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Aiming at the problem of multiobjective transportation decision-making, a fuzzy compromise method with an improved S-type
membership function is proposed..is method not only considers a single objective and evaluates it marginally but also evaluates
the overall objective as a whole. First of all, a multiobjective transportation decision-making model is established. .en, each
objective function is mapped to a function on the interval [0,1] through the S-typemembership function, thereby transforming the
multiobjective transportation linear programming model into a multiobjective transportation fuzzy compromise programming
model, and its satisfaction is expressed by the global utility function. Finally, through two examples, the results of the example
algorithm are compared with the results in the literature, highlighting the superiority of the method. .e experimental results
show that in the multiobjective transportation decision-making problem, the fuzzy compromise method of the S-type mem-
bership function has better flexibility and effectiveness.

1. Introduction

.e single-objective linear programming decision-making
problem is a traditional transportation problem. Many
scholars have studied it and have formed a large number of
effective solving algorithms. However, in actual trans-
portation problems, multiobjective functions are generally
considered such as the average delivery time of goods, the
lowest cost, and the degree of damage to the product. .e
multiobjective transportation decision-making problem is
not to simply pursue the optimization of a certain goal, but
to comprehensively weigh the optimization problem of
multiple goals. Zimmermann [1] first proposed the maximin
method which was used to solve the fuzzy multiobjective
linear programming problem. Current and Min [2, 3]
reviewed and studied the multiobjective design of trans-
portation networks. Climaco et al. [4] and Ringuest and
Rinks [5] developed and studied interactive algorithms for
multiobjective transportation decision-making problems.
İlker Kolak et al. [6] studied the two-level multiobjective
transportation optimization model with a sustainability
perspective for intelligent transportation decision-making

problems. Bai et al. [7] aimed at the decision-making
problem of transportation and evaluated the vehicle per-
formance and economic and environmental standards of the
transportation fleet from the overall framework of sus-
tainable development. Luo [8] used the multiobjective mixed
integer programming method to study the multiobjective
problem of transportation time, transportation cost, and
transportation safety performance for the multiobjective
problem of multimodal transportation route selection. Dong
andWan [9–11] studied the trapezoidal fuzzy multiobjective
linear programming problem and its application in trans-
portation problems, project portfolio selection, and other
problems. Mateja š and Perić [12] proposed a new iterative
method for multiobjective linear programming based on the
principle of game theory. However, most of the above
methods use linear membership functions to express the
satisfaction of objective function. Although the calculation is
simple, the solution is unstable, and the satisfaction of the
global objective function is not evaluated. Based on this, this
paper improves the logistics function (the image is an “S”
shape) and proposes a fuzzy compromise programming
method to improve the S-shaped membership function. At
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the same time, the global evaluation parameter is introduced
to evaluate the global goal satisfaction..e S-shaped curve is
chosen because although it is not as strict as the line type, it is
flexible enough to fully describe the fuzzy parameters. .e
proposed fuzzy compromise programming method com-
prehensively contemplates the overall objective by marginal
evaluation of a single objective and overall evaluation of all
objectives. .e examples show the effectiveness and con-
vergence of method. .e contributions of this paper are as
follows:

(1) .is paper improves the “logistic function,” intro-
duces it into a multiobjective transportation deci-
sion-making model, and uses it to express
membership function.

(2) In the past, most of the multiobjective functions only
considered the importance of a single-objective
function and did not consider the inherent corre-
lation between the objective functions. However, this
paper uses the global utility function of improved
S-typemembership degree which is used to represent
the total satisfaction degree of decision-makers,
which not only considers the evaluation of a single
objective but also considers the internal correlation
between the objective functions. .erefore, it has
better application prospects.

.e construction of this paper is as follows: Section 2
introduces the multiobjective transportation decision-
making problem and briefly introduces nondominated so-
lutions and optimal compromise solutions. Section 3 pro-
poses a fuzzy compromise programming method based on
an improved S-type membership function. Section 4 gives
two examples in reference. Section 5 gives the conclusion of
this paper.

2. Multiobjective Transportation Decision-
Making Problem

2.1. Model Establishment. .e multiobjective transportation
decision-making problem with m starting points and n

ending point is considered. Assume that the total supply at
the starting point is equal to the total demand at the des-
tination. Now, it is necessary to transport the same product
from each starting point to each destination, and at the same
time, make the corresponding penalty cost (transportation
cost, delivery time, delivered transportation quantity,
product damage degree, etc.) lowest. Define the following
description symbols:

(i) i indicates the starting point i indicator, namely,
i ∈ 1, 2, . . . , m{ }.

