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We study oscillatory properties for second-order impulsive neutral dynamic equations with positive and negative coefficients on
time scales. By using variable substitution, we obtain sufficient conditions for several dynamic equations to be oscillatory.

1. Introduction

In this paper, we are concerned with the oscillation of the
following second-order impulsive neutral dynamic equa-
tions with positive and negative coefficients:
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(1)

where z(t) � x(t) + b(t)x(θ(t)) and JT : � [t0,∞)∩ T , T

is unbounded above time scale with tk ∈ T , 0≤ t0 < t1 < t2
< · · · < tk < · · · limk⟶∞ tk �∞, and x(t+

k ) � limh⟶0+

x(tk + h) and xΔ(t+
k ) � limh⟶0+ xΔ(tk + h), which repre-

sent right limits of x(t) and xΔ(t) at t � tk in the sense of
time scales. Furthermore, if tk is right-scattered, then
x(t+

k ) � x(tk) and xΔ(t+
k ) � xΔ(tk). x(t−

k ) and xΔ(t−
k ) can be

defined similarly. *roughout this paper, we assume that
f is continuous on T , all the impulsive points tk are right-
dense, and a(t), p(t), and q(t) ∈ Crd(T ,R+), where Crd
denotes the set of rd-continuous functions. *ere exist
positive constants αk, βk, ck, and dk such that

αk ≤ (Mk(x)/x)≤ βk and ck ≤ (Nk(x)/x)≤ dk for x≠ 0 and
k ∈ N.

During the past decades, the oscillation of impulsive
differential equations and impulsive difference equations has
been investigated by many authors [1–3]. In recent years,
many researchers focus their attention on the oscillation of
dynamic equations on time scales [4–9]. *e theory of
impulsive dynamic equations has received considerable
attention [10]. Moreover, dynamic equations with positive
and negative coefficients have been of great interest. Many
results on the oscillatory properties for dynamic equations
with positive and negative coefficients have been obtained
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[11, 12]. However, fewer papers are on the oscillation of
impulsive neutral dynamic equations with positive and
negative coefficients.

For example, Huang and Feng [13] have considered the
following equation:

x
ΔΔ

(t) + f t, x
σ
(t)(  � 0, JT ≔ t0,∞ ∩ T , t≠ tk, k � 1, 2, . . . ,
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(2)

By using Riccati transformation techniques, they ob-
tained sufficient conditions for oscillation of all solutions.

*e rest of this paper is organized as follows: In Section
2, we present some basic definitions and preliminary results.
In Section 3, we state and prove several oscillatory results.
Finally, two examples are given to illustrate our obtained
results.

2. Preliminaries

In this section, we introduce definitions and preliminary
results which are used in this paper. *roughout the paper,
we define the interval [a, b] in T by

[a, b] ≔ t ∈ T : a≤ t≤ b{ }. (3)

Open intervals and half-open intervals etc. are defined
accordingly.

Definition 1. For t ∈ T , we define the forward jump operator
σ: T⟶ T by σ(t): � in s ∈ T : s> t{ }. If σ(t)> t, then t is
called right-scattered. Also, if t< sup T and σ(t) � t, then t is
called right-dense.

Definition 2. A function f: T⟶ R is rd-continuous if it is
continuous at all right-dense points and its left-sided limit
exists (and is finite) at a left-dense point. We denote the set
of rd-continuous functions by Crd(T ,R).

Definition 3. Assume f: T⟶ R is a function and let
t ∈ Tk. *en, we define fΔ(t) to be the number (provided it
exists) with the property that given any ε> 0, there is a
neighborhood U of t (i.e., U � (t − δ, t + δ)∩ T for some
δ > 0) such that

[f(σ(t)) − f(s)] − f
Δ

(t)[σ(t) − s]


≤ ε|σ(t) − s|, (4)

for all s ∈ U. We call fΔ(t) the delta derivative of f at t.

Definition 4. A function x is a solution of (1), if it satisfies
(a(t)zΔ(t))Δ + p(t)f(x(τ(t))) − q(t)f(x(ζ(t))) � 0 a.e.
on JT\ tk , k � 1, 2, . . ., and for each k � 1, 2, . . ., x satisfies
the impulsive conditions z(t+

k ) � Mk(z(tk)) and zΔ(t+
k ) �

Nk(zΔ(tk)), where z(t) � x(t) + b(t)x(θ(t)).

