 2, . . . , t and j � 1, 2, . . . , s. ,en, the sequence
xn􏼈 􏼉, generated by Algorithm 2, converges weakly to a solution
of (7).

Proof. Let U � 1/2􏽐
t
i�1αi((1 + ki)I + (1 − ki)Ui) and

T � 1/2􏽐
s
j�1βj((1 + lj)I + (1 − lj)Tj). $us, we can rewrite

Algorithm 2 as xn+1 � xn − τn[(I − U)xn + A∗(I − T)Axn],
where

τn �
(I − U)xn

����
����
2

+ (I − T)Axn

����
����
2

(I − U)xn + A
∗
(I − T)Axn

����
����
2. (29)

By Lemma 5, U and T are both directed such as I − T and
I − U are demiclosed at 0. It then follows from $eorem 2
that xn􏼈 􏼉 weakly converges to a point x that satisfies
x ∈ F(U) and Ax ∈ F(T). Moreover, by Lemma 4, we
conclude that x ∈ ∩ iF(Ui) and Ax ∈ ∩ jF(Tj), that is, x is a
solution of problem (7). □

4. Multiple-Sets Split Feasibility Problem

In this section, we apply the previous result to approximate a
solution of the multiple-sets split feasibility problem
(MSFP). Also, we assume that problem (8) is consistent,
which means that its solution set is nonempty. By applying
Algorithm 1, we obtain the first algorithm for solving (8).
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Algorithm 3. Let x0 be arbitrary and choose αi􏼈 􏼉
t

i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

update the next iteration via

xn+1 � 􏽘
t

i�1
αiPCi

xn − τnA
∗

􏽘

s

j�1
βj I − PQj

􏼒 􏼓Axn
⎡⎢⎢⎣ ⎤⎥⎥⎦, (30)

where τn � 0 if ‖􏽐
s
j�1βj(1 − lj)(I − Tj)Axn‖ � 0; otherwise,

τn �
􏽐

s
j�1βj I − PQj

􏼒 􏼓Axn

������

������

2

􏽐
s
j�1βjA

∗
I − PQj

􏼒 􏼓Axn

������

������

2. (31)

Theorem 5. ,e sequence xn􏼈 􏼉, generated by Algorithm 3,
converges weakly to a solution of (2).

Proof. It suffices to notice that both PCi
and PQj

are
− 1-demicontractive, which implies ki � lj � − 1 for all
i � 1, . . . , t, j � 1, . . . , s. Applying $eorem 3 yields the
desired assertion. □

Next, we propose the second algorithm for solving (8) by
applying Algorithm 2.

Algorithm 4. Let x0 be arbitrary and choose αi􏼈 􏼉
t
i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

if

􏽘

t

i�1
αi I − PCi

􏼐 􏼑xn + 􏽘
s

j�1
βjA
∗

I − PQj
􏼒 􏼓Axn

����������

����������
� 0, (32)

then stop; otherwise, update the next iteration via

xn+1 � xn − τn 􏽘

t

i�1
αi I − PCi

􏼐 􏼑xn + 􏽘
s

j�1
βjA
∗

I − PQj
􏼒 􏼓Axn

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(33)

where

τn �
􏽐

t
i�1αi I − PCi

􏼐 􏼑xn

�����

�����
2

+ 􏽐
s
j�1βj I − PQj

􏼒 􏼓Axn

������

������

2

􏽐
t
i�1αi I − PCi

􏼐 􏼑xn + 􏽐
s
j�1βjA

∗
I − PQj

􏼒 􏼓Axn

������

������

2.

(34)

Theorem 6. ,e sequence xn􏼈 􏼉, generated by Algorithm 4,
converges weakly to a solution of (8).

Proof. It suffices to notice that both PCi
and PQj

are
− 1-demicontractive, which implies ki � lj � − 1 for all
i � 1, . . . , t, j � 1, . . . , s. Applying $eorem 4 yields the
desired assertion. □

5. Conclusion

In this paper, we consider theMSCFP whenever the involved
mappings are demicontractive. We obtained several

properties of demicontractive mappings and particularly
their connection with directed mappings. $ese properties
enable us to propose some new iterative methods for solving
MSCFP, as well as MSFP. Under mild conditions, we es-
tablish their weak convergence of the proposed methods.
Our results extend the existing works from the case of two-
sets to the case of multiple-sets.
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