(ii) j indicates the endpoint j indicator, namely,
j ∈ 1, 2, . . . , n{ }.

(iii) q represents the objective function q indicator,
namely, q ∈ 1, 2, . . . , Q{ }.

(iv) c
q

ij indicates the unit penalty cost of the q − th
objective function, starting point i transport to the
destination j.

(v) xij indicates the number of products from the
starting point i transport to the destinationj.

(vi) ai indicates the total number of products supplied
from starting point i.

(vii) bi indicates the total number of products required
at the destination j.

According to the above-agreed symbols, the multi-
objective transportation decision-making problem can be
modeled as follows:

Minfq � 
m

i�1


n

i�1
c

q
ijxij, c

q
ij ≥ 0, q � 1, . . . , Q, (1)

s.t.



m

i�1
xij � bi, ∀j ∈ 1, . . . , n{ },



n

j�1
xij � ai, ∀i ∈ 1, . . . , m{ },



m

i�1
ai � 

n

j�1
bj,

xij ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

In the multiobjective transportation models (1) and (2),
(1) represents the Q objective functions and (2) represents
constraint condition. .e model has m × n variables, and
m + nconstraint equations (1) and (2) are single-objective
balanced transportation decision-making problems when
q � 1.

2.2. Nondominated Solution Set. In (1) and (2), if there is a
feasible solution x∗ij ∈ X, then all other feasible solutions are
xij ∈ X, and it conforms to the following inequality:



m

i�



n

j�

c
q
ijx
∗
ij ≤ 

m

i�



n

j�

c
q
ijxij, q ∈ 1, 2, . . . , Q{ }. (3)

At the same time, at least one inequality is strictly
established, namely,



m

i�1


n

j�1
c

q
ijx
∗
ij < 

m

i�1


n

j�1
c

q
ijxij. (4)

.en, x∗ij is called the nondominated solution, and the
set of all nondominated solutions is called the non-
dominated solution set.

2.3. Optimal Compromise Solution. In most cases, due to
conflicts among various objective functions, decision-
makers choose to assign different weights to each dif-
ferent objective according to their actual preferences to
obtain the optimal solution. According to the definition
of a nondominated solution, it is generally accepted
that the optimal compromise solution must be a non-
dominated solution which is the optimal solution in a
sense.
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3. Multiobjective Transportation Decision
Model Solution

.e above model contains multiobjective functions, and the
unit of the dimension of the objective function is sometimes
inconsistent. It is not advisable to simply use linear weighting to
obtain the value, and at the same time, it cannot achieve all the
optimal values of objective functions (the objective functions of
this paper are the minimum value), which is usually not
achieved. .is paper attempts to find an optimal compromise
solution. In this optimal compromise solution, the global
evaluation of the comprehensive membership degree of all
objectives is the largest, which means that global satisfaction is
the largest. .erefore, to solve this model, a fuzzy compromise
programming method with an improved S-type membership
function is proposed, and the multiobjective linear program-
ming model is transformed into a multiobjective nonlinear
fuzzy compromise programming model. In this model, the
global utility function of the S-type membership is used to
represent the global satisfaction of decision-makers. .is paper
uses S-curve because it is not as strict as linear form, but it has
strong flexibility and high robustness, and can fully describe the
fuzzy parameter [13–15].

3.1. Improved S-Type Membership Function. Create a map-
ping, there is φx: X⟶ [0, 1], and among them,
x ∈ [L, U](L<U), φx ∈ [0, 1]. For any value of x, it has a
unique number in the interval [0, 1].X⟶ [0, 1] determines
a fuzzy subset φx of X, and φx is called the membership
function of x. .e target decision rule is to select the solution
with the highest membership in the decision set. In this paper,
the improved logistic function is used as the membership
function [16, 17]..e image of the improved logistic function is
like an “S” shape, so it is called the improved S-typemembership
function. Its membership function is shown in (3) which is as
follows:where φx is the S-type membership function, L rep-
resents the minimum value of x, and U represents the maxi-
mum value of x. K is a positive number which determines the
shape of themembership function, and the larger the value ofK,
the smaller the fuzziness is..emembership function values are
defined as φ ∈ [0.001, 0.999], and the value of x changes in the
interval [L, U]. .is value interval is selected because the
probability of taking L and M values is very low in the mul-
tiobjective transportation decision-making problem.

