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Let N � (V(N), E(N)) be a connected network with vertex V(N) and edge set E(N)⊆(V(N), E(N)). For any two vertices a and
b, the distance d(a, b) is the length of the shortest path between them. (e local resolving neighbourhood (LRN) set for any edge
e � ab of N is a set of all those vertices whose distance varies from the end vertices a and b of the edge e. A real-valued functionΦ
from V(N) to [0, 1] is called a local resolving function (LRF) if the sum of all the labels of the elements of each LRN set remains
greater or equal to 1. (us, the local fractional metric dimension (LFMD) of a connected network N is
dimlf(N) � min |Φ|: Φ isminimal LRF of N{ }. In this study, LFMD of various types of sunlet-related networks such as sunlet
network (Sm), middle sunlet network (MSm), and total sunlet network (TSm) are studied in the form of exact values and sharp
bounds under certain conditions. Furthermore, the unboundedness and boundedness of all the obtained results of LFMD of the
sunlet networks are also checked.

1. Introduction

(e problem to find the location number for the connected
networks was firstly introduced by Slater in 1975 [1]. Later
on, Melter and Harary also studied the concept of location
number in networking theory, but they used different term
called by metric dimension (MD) [2]. It has been investi-
gated that computing MD is an NP-hard problem [3]. (e
concept of MD being a graph theoretic parameter is a useful
tool in the discovery and verification of the networks [4],
allocation of different destinations to robots [5], investiga-
tion of percolation in a hierarchical lattice [6], and con-
figuration of the chemical compounds in chemistry [7].

Chartrand et al. established the sharp bounds of MD for
the unicyclic networks; they proved that MD of a connected
network N is 1 iff N is path network. Furthermore, under
certain conditions, by using the concept of MD on the
integer programming problem (IPP), they also found the
integral solutions [8]. For the study of the various

computational results of MD for the different connected
networks such as Toeplitz, Mobius ladder, lexicographic
product of networks, gear networks, and barycentric sub-
division of Cayley networks, we refer to [9–13]. In addition,
for the study of constant MD of some families of regular,
cycle, and prism-related networks and unbounded MD of
nanotubes and convex polytopes, see [6, 14–18].

Later on, Currie and Ollerman defined the fractional
version of MD to study the nonintegral solution of IPP [19].
Saddiqi and Imran obtained optimal solution of cretin IPP
by using this new fractional technique in the field of metric-
based dimensions [17]. Arumugam and Matthew formally
introduced the term fractional metric dimension (FMD) in
graph theory, and they found exact values of FMD for
certain connected networks. Moreover, they also charac-
terized all the networks with FMD equal to half of their
order. Feng et al. developed computational criteria to
compute FMD of the vertex transitive networks in its general
form [20]. Recently, Khalidi et al. established sharp bounds
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of FMD for the connected networks [21]. To study the latest
developed results on FMD for trees, unicyclic, permutation
networks, and product networks obtained under the oper-
ation of product (hierarchical, comb, corona, and lexico-
graphic), see [22–26].

(e new invariant of MD called by local FMD is defined
by Aisyah et al. [27]. Liu et al. computed upper bounds of
LFMD for the symmetric and planar networks [28]. For all
the connected networks, Javaid et al. established upper
bound and improved the lower bound of nonbipartite
networks from unity. (ey also characterized bipartite
networks with LFMD as unity [29, 30]. Moreover, Moshin
et al. studied LFMD of generalized Petersen networks
[31–34]. For more study, we refer to in [34–36].

In this note, our main objective is to compute the sharp
bounds and exact values of LFMD for the different gener-
alized sunlet networks such as sunlet network (Sm), middle
sunlet network (MSm), and total sunlet network (TSm),
where m is some integral value. In addition, the bound-
edness and unboundedness of all the obtained results are
also investigated. (e remaining study is organised as fol-
lows. Section 2 contains basic notions. Section 3 has main
findings involving LRN sets of LFMD. Section 4 contains the
conclusion of this paper.