Definition 5. A solution x of (1) is oscillatory if it is neither
eventually positive nor eventually negative; otherwise, it is
called nonoscillatory. Equation (1) is called oscillatory if all
solutions are oscillatory.

Lemma 1 (see [14]). Let the function m ∈ PC1(T ,R) satisfy
the inequalities

m
Δ

(t)≤p(t)m(t) + q(t), t≠ tk,

m t
+
k( ≤ dkm tk(  + bk, k � 1, 2, . . . ,

(5)

where p and q ∈ PC1(T ,R) and dk > 0 and bk are constants;
then

m(t)≤m t0(  
t0 < tk < t

dk exp 
t

t0

p(s)Δs 

+ 
t0 < tk < t


tk < tj < t

dj exp 
t

tk

p(s)Δs ⎛⎝ ⎞⎠bk

+ 
t

t0


s< tk < t

dk exp 
t

s
p(σ)Δσ q(s)Δs, t≥ t0,

(6)

where PC � x: JT⟶Rwhich is rd− continuous except at

tk, k � 1,2, . . . , for which x(t−
k ), x(t+

k ), xΔ(t−
k ), and xΔ(t+

k )

exist with x(t−
k ) � x(tk) and xΔ(t−

k ) � xΔ(tk)}.

3. Main Results

In this section, we first consider the dynamic equation

a(t)z
Δ
(t) 
Δ

+ p(t)f(x(τ(t))) − q(t)f(x(ζ(t))) � 0,

z t
+
k(  � Mk z tk( ( ,

z
Δ

t
+
k(  � ηkz

Δ
tk( ,
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⎪⎪⎪⎪⎩

(7)

that is, the case ck � dk � ηk of equation (1).
We assume the following conditions hold:

(H1) 0≤ b(t)< 1
(H2) 

∞
k�1(

tk+1

tk
(1/a(t))Δt 

k
i�1 ηi) �∞
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(H3) f is nondecreasing, (f(u)/u) > 0 for u≠ 0, and
f(uv)≥f(u)f(v) for uv> 0

(H4) θ(t), τ(t), and ζ(t) ∈ Crd(T , T), θ(t)≤ t, limt⟶∞θ
(t) �∞, limt⟶∞τ(t) �∞, and limt⟶∞ζ
(t) �∞

(H5) αk ≥ 1, 
∞
k�1 (βk − 1)<∞, and 0< ηk ≤ 1

(H6) θ(t) ≠ tk, τ(t)≠ tk, and ζ(t)≠ tk for t≠ tk

Theorem 1. Assume (H1)–(H6) are satisfied, if the
inequality

y
Δ

(t) + p(t)f(y(τ(t)))f(S(τ(t)))≤ 0,

y t
+
k( ≤ ηky tk( ,

⎧⎨

⎩ (8)

has no eventually positive solution, where

S(t) � (1 − b(t)) 
t

T1

1
a(t)
Δt. (9)

;en, every bounded solution of (7) is oscillatory.

Proof. Assume that x(t) is an eventually bounded positive
solution of (7); then, there exists T ∈ T large enough and
T≥ t0 such that x(t)> 0, x(θ(t))> 0, x(τ(t))> 0, and

x(ζ(t))> 0 for all t ∈ [T,∞). Let F(t) � z(t)+


∞
t

(1/a(s)) 
s

T
q (u)f(x(ζ(u)))ΔuΔs, t ∈ (tk, tk+1]; we find

(a(t)FΔ(t))Δ + p(t)f(x(τ(t))) � 0, which implies that

a(t)F
Δ

(t) 
Δ

� −p(t)f(x(τ(t))) < 0. (10)

*en, a(t)FΔ(t) is decreasing for all t ∈ (tk, tk+1]. We
can claim that FΔ(t) is ultimately greater than zero. If not,
there must exist a m ∈ (tj, tj+1], such that FΔ(m)≤ 0.

For ∀t ∈ [m, tj+1], we have

a tj+1 F
Δ

tj+1 ≤ a(t)F
Δ

(t)≤ a(m)F
Δ
(m)≤ 0,


tj+1

m
F
Δ

(t)Δt≤ a(m)F
Δ
(m) 

tj+1

m

1
a(t)
Δt.