φx �

1, x<L,

0.999, x � L,

B

1 + Ce
K[(x− L)/(U−L)]

, x ∈ (L, U),

0.001, x � U,

0, x>U,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

According to the definition of function limit, if x⟶ L,
then

B � 0.999(1 + C). (6)

If x⟶ U, then

B � 0.001 1 + Ce
K

 . (7)

When x � (L + U)/2 and φ(x) � 0.5 (this value is de-
termined experimentally according to the actual situation,
and 0.5 is taken in this paper), then

B � 0.5 1 + Ce
0.5K

 , (8)

Simultaneous equations (6)–(8) can be obtained:

B � 1, C � 0.001, withK � 13.813. (9)

.erefore, the improved S-type membership function
image is shown in Figure 1.

3.2. S-Type Membership Fuzzy Compromise Programming
Method. In (1), for a single-objective function
fq(q � 1, . . . , Q), the optimal value is obtained which is
denoted as Lq. If x∗q is the solution of a single-objective
function fq(x), so

Lq � fq x
∗
q  � minfq(x), q ∈ 1, 2, . . . , Q{ }. (10)

Each objective function fq can form a pay-off matrix
with Q rows and Q columns under x∗q , and the pay-
off matrix can be expressed as follows: Table 1

.rough the pay-off matrix, the maximum value Uq

and minimum value Lq of each objective function fq can be
obtained:

Lq � fq x
∗
q , Uq � max fq x

∗
1( , fq x

∗
2( , . . . , fq x

∗
Q  

· (q � 1, . . . , Q).

(11)

.e S-type membership function is used to express the
membership degree of the objective function
fq(q � 1, . . . , Q), namely,

ϕf1
�

1, f1 <L1,

0.999, f1 � L1,

1

1 + 10−3
× e

13.813× f1− L1( )/ U1−L1( )[ ]
, f1 ∈ L1, U1( ,

0.001, f1 � U1,

0, f1 >U1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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ϕf2
�

1, f2 <L2,

0.999, f2 � L2,

1

1 + 10− 3
× e

13.813× f2− L2( )/ U2−L2( )[ ]
, f2 ∈ L2, U2( ,

0.001, f2 � U2,

0, f2 >U2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · · · · · · · · · · · · · · · · ·

ϕfQ
�

1, fQ <LQ,

0.999, fQ � LQ,

1

1 + 10− 3
× e

13.813× fQ− LQ( )/ UQ−LQ( )[ ]
, fQ ∈ LQ, UQ ,

0.001, fQ � UQ,

0, fQ >UQ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

.e decision-makers evaluate the importance of each
objective function and assign a weight wq to each objective
function fq and meet the normalization condition, and then
we have

w � w1, . . . , wq, . . . , wQ , wq ≥ 0, and 

Q

q�1
wq � 1.

(13)

According to the weight proportion and Φfq
, a multi-

objective transportation fuzzy compromise programming
model with an improved S-type membership function is
established:

M
α
w ϕf1

, . . . , ϕfQ
  � Max 

Q

q�1
wqϕ

α
fq

⎛⎝ ⎞⎠

1/α

(0<|α|<∞),

s.t



m

i�1
xij � bi, ∀j ∈ 1, . . . , n{ },



n

j�1
xij � ai, ∀i ∈ 1, . . . , m{ },



m

i�1
ai � 

n

j�1
bj,

xij ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

(14) represents the global utility function, which is the
satisfaction degree of the overall objective. α represents
the global evaluation parameter. Generally, the value of
α was taken as 1 in the literature, and although the
feasible solution of each objective function and the im-
portance of each objective function are considered, the
internal correlation between each objective function is
not considered [18–20]. (14) considers not only the
satisfaction degree of a single objective but also the in-
ternal correlation between each objective. In other
words, considering the multiobjective optimization
problem from a global perspective, it has greater practical
value. Here are some forms of global utility functions,
where

(1) when α⟶ 0, M0
w(ϕf1

, . . . , ϕfQ
) � 

Q
q�1 (ϕfq

)wq ,
(2) when α � 1, M1

w(φf1
, . . . , ϕfQ

) � 
Q
q�1 wqϕfq

,
(3) when α � 2, M2

w(ϕf1
, . . . ,ϕfQ

) � (
Q
q�1 wqϕfq

)1/2,
(4) when α⟶ +∞ and w1 � w2 � · · · � wQ � 1/Q,

M+∞
w (ϕf1

, . . . ,ϕfQ
) � Max

1≤q≤Q
ϕfq

 , and
(5) whenα⟶ −∞ and w1 � w2 � · · · � wQ � 1/Q,

M−∞
w (ϕf1

, . . . ,ϕfQ
) � Min

1≤q≤Q
ϕfq

 .