2. Preliminaries

For vertex set V(N) and edge set E(N)⊆(V(N) × V(N)),
the network (N � V(N), E(N)) is constructed as a simple
and connected network. For u, v ∈ V(N), the distance be-
tween u and v denoted by d(u, v) is length (number of edges)
of the shortest path between them. If each pair of vertices of
N is expressed by some path, then N is called connected
network. For the further study of preliminary concepts of the
subject graph theory, we refer [35].

A vertex v ∈ V(N) resolves a pair (w, z) of vertices in N

if d(w, v)≠d(z, v). Let A � v1, v2, v3, . . . , vm􏼈 􏼉⊆V(N) and
u ∈ V(N); then, m-tuple representation of u with respect to
A is r(u|A) � (r(u, v1), r(u, v2), r(u, v3), . . . , r(u, vm)). If
the distinct vertices of N have different representations with
respect to A, then A is called a resolving set of N. (us, MD
of N can be defined by

dim(N) � min |A|{ }, (1)

where A is the resolving set of N.
Let uv ∈ V(N); then, local resolving neighbourhood

(LRN) is defined as

R′(uv) � z ∈ V(N): d(u, z)≠ d(v, z){ }. (2)

A local resolving function (LRF) is a real-valued function
Φ: V(N)⟶ [0, 1] such that Φ(R′(uv))≥ 1 for each
R′(uv) of N, whereΦ(R(uv)) � 􏽐x∈R′(uv)Φ(x). A LRFΦ of
N is called minimal if there exists some other function
Φ′: V(N)⟶ [0, 1] such that Φ′ ≤Φ and Φ(u)≠Φ′(u) for
at least one u ∈ V(N) that is not LRF of N. (us, local
fractional metric dimension (LFMD) is defined as follows:

dimlf(N) � min |Φ|{ }, (3)

where |Φ| � 􏽐u∈V(N)Φ(u).
By using the technique used in [36], now, we define

sunlet network (Sm), middle sunlet network (MSm), and
total sunlet network (TSm) as follows.

Let Sm be a sunlet network with order and size 2m,
respectively, where m≥ 3. It consists of the inner cycle of
order m, having inner vertices vi: 1≤ i≤m􏼈 􏼉, pendent ver-
tices ui: 1≤ i≤m􏼈 􏼉, and edge set of
E(Sm) � vivi+1, uivi: 1≤ i≤m􏼈 􏼉, see Figure 1. Middle sunlet
network is obtained from sunlet network Sm of order 4m and
size 5m as V(MSm) � vi, ui, ui

′, vi
′: 1≤ i≤m􏼈 􏼉 and

E(MSm) � uiui
′, vivi
′, vi
′ui+1, vi
′vi+1′, ui
′vi: 1≤ i≤m􏼈 􏼉; for details,

see Figure 2. (e sunlet network TSm is obtained from
middle sunlet network MSm by adding new edges
uivi, vivi+1: 1≤ i≤m􏼈 􏼉 with order 4m and size 6m, re-
spectively; for further details, see Figure 3. Now, we define
some important results which will be frequently used in the
main results as follows.

Theorem 1 (see [29]). For a connected network N and LRN
set R′(e) of the edge e of N if |R′(e)∩A|≥ c,∀e ∈ E(N),

1≤ dimlf(N)≤
|A|

c
, (4)

where A � ∪ R′(e): |R′(e)| � c􏼈 􏼉, c � min |R′(e)|: e ∈ E􏼈

(N)}, and 2≤ c≤ |V(N)|.

Theorem 2 (see [30]). For a connected network N and LRN
set R′(e) of the edge e of N, we have

|V(N)|

β
≤ dimlf(N), (5)

where β � max |R′(e)|: e ∈ E(N)􏼈 􏼉 and 2≤ β≤ |V(N)|.