(11)

Making similar analysis on the interval (tk, tk+1],
k � j + 1, j + 2, . . ., we obtain


tk+1

tk

F
Δ

(t)Δt≤ ηk · · · ηj+1a(m)F
Δ

(m) 
tk+1

tk

1
a(t)
Δt,

t ∈ tk, tk+1( .

(12)

Hence,


tj+1

m
F
Δ

(t)Δt + 
∞

k�j+1


tk+1

tk

F
Δ

(t)Δt≤ a(m)F
Δ
(m) 

tj+1

m

1
a(t)
Δt + 

∞

k�j+1


tk+1

tk

1
a(t)
Δt 

k

i�j+1
ηi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (13)

Furthermore, we obtain

F(∞)≤ a(m)F
Δ

(m) 
tj+1

m

1
a(t)
Δt + 

∞

k�j+1


tk+1

tk

1
a(t)
Δt 

k

i�j+1
ηi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + F(m) + 

∞

k�j+1
βk − 1( z tk( . (14)

By (H2) and (H5), we have F(t)⟶ −∞ as t⟶∞,
which contradicts F(t)> 0. *erefore, FΔ(t) is ultimately
greater than zero. *ere exists T1 ≥T such that
zΔ(t)>FΔ(t)> 0, where t≥T1. By z(t+

k )≥ αkz(tk)≥ z(tk),
we have

z(t)≥ 
t

T1

z
Δ

(s)Δs> 
t

T1

F
Δ

(s)Δs

� 
t

T1

a(s)F
Δ

(s)

a(s)
Δs≥ a(t)F

Δ
(t) 

t

T1

1
a(s)
Δs.

(15)

Let φ(t) � a(t)FΔ(t); then, x(t)≥ z(t)(1 − b(t)) ≥
φ(t)S(t). We see φ(t) is a positive solution of (8), which
contradicts the oscillation of (8). We complete the
proof. □

We assume that the following conditions are satisfied:

(H7) b(t) is bounded

(H8) ζ(t) ∈Crd(T ,T) is bijective, τ(t) ∈Crd(T ,T),
τ(t)≤ζ(t), ζ−1

(τ(t)) ∈C1
rd(JT ,T), limt⟶∞θ(t) �

∞, and limt⟶∞τ(t) �∞
(H9) 

∞
t0

(1/a(η)) 
η
ζ− 1

(τ(η))
q(s)ΔsΔη<∞

(H10) *ere exists L> 0 and (f(u)/u) ≥L for u≠ 0
(H11) p(t) − q(ζ− 1

(τ(t)))(ζ− 1
(τ(t)))Δ ≥C> 0

Theorem 2. Assume (H2) and (H5)–(H11) are satisfied;
then, every bounded solution of (7) is oscillatory.

Proof. Assume that x(t) is an eventually bounded positive
solution of equation (7); then, there exists T ∈ T large enough
and T≥ t0 such that x(t)> 0, x(θ(t))> 0, x(τ(t))> 0, and
x(ζ(t))> 0 for all t ∈ [T,∞). Let u(t) � z(t)−


t

T
(1/a(η)) 

η
ζ− 1

(τ(η))
q (s)f(x(ζ(s)))ΔsΔη, t ∈ (tk, tk+1]; we

obtain that
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a(t)u
Δ

(t) 
Δ

� − p(t) − q ζ− 1
(τ(t)) ζ− 1

(τ(t)) 
Δ

 

· f(x(τ(t)))

≤ − CLx(τ(t))< 0.

(16)

*en, a(t)uΔ(t) is decreasing in (tk, tk+1]. We can obtain
that uΔ(t) is ultimately greater than zero. *ere exists T2 ≥T

such that zΔ(t)> uΔ(t)> 0 for all t ∈ [T2,∞).
For ∀t ∈ (tk, tk+1] and t ∈ (T2,∞), we have


t

T2

a(s)u
Δ
(s) 
Δ
Δs≤ − CL 

t

T2

x(τ(s))Δs. (17)

Furthermore, we obtain

CL 
t

T2

x(τ(s))Δs≤ a T2( u
Δ

T2(  − a(t)u
Δ

(t)

+ 
T2 < tk < t

ηk − 1( a tk( u
Δ

tk( 

≤ a T2( u
Δ

T2( <∞.