M−∞
w (ϕf1

, . . . , ϕfQ
) is often used in multiobjective

decision-making problems in engineering field [21–23],
so it is mainly discussed below. Let λq � φfq

λ � min
1≤q≤Q

λq ,

q ∈ 1, 2, . . . , Q{ }. In this case, the fuzzy compromise
programming model of multiobjective transportation,
i.e., (14), is equivalent to the following model:

O

2
L+UL U

x

1

0.999

0.5

0.001

ϕ (x)

Figure 1: S-type membership function image.

Table 1: Pay-off matrix of objective functions.

x∗1 x∗2 . . . x∗Q

f1 f1(x∗1 ) f1(x∗2 ) . . . f1(x∗Q)

f2 f2(x∗1 ) f2(x∗2 ) . . . f2(x∗Q)

. . . . . . . . . . . . . . .

fQ fQ(x∗1 ) fQ(x∗2 ) . . . fQ(x∗Q)
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Max λ,

s.t.

λ≤
1

1 + 10−3
× e

13.813× fq−Lq( / Uq−Lq(  
, q ∈ 1, 2, . . . , Q{ }



m

i�1
xij � bi, ∀j ∈ 1, . . . , n{ },



n

j�1
xij � ai, ∀i ∈ 1, . . . , m{ },



m

i�1
ai � 

n

j�1
bj,

xij ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Among them,

λ≤
1

1 + 10−3
× e

13.813× fq− Lq( / Uq−Lq(  

⇒ λ + 10−3
× λe

13.813× fq− Lq( / Uq−Lq(   ≤ 1,

⇒ 10−3
× λe

13.813× fq− Lq( / Uq−Lq(   ≤ 1 − λ

⇒ e
13.813× fq− Lq( / Uq−Lq(   ≤

(1 − λ)

10−3
× λ 

⇒ 13.813 ×
fq − Lq 

Uq − Lq 
⎡⎢⎣ ⎤⎥⎦≤ In

(1 − λ)

10−3
× λ 

⇒ 13.813 ×
fq − Lq 

Uq − Lq 
⎡⎢⎣ ⎤⎥⎦≤ In

(1 − λ)

λ
− In 10−3

⇒ 13.813 ×
fq − Lq 

Uq − Lq 
⎡⎢⎣ ⎤⎥⎦ + In 10−3 ≤ In

(1 − λ)

λ
.

(16)

Let η � In(1 − λ)/λ, then (15) can be simplified as
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Min η,

s.t

η≥ 13.813 ×
fq − Lq 

Uq − Lq 
⎡⎢⎣ ⎤⎥⎦ + In 10−3

, q ∈ 1, 2, . . . , Q{ },



m

i�1
xij � bi, ∀j ∈ 1, . . . , n{ },



n

j�1
xij � ai, ∀i ∈ 1, . . . , m{ },



m

i�1
ai � 

n

j�1
bj,

xij ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

3.3. 4e Algorithm.

(i) Step 1: for a single-objective function

fq(q � 1, . . . , Q), the optimal value Lq and solu-
tion x∗q of the objective function are calculated.

(ii) Step 2: according to the optimal solution (x∗q ) of the
single-objective function in Step 1, the pay-off
matrix is obtained.

(iii) Step 3: according to the pay-off matrix in Step 2, the
maximum value Uq and minimum value Lq (q �

1, . . . , Q) of each objective function are determined.
(iii) Step 4: according to Uq and Lqof Step 3, the S-type

membership function corresponding to each ob-
jective function φfq

(q � 1, . . . , Q) is determined.
(iv) Step 5: according to the preference of decision-

makers, the weight proportion value ω and the
global utility factor α are reasonably determined.
.e optimal solution x∗ is determined by using
MATLAB software or an intelligent optimization
algorithm, and x∗ is the optimal compromise so-
lution of the original multiobjective transportation
decision-making problem.

4. Case Analysis

Example 1. In order to verify the effectiveness of the
method, the multiobjective transportation decision model in
reference [21, 22] is considered:

Minf1 � 16x11 + 19x12 + 12x13 + 22x21 + 13x22 + 19x23 + 14x31 + 28x32 + 8x33,

Minf2 � 9x11 + 14x12 + 12x13 + 16x21 + 10x22 + 14x23 + 8x31 + 20x32 + 6x33,

s.t.