Corollary 1 (see [30]). For a connected network N, R′(e) as
LRN of e ∈ E(N), δ � max |R′(e)|: e ∈ E(N)􏼈 􏼉, c � min
R′(e)|: e ∈ E(N)􏼈 􏼉, and X � ∪ R′(e): |R′(e)| � c􏼈 􏼉.
If c � δ and X � V(N), then

dimlf(N) �
|V(N)|

δ
. (6)

Theorem 3 (see [29]). If N is a connected bipartite network,
then dimlf(N) � 1.

3. Main Result

In this particular section, we computed LRN sets of gen-
eralized sunlet networks and LFMD in the form of exact
values and sharp bounds.

3.1. LFMD of Sunlet Network. (e resolving neighbourhood
sets for each pair of adjacent vertices are classified.

Lemma 1. Let Sm with m≥ 3 and m � 1(mod 2) be a sunlet
network. 2en, for 1≤ i≤m, we have
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Figure 1: Sunlet network Sm.
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Figure 2: Middle sunlet network MSm.
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Figure 3: Total sunlet network TSm.
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(a) |R′(vivi+1)| � 2m − 2, |R′(uivi)| � 2m, |∪m
i�1R′(vi

vi+1)| � 2m, and |R′(vivi+1)|< |R′(uivi)|

(b) |R′(uivi)∩ ∪ m
i�1R′(vivi+1)| � |R′(vivi+1)|

Proof. Assume that ui pendent and vi are internal vertices,
respectively, of Sm and vm+1 � v1, where 1≤ i≤m.

(a) Since R′(vivi+1) � V(Sm) − um+2i+1/2, vm+2i+1/2􏼈 􏼉, this
implies that |R′(vivi+1)| � 2m − 2 and R′(uivi) �

V(Sm); therefore, |R′(viui)| � |V(Sm)| � 2m, where
1≤ i≤m. Furthermore, |∪ m

i�1R′(vivi+1)| � 2m.
(b) Since ∪ m

i�1R′(vivi+1) � V(Sm), therefore, |R′(uivi)

∩ ∪m
i�1R′(vivi+1)| � |R′(vivi+1)|. □

Theorem 4. Let Sm be a sunlet network, where m≥ 3 and
m � 1(mod 2). 2en,

1< dimlf MSm( 􏼁≤m/m − 1. (7)

Proof. To prove the result, we have following cases. □

Case 1. For m � 3, the LRN sets of Sm are

R1′ � R′(v1v2) � V(S3) − v3, u3􏼈 􏼉

R2′ � R′(v2v3) � V(S3) − v1, u1􏼈 􏼉

R3′ � R′(v3v1) � V(S3) − v2, u2􏼈 􏼉

R4′ � R′(u1v1) � V(S3)

R5′ � R′(u2v2) � V(S3)

R6′ � R′(u3v3) � V(S3)

From the above LRN sets, |R1′| � |R2′| � |R3′| � 3 and
their cardinalities less than the cardinalities of other LRN
sets of S3. Hence, the function h: V(S3)⟶ [0, 1] is defined
as h(v) � 1/4∀v ∈ V(S3) which is an upper LRF; therefore,
by (eorem 1, dimlf(S3)≤ 3/2.

From the above LRN sets, |R4′| � |R5′| � |R6′| � 6, and
their cardinalities are greater than the cardinalities of other
LRN sets of S3. Now, the function h′: V(S3)⟶ [0, 1] is a
lower LRF defined as h′(v) � 1/6; hence, by (eorem 2,
dimlf(S3)≥ 1. Since S3 is a nonbipartite network, therefore,
dimlf(S3) must be greater then 1. Consequently,

1< dimlf S3( 􏼁≤ 3/2. (8)

Case 2. In this case, |R′(vivi+1)| � 2m − 2 and |∪m
i�1R′

(vivi+1)| � 2m. Furthermore, |R′(y)∩ ∪m
i�1R′(vivi+1)|≥

|R′(y)|∀y ∈ V(Sm); hence, the constant function
h: V(Sm)⟶ [0, 1] is defined as h(v) � 1/2m−

2∀v ∈ V(Sm) which is an upper LRF; therefore, by (eorem
1, dimlf(Sm)≤m/m − 1.