(18)

*erefore, x(t) and z(t) are integrable. However, we
know z(t) is increasing in (T2,∞) and nonintegrable from
zΔ(t)> 0 and z(t+

k )≥ z(tk), which contradicts the integra-
bility of z(t). We complete the proof. □

Next, we study the equation

a(t)z
Δ

(t) 
Δ

+ p(t)f(x(σ(t))) � 0,

z t
+
k(  � Mk z tk( ( ,

z
Δ

t
+
k(  � ηkz

Δ
tk( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

i.e., the case q(t) ≡ 0, τ(t) � σ(t), and ck � dk � ηk of (1).
We assume the following conditions hold:

(H12) 0≤ b(t)< (H(t)Bk/H(θ(t))), where

H(t)�
∞
t

(1/a(s))Δs,Bk�

1, tk∉(θ(t),t),

θ(t)<tk<tαk,other

⎧⎪⎨

⎪⎩

(H13) 0< αk ≤ βk ≤ 1, ηk ≤ 1, and θ(t) ≠ tk for t≠ tk

(H14) 
t1

t0
(1/a(s))Δs + η1 

t2

t1
(1/a(s))Δs +

η2η1 
t3

t2
(1/a(s))Δs + · · · �∞

(H15) θ(t)≤ t and θ(t) ∈ Crd(T , T) is increasing,
limt⟶∞θ(t) �∞, and σ(θ(t)) � θ(σ(t))

(H16) *ere exists L> 0 and (f(u)/u) ≥ L for u≠ 0; f is
nondecreasing and f(uv)≥f(u)f(v) for uv> 0

Theorem 3. Assume (H12)–(H16) are satisfied. If


∞

t0


t0 < tk < s

αk

ηk

p(s)f(1 − b(σ(s)))
H(θ (σ(s)))

H(σ (s))Bk

Δs �∞,

(20)

then (19) is oscillatory.

Proof. Assume that (19) has a nonoscillatory solution x(t),
which is eventually positive; then, there exists T ∈ T large
enough and T≥ t0 such that x(t)> 0 and x(θ(t))> 0 for all
t ∈ [T,∞). We obtain that (a(t)zΔ(t))Δ � −p(t)

f(x(σ(t)))< 0, where t ∈ (tk, tk+1]. *erefore, a(t)zΔ(t) is
decreasing in (tk, tk+1]. We denote I(u) � max i: t0 < ti < u .

For tk < t≤ s≤ tk+1, we have

a tk+1( z
Δ

tk+1( ≤ a(s)z
Δ
(s)≤ a(t)z

Δ
(t). (21)

Hence,


tk+1

t
z
Δ

(s)Δs≤ a(t)z
Δ

(t) 
tk+1

t

1
a(s)
Δs, s ∈ t, tk+1 .

(22)

We can make similar analysis on the intervals (tj, tj+1]

and (tI(u), u], such that j � k + 1, . . . , I(u) − 1. *us,

z(u) − z(t)

≤ 
tk+1

t
z
Δ

(s)Δs + 

I(u)−1

j�k+1


tj+1

tj

z
Δ

(s)Δs + 
u

tI(u)

z
Δ

(s)Δs

≤ a(t)z
Δ
(t) 

tk+1

t

1
a(s)
Δs + ηk+1 

tk+2

tk+1

1
a(s)
Δs + · · · ηI(u) · · · ηk+1 

u

tI(u)

1
a(s)
Δs .

(23)

By (H14), we obtain zΔ(t) is ultimately greater than zero.
*en, there exists T3 ≥T such that zΔ(t)> 0 for all
t ∈ [T3,∞), and

z(t)≥ − a(t)z
Δ

(t) 
u

t

1
a(s)
Δs. (24)

Letting u⟶∞, we have

z(t)≥ − a(t)z
Δ

(t) 
∞

t

1
a(s)
Δs � −a(t)z

Δ
(t)H(t). (25)

*erefore, we can claim that (z(t)/H(t)) is increasing in
(tk, tk+1].

