Let $N = (V(N), E(N))$ be a connected network with vertex $V(N)$ and edge set $E(N) \subseteq (V(N), E(N))$. For any two vertices a and b, the distance $d(a, b)$ is the length of the shortest path between them. The local resolving neighbourhood (LRN) set for any edge $e = ab$ of N is a set of all those vertices whose distance varies from the end vertices a and b of the edge e. A real-valued function Φ from $V(N)$ to $[0, 1]$ is called a local resolving function (LRF) if the sum of all the labels of the elements of each LRN set remains greater or equal to 1. Thus, the local fractional metric dimension (LFMD) of a connected network N is $\text{dim}_{lf}(N) = \min |\Phi|: \Phi$ is minimal LRF of N. In this study, LFMD of various types of sunlet-related networks such as sunlet network (S_m), middle sunlet network (MS_m), and total sunlet network (TS_m) are studied in the form of exact values and sharp bounds under certain conditions. Furthermore, the unboundedness and boundedness of all the obtained results of LFMD of the sunlet networks are also checked.

1. Introduction

The problem to find the location number for the connected networks was firstly introduced by Slater in 1975 [1]. Later on, Melter and Harary also studied the concept of location number in networking theory, but they used different term called by metric dimension (MD) [2]. It has been investigated that computing MD is an NP-hard problem [3]. The concept of MD being a graph theoretic parameter is a useful tool in the discovery and verification of the networks [4], allocation of different destinations to robots [5], investigation of percolation in a hierarchical lattice [6], and configuration of the chemical compounds in chemistry [7].

Chartrand et al. established the sharp bounds of MD for the unicyclic networks; they proved that MD of a connected network N is 1 if and only if N is path network. Furthermore, under certain conditions, by using the concept of MD on the integer programming problem (IPP), they also found the integral solutions [8]. For the study of the various computational results of MD for the different connected networks such as Toeplitz, Mobius ladder, lexicographic product of networks, gear networks, and barycentric subdivision of Cayley networks, we refer to [9–13]. In addition, for the study of constant MD of some families of regular, cycle, and prism-related networks and unbounded MD of nanotubes and convex polytopes, see [6, 14–18].

Later on, Currie and Ollerman defined the fractional version of MD to study the nonintegral solution of IPP [19]. Saddiqi and Imran obtained optimal solution of cretin IPP by using this new fractional technique in the field of metric-based dimensions [17]. Arumugam and Matthew formally introduced the term fractional metric dimension (FMD) in graph theory, and they found exact values of FMD for certain connected networks. Moreover, they also characterized all the networks with FMD equal to half of their order. Feng et al. developed computational criteria to compute FMD of the vertex transitive networks in its general form [20]. Recently, Khalid et al. established sharp bounds...
of FMD for the connected networks [21]. To study the latest developed results on FMD for trees, unicyclic, permutation networks, and product networks obtained under the operation of product (hierarchical, comb, corona, and lexicographic), see [22–26].

The new invariant of MD called by local FMD is defined by Aisyah et al. [27]. Liu et al. computed upper bounds of LFMD for the symmetric and planar networks [28]. For all the connected networks, Javaid et al. established upper bound and improved the lower bound of nonbipartite networks from unity. They also characterized bipartite networks with LFMD as unity [29, 30]. Moreover, Moshin et al. studied LFMD of generalized Petersen networks [31–34]. For more study, we refer to in [34–36].

In this note, our main objective is to compute the sharp bounds and exact values of LFMD for the different generalized sunlet networks such as network (Sm), middle sunlet network (MSm), and total sunlet network (TSm), where \(m \) is some integral value. In addition, the boundedness and unboundedness of all the obtained results are also investigated. The remaining study is organised as follows. Section 2 contains basic notions. Section 3 has main findings involving LRN sets of LFMD. Section 4 contains the conclusion of this paper.

2. Preliminaries

For vertex set \(V(N) \) and edge set \(E(N) \subset (V(N) \times V(N)) \), the network \(N = (V(N), E(N)) \) is constructed as a simple and connected network. For \(u, v \in V(N) \), the distance between \(u \) and \(v \) denoted by \(d(u, v) \) is length (number of edges) of the shortest path between them. If each pair of vertices of \(N \) is expressed by some path, then \(N \) is called connected network. For the further study of preliminary concepts of the subject graph theory, we refer [35].