Since |R′(uivi)| � 2m and |R′(uivi)|≥ |R′(y)|

∀y ∈ E(Sm), therefore, the function h′: V(Sm)⟶ [0, 1] is a
lower LRF which is defined as h′(v) � 1/2m∀h ∈ V(Sm).
Hence, by (eorem 2, dimlf ≥ 1. Since Sm is a nonbipartite
network, therefore, dimlf(MSm) must be greater than 1.
Consequently,

1< dimlf Sm( 􏼁≤
m

m − 1
. (9)

Theorem 5. Let Sm be a sunlet network, where m≥ 4 and
m � 0(mod 2). 2en,

dimlf Sm( 􏼁 � 1. (10)

Proof. Since no cycle in Sm is of odd length, therefore, Sm is
a bipartite network, where m � 0(mod 2); hence, by (eo-
rem 3, dimlf(Sm) � 1. □

3.2. LFMD ofMiddle Sunlet Network. (e LRN sets for each
pair of adjacent vertices are classified.

Lemma 2. Let MSm with m≥ 3 be a middle sunlet network.
2en, for 1≤ i≤m,

(a) |R′(viui
′)| � 3, |R′(uiui+1′)| � 4m, and |∪ m

i�1R′(viui
′)|

� 3m

(b) |R′(viui
′)|≤ |R′(y)| and |R′(y)∩ ∪ m

i�1R′(viui
′)|≥

|R′(viui
′)|∀y ∈ E(MSm)

Proof. Assume that ui pendent and ui
′, vi
′, and vi are internal

vertices, respectively, of MSm, where 1≤ i≤m.

(a) Since R′(ui
′vi) � ui, ui

′, vi􏼈 􏼉, this implies that
|R′(ui
′vi)| � 3 and R′(uiui+1′) � V(MSm); therefore,

|R′(uiui+1′)| � |V(MSm)| � 4m, where 1≤ i≤m.
Furthermore, |∪m

i�1R′(viui
′)| � 3m.

(b) Consider R′(vivi
′) � vi, vi+1, vi+2,􏼈 . . . , vm+2i−1/2,

vi
′, vi+1′, vi+2′, . . . , vm+2i−1/2′, ui+1, ui+2, . . . , um+2i−1/2, ui+1′

, ui+2′, . . . , um+2i−1/2′}, R′(vivi−1′) � vi, vm+2i+1/2, vm+2i􏼈
+3/2, . . . , vm, vm+2i+1/2′, vm+2i+3/2′, vm+2i+5/2′ , . . . . . . . . . ,

vm
′, um+2i+1/2, um+2i+3/2, um+2i+5/2 . . . , um, um+2i+1/2′,

um+2i+3/2′, um+2i+5/2′, . . . , um
′},R′ (ui

′vi
′) � vi+1, vi+2,􏼈

vi+3, . . . ., vm+2i−1/2, vi
′, vi+1′, vi+2′, vi+3, . . . , vm+2i−1/2′

, ui, ui+1, ui+2, ui+3 , . . . , um+2i−1/2, ui
′, ui+1′, ui+2′, ui+3′,

. . . , um+2i−1/2′},R′( ui
′vi−1′) � vm+2i+1/2, vm+2i+3/2, vm+2i􏼈

+5/2 . . . , vm, vm+2i+1/2′, vm+2i+3/2′, vm+2i+ 5/2′, . . . , vm
′,

ui, um+2i+1/2, um+2i+3/2, . . . , um, um+2i+1/2′, um+2i+3/2′,
. . . , um
′}, and R′(vi

′vi+1′) � V(MSm) − vi, ui
′, ui􏼈 􏼉.