If tk ∉ (θ(t), t), we obtain
z(t)

H(t)
≥

z(θ(t))

H(θ(t))
. (26)

If tk ∈ (θ(t), t), we obtain
z(t)

H(t)
≥ 

θ(t)< tk < t

αk

z(θ(t))

H(θ(t))
. (27)
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So

z(t)

H(t)
≥Bk

z(θ(t))

H(θ(t))
. (28)

*erefore,

x(t) � z(t) − b (t)x(θ(t))≥ z(t) − b (t)z(θ(t))

≥ z(t) 1 − b (t)
H(θ(t))

H(t)

1
Bk

 .

(29)

Let ω(t) � ((a(t)zΔ(t))/z(t)), t ∈ (tk, tk+1]; we have

ωΔ(t)≤
−p(t)f(x(σ(t)))

z(σ(t))

≤ − p(t)Lf 1 − b(σ(t))
H(θ(σ(t)))

H(σ(t))

1
Bk

 ,

ω t
+
k( ≤

ηk

αk

ω tk( .

(30)

By using Lemma 1, we obtain for t> t0,

ω(t)≤ω t0(  
t0 < tk < t

ηk

αk

− L 
t

t0


s< tk < t

ηk

αk

p(s)f 1 − b(σ(s))
H(θ(σ(s)))

H(σ(s))

1
Bk

 Δs

� 
t0 < tk < t

ηk

αk

ω t0(  − L 
t

t0


t0 < tk < s

αk

ηk

p(s)f 1 − b(σ(s))
H(θ(σ(s)))

H(σ(s))

1
Bk

 Δs⎛⎝ ⎞⎠.

(31)

We get a contradiction as t⟶∞. We complete the
proof. □

For q (t) ≡ 0 and αk � βk � 1 in (1), it can be written as

a(t)z
Δ

(t) 
Δ

+ p(t)f(x(τ(t))) � 0,

z t
+
k(  � z tk( ,

z
Δ

t
+
k(  � Nk z

Δ
tk(  .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

We assume that the following conditions hold for (32):

(H17) θ(t), τ(t) ∈ Crd(T , T), θ(t) ≤ t, τ(t)≤ t, limt⟶∞θ
(t) �∞, and limt⟶∞τ(t) �∞

(H18) θ(t)≠ tk and τ(t)≠ tk for t≠ tk

(H19) 
∞
t0

t0 ≤ tk < sck(1/(a(s)))Δs �∞

Lemma 2. Assume (H19) is satisfied and x(t) is an even-
tually positive solution of equation (32); then, zΔ(t)≥ 0 and
zΔ(tk)≥ 0, where t ∈ (tk, tk+1].

Proof. Because x(t) is an eventually positive solution of
equation (32), we obtain

a(t)z
Δ

(t) 
Δ

� −p(t)f(x(τ(t)))<0, t ∈ tk, tk+1( . (33)

*en, a(t)zΔ(t) is decreasing in (tk, tk+1]. If there exists
tj such that zΔ(tj) � −l< 0 for l> 0 and we obtain for
∀t ∈ (tj+n, tj+n+1], a(t)zΔ(t)≤ − a(tj)cjcj+1, . . . , cj+nl, then

z
Δ

(t)≤
−a tj 

a(t)
l 

tj ≤ tk < t

ck,

z t
+
k(  � z tk( .

(34)

By Lemma 1, we obtain for t> tj,

z(t)≤ z tj  − l 
t

tj

a tj 

a(s)


tj ≤ tk < s

ckΔs. (35)

We get a contradiction as t⟶∞. *en, zΔ(tk)≥ 0.
For ∀t ∈ (tk−1, tk],

z
Δ

(t)≥
a tk( 

a(t)
z
Δ

tk( ≥ 0. (36)

We complete the proof. □

Theorem 4. Assume (H1) and (H16)–(H19) are satisfied. If
dk ≤ 1 and


∞

t0


t0 < tk < t

1
dk

p(t)f(1 − b(τ(t)))K(t)Δt �∞, (37)

where

K(t) �
Q(τ(t))

Q(σ(t))
,

Q(t) � 
t

T

1
a(s)
Δs,

(38)

then (32) is oscillatory.