A vertex \(v \in V(N) \) resolves a pair \((u, z)\) of vertices in \(N \) if \(d(u, v) \neq d(u, z) \). Let \(A = \{v_1, v_2, v_3, \ldots, v_m\} \subseteq V(N) \) and \(u \in V(N) \); then, \(m \)-tuple representation of \(u \) with respect to \(A \) is \(r(u|A) = (r(u, v_1), r(u, v_2), r(u, v_3), \ldots, r(u, v_m)) \). If the distinct vertices of \(N \) have different representations with respect to \(A \), then \(A \) is called a resolving set of \(N \). Thus, MD of \(N \) can be defined by

\[
\text{dim}_L(N) = \min |A|, \quad (1)
\]

where \(A \) is the resolving set of \(N \).

Let \(uv \in V(N) \); then, local resolving neighbourhood (LRN) is defined as

\[
\text{LR'}(uv) = \{z \in V(N) : d(u, z) \neq d(v, z)\}. \quad (2)
\]

A local resolving function (LRF) is a real-valued function \(\Phi : V(N) \rightarrow [0, 1] \) such that \(\Phi(\text{LR'}(uv)) \geq 1 \) for each \(\text{LR'}(uv) \) of \(N \), where \(\Phi(\text{LR'}(uv)) = \sum_{x \in \text{LR'}(uv)} \Phi(x) \). A LRF \(\Phi \) of \(N \) is called minimal if there exists some other function \(\Phi' : V(N) \rightarrow [0, 1] \) such that \(\Phi' \leq \Phi \) and \(\Phi(u) \neq \Phi'(u) \) for at least one \(u \in V(N) \) that is not LRF of \(N \). Thus, local fractional metric dimension (LFMD) is defined as follows:

\[
\text{dim}_f(N) = \min |\Phi|, \quad (3)
\]

where \(|\Phi| = \sum_{v \in V(N)} \Phi(v) \).

By using the technique used in [36], now, we define sunlet network \((S_m) \), middle sunlet network \((MS_m) \), and total sunlet network \((TS_m) \) as follows.

Let \(S_m \) be a sunlet network with order and size \(2m \), respectively, where \(m \geq 3 \). It consists of the inner cycle of order \(m \), having inner vertices \(\{v_i : 1 \leq i \leq m\} \), pendant vertices \(\{u_i : 1 \leq i \leq m\} \), and edge set of \(E(S_m) = \{v_i, u_i, v_{i+1} : 1 \leq i \leq m\} \), see Figure 1. Middle sunlet network is obtained from sunlet network \(S_m \) of order \(4m \) and size \(5m \) as \(V(MS_m) = \{v_i, u_i, u_{i+1}, v_{i+1} : 1 \leq i \leq m\} \) and \(E(MS_m) = \{u_iu_j, v_iv_{i+1}, v_{i+1}v_{i+2}u_{i+1} : 1 \leq i \leq m\} \); for details, see Figure 2. The sunlet network \(T_{2m} \) is obtained from middle sunlet network \(MS_m \) by adding new edges \(\{u_i, v_i, u_{i+1}, v_{i+1} : 1 \leq i \leq m\} \) with order \(4m \) and size \(6m \), respectively; for further details, see Figure 3. Now, we define some important results which will be frequently used in the main results as follows.

Theorem 1 (see [29]). For a connected network \(N \) and LRN set \(\text{LR}(e) \) of the edge of \(e \) of \(N \) if \(|\text{LR}(e) \cap A| \geq \gamma, \forall e \in E(N) \),

\[
1 \leq \text{dim}_f(N) \leq \frac{|A|}{\gamma}, \quad (4)
\]

where \(A = \cup \{ \text{LR}(e) : |\text{LR}(e)| = \gamma \} \), \(\gamma = \min \{|\text{LR}(e) : e \in E(N)\} \), and \(2 \leq \beta \leq |V(N)| \).

Theorem 2 (see [30]). For a connected network \(N \) and LRN set \(\text{LR}(e) \) of the edge of \(e \) of \(N \), we have

\[
\frac{|V(N)|}{\beta} \leq \text{dim}_f(N), \quad (5)
\]

where \(\beta = \max \{|\text{LR}(e) : e \in E(N)\} \) and \(2 \leq \beta \leq |V(N)| \).

Corollary 1 (see [30]). For a connected network \(N \), \(\text{LR}(e) \) as LRN of \(e \in E(N) \), \(\delta = \max \{|\text{LR}(e) : e \in E(N)\} \), \(\gamma = \min \{|\text{LR}(e) : e \in E(N)\} \), and \(X = \cup \{ \text{LR}(e) : |\text{LR}(e)| = \gamma \} \). If \(\gamma = \delta \) and \(X = V(N) \), then

\[
\text{dim}_f(N) = \frac{|V(N)|}{\delta}. \quad (6)
\]

Theorem 3 (see [29]). If \(N \) is a connected bipartite network, then \(\text{dim}_f(N) = 1 \).