(e cardinalities of LRN sets other than R′(ui
′vi) are

classified in Table 1.
It is clear from Table 1 that |R′(ui

′vi)|≤ |R′(y)| and
|R′(y)∩ ∪m

i�1R′(viui
′)|≥ |R′(viui

′)|∀y ∈ E(MSm). □

Theorem 6. Let MSm be a middle sunlet network, where
m≥ 3.

2en,

1< dimlf MSm( 􏼁≤m. (11)

Proof. To prove the result, we have the following cases. □

Case 3. For m � 3, the LRN sets of MSm are
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R1′ � R′(u1′v1) � u1′, v1, u1􏼈 􏼉

R2′ � R′(u2′v2) � u2′, v2, u2􏼈 􏼉

R3′ � R′(u3′v3) � u3′, v3, u3􏼈 􏼉

R4′ � R′(v1v1′) � v1, v2, v1′, v2′, v2, u2′􏼈 􏼉

R5′ � R′(v2v2′) � v2, v3, v2′, v3′, v3, u3′􏼈 􏼉

R6′ � R′(v3v3′) � v3, v1, v3′, v1′, v1, u1′􏼈 􏼉

R7′ � R′(v1v3′) � v1, v3, v2′, v3′, u3, u3′􏼈 􏼉

R8′ � R′(v2v2′) � v2, v2′, v3′, v3, u3′, u3􏼈 􏼉

R9′ � R′(v3v3′) � v3, v3′, v1′, v1, u1′, u1􏼈 􏼉

R10′ � R′(v1′v3′) � v1′, v3′, v2, u2′, u2, v3, u3′, u3􏼈 􏼉

R11′ � R′(v1′v2′) � v2′, v1′, v3, u3′, u3, v1, u1′, u1􏼈 􏼉

R12′ � R′(v2′v3′) � v2′, v1′, v3, u3′, u3, v1, u1′, u1􏼈 􏼉

R13′ � R′(u1′u1) � V(MS3)
R14′ � R′(u2′u2) � V(MS3)
R15′ � R′(u3′u3) � V(MS3)

From the above LRN sets, |R1′| � |R2′| � |R3′| � 3 and
|R′(ui
′vi)|≤ |R′(y)|∀y ∈ E(MS3) and

|R′(y)∩ ∪ 3i�1R′(viui
′)|≥ |R′(viui

′)|∀y ∈ E(MS3). Hence,
the function h: V(MS3)⟶ [0, 1] is defined as

h(v) �
1
3

ifv ∈ ∪
3

i�1
R′ ui
′vi( 􏼁( 􏼁, 0ifv ∈ V MS3( 􏼁 − ∪

3

i�1
R′ ui
′vi( 􏼁( 􏼁.􏼚

(12)

(erefore, by (eorem 1, dimlf(MS3)≤ 3.
Since |R13′| � |R14′| � |R15′| � 12 and cardinality of these

LRN sets is greater than all other LRN sets, therefore, we
define a constant function h′: V(MS3)⟶ [0, 1] which is a
lower LRF defined by h′(v) � 1/12; hence, by (eorem 2,
dimlf ≥ 1. Also, (MS3) is a nonbipartite network; therefore,
dimlf(MS3) must be greater then 1. Consequently,

1< dimlf MS3( 􏼁≤ 3. (13)

Case 4. In this case, |R′(ui
′vi)| � 3 and |∪m

i�1R′(uivi)| � 3m.
Furthermore,
|R′(y)∩ ∪m

i�1R′(uivi)|≥ |R′(uivi)|∀y ∈ V(MSm); hence,
the constant function h: V(MS3)⟶ [0, 1] is defined as

h(v) �

1
3

ifv ∈ ∪m
i�1 R′ ui

′vi( 􏼁( 􏼁,

0ifv ∈ V MS3( 􏼁 − ∪m
i�1 R′ ui

′vi( 􏼁( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

(erefore, by (eorem 1, dimlf(MSm)≤m.
Since |R′(ui

′ui)| � 4m and |R′(ui
′ui)|≥ |R′(y)|∀y ∈

E(MSm), therefore, a function h′: V(MSm)⟶ [0, 1] is a

lower LRF and is defined as h′(v) � 1/4m∀v ∈ V(MSm).
Hence, by (eorem 2, dimlf(MSm)≥ 1. Since MSm is a
nonbipartite network, therefore, dimlf(MSm) must be
greater than 1. Consequently,