Proof. Suppose to the contrary that x(t) is an eventually
positive solution of (32); then, there exists T ∈ T large
enough and T≥ t0 such that x(t)> 0, x(θ(t))> 0, and
x(τ(t))> 0 for all t ∈ [T,∞). *en, a(t)zΔ(t) is decreasing
in (tk, tk+1]. According to a(t+

k )zΔ(t+
k )≤ a(tk)zΔ(tk), we

obtain a(t)zΔ(t) is decreasing in (T,∞).
For ∀t ∈ (tk, tk+1] and t≥ τ(t)≥T, we have

z(σ(t))

z(τ(t))
≤

1
K(t)

. (39)
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It can be proved similar to Lemma 1 of [11] and so its proof is
omitted here.

From Lemma 2, we have zΔ(t)≥ 0 and zΔ(tk)≥ 0, where
t≥T and t ∈ T . Let ω(t) � (a(t)zΔ(t)/z(t)), t ∈ (tk, tk+1].
We have

ωΔ(t)≤
−p(t)f(x(τ(t)))

z(σ(t))

≤ − p(t)Lf(1 − b(τ(t))K(t)),

ω t
+
k( ≤dkω tk( .

(40)

Applying Lemma 1, we obtain for t> t0,

ω(t)≤ω t0(  
t0 < tk < t

dk − L 
t

t0


s< tk < t

dkp(s)

· f(1 − b(τ(s)))K(s)Δs

� 
t0 < tk < t

dk ω t0(  − L 
t

t0


t0 < tk < s

1
dk

p(s)⎛⎝

· f(1 − b(τ(s)))K(s)Δs⎞⎠.

(41)

We get a contradiction as t⟶∞. *is completes the
proof of *eorem 4. □

4. Examples

Example 1. Consider the equation

1
et

z
Δ
(t) 
Δ

+ p(t)x(t −2) − q(t)x(t +2) � 0, t ∈JT\ 2k{ },

z 2k
+

(  � Mk(z(2k)), k ∈N,

z
Δ 2k

+
(  �

k

k +1
z
Δ
(2k), k ∈N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where z(t) � x(t) + (1/t)x(t − 2) and JT : � [2,∞). Here,
αk � 1 + (1/(k2 + 1)), βk � 1 + (1/k2), ηk � (k/(k + 1)), and
p(t)S(t − 2) � 1. Obviously, (H1) and (H3)–(H6) are
satisfied:



∞

k�1


tk+1

tk

1
a(t)
Δt 

k

i�1
ηi

⎛⎝ ⎞⎠ � 
∞

k�1

2k+2

2k
e

tΔt 
k

i�1

i

i + 1
⎛⎝ ⎞⎠

�
1
2


4

2
e

tΔt +
1
3


6

4
e

tΔt + · · ·

> 
∞

2
Δt>∞.

(43)

So (H2) is satisfied. Taking account of *eorem 1 of [1],
we know that

y′(t) + y(t − 2)≤ 0,

y t
+
k( ≤

k

k + 1
y tk( ,

⎧⎪⎪⎨

⎪⎪⎩
(44)

has no eventually positive solution. By *eorem 1, it is clear
that every bounded solution of (42) is oscillatory.

Example 2. Consider the following equation:

t2

et
z
Δ
(t) 

Δ

+ e
t
x(t + 2) − e

− t
x(t + 4) � 0, t ∈ JT\ 2k{ },

z 2k
+

(  � Mk(z(2k)), k ∈ N,

z
Δ 2k

+
(  �

k

k + 1
z
Δ
(2k), k ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

where z(t) � x(t) + (1/t)x(t −2) and JT : � ∪∞k�2[k, k+

(1/2)]. Here, αk � 1+ (1/(k2 +1)), βk � 1+ (1/k2), and ηk �

(k/(k +1)). Obviously, (H2), (H5)–(H8), and (H10) are
satisfied:


∞

t0

1
a(η)


η

ζ− 1
(τ(η))

q(s)ΔsΔη � 
∞

2

e
η

η2

η

η−2
e

− sΔsΔη<∞,

p(t) − q ζ− 1
(τ(t))  ζ− 1

(τ(t)) 
Δ

� e
t

− e
2− t ≥ e

2
− 1> 0.

(46)

So (H9) and (H11) are satisfied. By *eorem 2, we see
that every bounded solution of (45) is oscillatory.
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