3. Main Result

In this particular section, we computed LRN sets of generalized sunlet networks and LFMD in the form of exact values and sharp bounds.

3.1. LFMD of Sunlet Network

The resolving neighbourhood sets for each pair of adjacent vertices are classified.

Lemma 1. Let \(S_m \) with \(m \geq 3 \) and \(m \equiv 1 \pmod{2} \) be a sunlet network. Then, for \(1 \leq i \leq m \), we have
Figure 1: Sunlet network S_m.

Figure 2: Middle sunlet network MS_m.

Figure 3: Total sunlet network TS_m.
Theorem 4. Let S_m be a sunlet network, where $m \geq 3$ and $m \equiv 1 \pmod{2}$. Then,

$$1 < \dim_f(S_m) \leq \frac{m}{m-1}.$$ \hspace{1cm} (9)

Proof. Assume that u_i pendent and v_i are internal vertices, respectively, of S_m and $v_{i+1} \equiv v_1$, where $1 \leq i \leq m$.

(a) Since $|R_i'(v_i v_{i+1})| = |R_i(v_i v_{i+1})| = |V(S_m) - \{v_3, u_3\}|$, this implies that $|R_i'(v_i v_{i+1})| = m - 2$ and $|R_i'(u_i v_i)| = |V(S_m)| = 2m$, where $1 \leq i \leq m$. Furthermore, $\cup_{i=1}^{m} R_i'(v_i v_{i+1}) = |R_i'(v_i v_{i+1})|$.

(b) $|R_i'(u_i v_i) \cup \cup_{i=1}^{m} R_i'(v_i v_{i+1})| = \cup_{i=1}^{m} R_i'(v_i v_{i+1})$.

\hfill \Box

Theorem 5. Let S_m be a sunlet network, where $m \geq 4$ and $m \equiv 0 \pmod{2}$. Then,

$$\dim_f(S_m) = 1.$$ \hspace{1cm} (10)

Proof. Since no cycle in S_m is of odd length, therefore, S_m is a bipartite network, where $m \equiv 0 \pmod{2}$; hence, by Theorem 3, $\dim_f(S_m) = 1$.

3.2. LFMD of Middle Sunlet Network. The LRN sets for each pair of adjacent vertices are classified.

Lemma 2. Let MS_m with $m \geq 3$ be a middle sunlet network. Then, for $1 \leq i \leq m$,

(a) $|R_i'(u_i v_i)| = 3$, $|R_i'(v_i u_i)| = 4m$, and $|\cup_{i=1}^{m} R_i'(v_i v_i)|$ \hspace{1cm} (11)

(b) $|R_i'(v_i u_i)| \leq |R_j'(y)|$ and $|R_j'(y) \cap \cup_{i=1}^{m} R_i'(v_i v_i)| \geq \dim_f(S_m)$.

Proof. Assume that u_i pendent and u'_i, v_i and v'_i are internal vertices, respectively, of MS_m, where $1 \leq i \leq m$.

(a) Since $|R_i'(u_i v_i)| = |\{u_i, u'_i, v_i, v'_i\}|$, this implies that $|R_i'(u_i v_i)| = 3$ and $|R_j'(v_i u_i)| = |V(MS_m)| = 4m$, where $1 \leq i \leq m$. Furthermore, $|R_j'(u_i v_i)| = 3m$.

(b) Consider $R_i'(u_i v_i) = \{v_{i+1}, v_{i+2}, \ldots, v_{m-2}, v_{m-1}, u_{i+1}, u_{i+2}, \ldots, u_{m-2}, u_{m-1}\}$, $|R_i'(v_i u_i)| = |V(MS_m)| = 4m$, where $1 \leq i \leq m$. Furthermore, $|R_j'(u_i v_i)| = 3m$.

The cardinalities of LRN sets other than $R_i'(u_i v_i)$ are classified in Table 1.

It is clear from Table 1 that $|R_i'(u_i v_i)| \leq |R_j'(y)|$ and $|R_i'(y) \cap \cup_{i=1}^{m} R_i'(v_i v_i)| \geq \dim_f(S_m)$.

Theorem 6. Let MS_m be a middle sunlet network, where $m \geq 3$.

Then,

$$1 < \dim_f(MS_m) \leq m.$$ \hspace{1cm} (11)

Proof. To prove the result, we have the following cases.

Case 3. For $m = 3$, the LRN sets of MS_m are
Furthermore, define a constant function \(h \), the function \(LRN \) Set Cardinality.

Proof

Assume that \(u_1 \) pendent and \(u_1', v \), \(v_1' \), and \(v \) are other vertices, respectively, of \(T S_m \), where \(1 \leq i \leq m \).