1< dimlf MSm( 􏼁≤m. (15)

3.3. LFMDofTotal SunletNetwork. (eLRN sets of each pair
of adjacent vertices are classified.

Lemma 3. Let TSm with m≥ 3 be a total sunlet network.
2en, for 1≤ i≤m, we have

(a) |R′(viui
′)| � 2, |R′(uiui+1′)| � 4m − 1, and |∪ m

i�1R′
(viui
′)| � 2m

(b) |R′(viui
′)|≤ |R′(y)| and |R′(y)∩ ∪ m

i�1R′(ui)|≥ |R′
(ui
′vi)|∀y ∈ E(MSm)

Proof. Assume that ui pendent and ui
′, vi
′, and vi are other

vertices, respectively, of TSm, where 1≤ i≤m.

(a) Since R′(ui
′vi) � ui

′, vi􏼈 􏼉, this implies that
|R′(ui
′vi)| � 2 and R′(ui

′ui
′) � V(TSm) − vi􏼈 􏼉 andR′

(uivi) � V(TSm) − ui
′􏼈 􏼉; therefore,

|R′(uiui
′)| � |V(TSm)| � 4m − 1, where 1≤ i≤m.

Furthermore, |∪m
i�1R′(viui

′)| � 2m.
(b) Consider R′(vivi

′) � vi, vi+1, vi+2, . . . , vm+2i􏼈 −1/2, vi
′,

vi+1′, vi+2′, . . . , vm+2i−1/2′, ui+1, ui+2, . . . , um+2i−1/2, ui+1′,
ui+2′, . . . , um+2i−1/2′}, R′(vi

′vi+1) � vi−1, vi,􏼈 vm+2i+3/2,

vm+2i+5/2, . . . , vm, vi
′, vm+2i+1/2′, vm+2i+3/2′, vm+2i+5/2′, . . . ,

vm
′, ui+1, um+2i+3/2, um+2i+5/2, . . . .., um, ui

′, ui+1′,
um+2i+3/2′, um+2i+5/2′, . . . , um

′}, R′(ui
′vi
′) � vi+1, vi+2,􏼈

vi+3, . . . , vm+2i−1/2, vi
′, vi+1′, vi+2′, vi+3, . . . , vm+2i−1/2′, ui,

ui+1, ui+2, ui+3, . . . , um+2i−1/2, ui
′, ui+1′, ui+2′, ui+3′, . . . .,

um+2i−1/2′},R′(ui
′vi−1′) � vm+2i+1/2, vm+2i+3/2,􏼈 vm+2i+5/2

. . . , vm, vm+2i+1/2′, vm+2i+3/2′, vm+2i+5/2′, . . . , vm
′, ui,

um+2i+1/2, um+2i+3/2, . . . , um, um+2i+1/2′, um+2i+3/2′, . . . ,

um
′}, and R′(vi

′vi+1′) � V(TSm) − vi, ui
′, ui􏼈 􏼉.

(e cardinalities of the LRN sets other than R′(ui
′vi) are

classified in Table 2.
It is clear from Table 2 that |R′(ui

′vi)|

≤ |R′(y)|∀y ∈ E(TSm). Furthermore, |R′(y)∩ ∪m
i�1

R′(ui
′vi)|≥ |R′(ui

′vi)|. □

Theorem 7. Let TSm be a total sunlet network, where m≥ 3.
2en,

dimlf TSm( 􏼁 � m. (16)

Proof. To prove the result, we have the following cases. □

Case 5. For m � 3, the LRN sets of TSm are

R1′ � R′(u1′v1) � u1′, v1􏼈 􏼉

R2′ � R′(u2′v2) � u2′, v2􏼈 􏼉

Table 1: Cardinality of each LRN set.

LRN Set Cardinality
R′(vivi
′) 2m> |R′(ui

′vi)|

R′(vivi−1′) 2m> |R′(ui
′vi)|

R′(ui
′vi
′) 2m + 1> |R′(ui

′vi)|

R′(ui
′vi−1′) 2m> |R′(ui

′vi)|

Journal of Mathematics 5



R3′ � R′(u3′v3) � u3′, v3􏼈 􏼉

R4′ � R′(v1v1′) � v1, v2, v1′, v2′, u1, u2, u2′􏼈 􏼉

R5′ � R′(v2v2′) � v2, v3, v2′, v3′, u2, u3, u3′􏼈 􏼉

R6′ � R′(v3v3′) � v3, v1, v3′, v1′, u3, u1, u1′􏼈 􏼉

R7′ � R′(v1v3′) � v1, v3, v2′, v3′, u1, u3, u3′􏼈 􏼉

R8′ � R′(v2v1′) � v2, v1, v1′, v3′, u2, u1, u1′􏼈 􏼉

R9′ � R′(v3v2′) � v3, v2, v2′, v1′, u3, u2, u2′􏼈 􏼉

R10′ � R′(v1′v3′) � v1′, v3′, v2, u2′, u2, v3, u3′, u3􏼈 􏼉

R11′ � R′(v1′v2′) � v2′, v1′, v3, u3′, u3, v1, u1′, u1􏼈 􏼉

R12′ � R′(v2′v3′) � v2′, v1′, v3, u3′, u3, v1, u1′, u2􏼈 􏼉

R13′ � R′(u1′u1) � V(TS3) − v1􏼈 􏼉

R14′ � R′(u2′u2) � V(TS3) − v2􏼈 􏼉

R15′ � R′(u3′u3) � V(TS3) − v3􏼈 􏼉

R16′ � R′(u1v1) � V(TS3) − u1′􏼈 􏼉

R17′ � R′(u2v2) � V(TS3) − u2′􏼈 􏼉

R18′ � R′(u3v3) � V(TS3) − u3′􏼈 􏼉

From the above LRN sets |R1′| � |R2′| � |R3′| � 2 and the
cardinalities of these LRN sets which are less than the
cardinalities of all other LRN sets, furthermore,
|R(y)∩ ∪ 3i�1R(ui

′vi)|≥ |R(ui
′vi)|∀y ∈ E(TS3). Hence, the

function h: V(TS3)⟶ [0, 1] is defined as

h(v) �
1
2

ifv ∈ ∪
3

i�1
R′ ui
′vi( 􏼁( 􏼁, 0ifv ∈ V TS3( 􏼁 − ∪

3

i�1
R′ ui
′vi( 􏼁( 􏼁.􏼚

(17)

(erefore, dimlf(TS3) � 3.

Case 6. In this case, |R′(ui
′vi)| � 2 and |∪m

i�1R′(uivi)| � 2m.
Furthermore,
|R′(y)∩ ∪m

i�1R′(ui
′vi)|≥ |R′(ui

′vi)|∀y ∈ E(TSm). Hence, a
constant function h: V(TSm)⟶ [0, 1] is defined as

h(v) �
1
2

ifv ∈ ∪
m

i�1
R′ ui
′vi( 􏼁( 􏼁, 0ifv ∈ V TSm( 􏼁 − ∪

m

i�1
R′ ui
′vi( 􏼁( 􏼁.􏼚

(18)

(erefore,

dimlf TSm( 􏼁 � m. (19)

4. Conclusion

In this article, we studied the LFMD of some families
generalized sun let networks and formed bounds of LFMDs
and computed the exact values of LFMD in some cases as
well.

Exact values of LFMD is attained by total sunlet network,
TSm � m.

Bounded and unboundedness of LFMDs are illustrated
through Table 3.
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