(a) Since \(R' (u_1') = [u_1', v] \), this implies that \(R' (u_1v_1v_1') = V (T S_m) \). Hence, \(| \cup_{i=1}^{m} R' (u_1v_1v_1') | = 4m - 1 \), where \(1 \leq i \leq m \).

(b) Consider \(R' (v_1v_1') = [v_1v_1', v_1v_2', \ldots, v_1v_m', \ldots, v_mv_1', \ldots, v_1v'] \), \(\cup_{i=1}^{m} R' (u_1v_1v_1') \) \(V (T S_m) \). Therefore, \(| \cup_{i=1}^{m} R' (u_1v_1v_1') | = 2m \).

3.3. LFMD of Total Sunlet Network

Lemma 3

Let \(T S_m \) with \(m \geq 3 \) be a total sunlet network. Then, for \(1 \leq i \leq m \), we have

\[(a) R' (v_1u_i'v_i) = 2, \quad R' (u_1u_i'v_i) = 4m - 1, \quad \text{and} \quad | \cup_{i=1}^{m} R' (v_1u_i'v_i) | = 2m.\]

\[(b) R' (v_1u_i'v_i) \leq | R' (v_1v_i) | \quad \text{and} \quad | R' (v_1v_i) | \cap \cup_{i=1}^{m} R' (u_1v_1v_1') \geq | R' (u_1v_1v_1') | \forall y \in E (M S_m) .\]

Proof. Assume that \(u_1 \) pendent and \(u_1, v_1' \), and \(v_1 \) are other vertices, respectively, of \(T S_m \), where \(1 \leq i \leq m \).

(a) Since \(R' (u_1v_1v_1') = [u_1', v_1] \), this implies that \(R' (u_1v_1v_1') = 2 \) and \(R' (u_1u_i'v_i) = V (T S_m) \). Therefore, \(| \cup_{i=1}^{m} R' (u_1v_1v_1') | = 4m - 1 \), where \(1 \leq i \leq m \).

(b) Consider \(R' (v_1u_i'v_i) = [v_1v_1', v_1v_2', \ldots, v_1v_m', \ldots, v_mv_1', \ldots, v_1v'] \), \(\cup_{i=1}^{m} R' (u_1v_1v_1') \) \(V (T S_m) \). Therefore, \(| \cup_{i=1}^{m} R' (u_1v_1v_1') | = 2m \).

3.4. LFMD of Generalized Sunlet Network

Theorem 7

Let \(T S_m \) be a total sunlet network, where \(m \geq 3 \). Then,

\[\dim_{f} (T S_m) = m. \]

Proof. To prove the result, we have the following cases. \(\square \)

Case 5

For \(m = 3 \), the LRN sets of \(T S_m \) are

\[R'_1 = R' (u_1v_1v_1') = [u_1', v_1] \]
\[R'_2 = R' (u_1v_1v_1') = [u_2', v_2]. \]
Table 2: Cardinality of each LRN set.

<table>
<thead>
<tr>
<th>LRN Set</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{R}'(v_i'v_j')$</td>
<td>$2m > 2$</td>
</tr>
<tr>
<td>$\mathcal{R}'(v_i'v_j')$</td>
<td>$2m > 2$</td>
</tr>
<tr>
<td>$\mathcal{R}'(u_i'v_j')$</td>
<td>$2m + 1 > 2$</td>
</tr>
<tr>
<td>$\mathcal{R}'(u_i'v_j')$</td>
<td>$2m > 2$</td>
</tr>
</tbody>
</table>

Table 3: Bounded and unboundedness of LFMDs.

<table>
<thead>
<tr>
<th>Network</th>
<th>LFMDs</th>
<th>Upper bound of LFMD</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_m</td>
<td>$1 < \dim_{lf}(S_m) \leq \frac{m}{m-1}$</td>
<td>1</td>
<td>$\lim_{m \to \infty} \left(\frac{m}{m-1} \right) = 1.5$ Bounded</td>
</tr>
<tr>
<td>MS_m</td>
<td>$1 < \dim_{lf}(MS_m) \leq m$</td>
<td>1</td>
<td>$\lim_{m \to \infty} (m) = \infty$ Unbounded</td>
</tr>
</tbody>
</table>

4. Conclusion

In this article, we studied the LFMD of some families generalized sunlet networks and formed bounds of LFMDs and computed the exact values of LFMD in some cases as well.

Exact values of LFMD is attained by total sunlet network, $TS_m = m$.

Bounded and unboundedness of LFMDs are illustrated through Table 3.

Data Availability

The data used to support the findings of this study are included within this article and can be obtained from the corresponding author upon request for more details on the data.

Conflicts of Interest

The authors declare no conflicts of interest regarding this article.

References