3

j�1
x1j � 14, 

3

j�1
x2j � 16, 

3

j�1
x3j � 12,



3

i�1
xi1 � 10, 

3

i�1
xi2 � 15, 

3

i�1
xi3 � 17,

xij ≥ 0, i � 1, 2, 3; j � 1, 2, 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

(i) Step 1: for the objective function f1, L1 � 517,

x
•
1 �

x11 � 9, x13 � 5, x21 � 1, x22 � 15, x33 � 12,

x12 � x23 � x31 � x32 � 0.


(19)

(ii) For the objective function f2, L2 � 374,

x
•
2 �

x11 � 10, x13 � 4, x22 � 15, x23 � 1, x33 � 12,

x12 � x21 � x31 � x32 � 0.


(20)

(iii) Step 2: According to Table 1 and step 1 in Example
1, the pay-off matrix of f1 and f2 can be obtained,
and the results are shown in Table 2.

(iv) Step 3: according to the pay-off matrix in Step 2,
get the maximum and minimum values:

L1 � 517,

U1 � 518;

L2 � 374,

U2 � 379.

(21)

(v) Step 4: according to the results of Step 3, the S-type
membership function expressions of the two ob-
jective functions are as follows:
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φf1
�

1, f1 < 517,

0.999, f1 � 517,

1

1 + 10− 3
× e

13.813× f1− L1( )/ U1−L1( )[ ]
, f1 ∈ (517, 518),

0.001, f1 � 518,

0 f1 > 518,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φf2
�

1, f2 < 374,

0.999, f2 � 374,

1

1 + 10− 3
× e

13.813× f2− L2( )/ U2−L2( )[ ]
, f2 ∈ (374, 379),

0.001, f2 � 379,

0, f2 > 379.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

(vi) Step 5: in order to compare with the calculation
results of reference [21, 22], the global evaluation
parameter of this example is α⟶ −∞ and the
weight vector is w1 � w2 � 1/2, and then according

to (15) and (17), (18) is transformed into the fol-
lowing fuzzy compromise programming model:

Min η,

s.t

η≥ 13.813 ×
fq − Lq 

Uq − Lq 
⎡⎢⎣ ⎤⎥⎦ + In10− 3

, q � 1, 2,



3

j�1
x1j � 14, 

3

j�1
x2j � 16, 

3

j�1
x3j � 12,



3

i�1
xi1 � 10, 

3

i�1
xi2 � 15, 

3

i�1
xi3 � 17,

xij ≥ 0, i � 1, 2, 3; j � 1, 2, 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

(vii) where λq � φfq
(q � 1, 2), λ � min

1≤q≤2
λq , and

η � In (1 − λ)/λ. .e optimal value
(f1, f2) � (517.5, 376.5) is obtained by MATLAB
software:

x
•

�
x11 � 9.5, x13 � 4, x21 � 0.5, x22 � 15, x23 � 0.5, x33 � 12,

x12 � x31 � x32 � 0.


(24)

(viii) λ � 0.5, and η � 0. .e optimal value is completely
consistent with the results of the literature [21, 22],
which shows the effectiveness of the improved
S-type membership function method.

Example 2. To verify the effectiveness of the method,
consider the multiobjective transportation decisionmodel in
reference [23]:

Minf1 � x11 + 2x12 + 7x13 + 7x14 + x21 + 9x22 + 3x23 + 4x24 + 8x31 + 9x32 + 4x33 + 6x34,

Minf2 � 4x11 + 4x12 + 3x13 + 3x14 + 5x21 + 8x22 + 9x23 + 10x24 + 6x31 + 2x32 + 5x33 + x34,

s.t.



4

j�1
x1j � 8, 

4

j�1
x2j � 19, 

4

j�1
x3j � 17,



3

i�1
xi1 � 11, 

3

i�1
xi2 � 3, 

3

i�1
xi3 � 14, 

3

i�1
xi4 � 16,

xij ≥ 0, i � 1, 2, 3; j � 1, 2, 3, 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

(i) Step 1: for the objective function f1, L1 � 143,

x
•
1 �

x11 � 5, x12 � 3, x21 � 6,

x24 � 13, x33 � 14, x34 � 3,

x22 � x32 � x31 � x13 � x23 � x14 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(26)

(ii) For the objective function f2, L2 � 167,

x
•
2 �

x13 � 8, x21 � 11, x22 � 2,

x23 � 6, x32 � 1, x34 � 16,

x11 � x12 � x31 � x33 � x14 � x24 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(27)

Table 2: Pay-off matrix of f1 and f2 of Example 1.

x∗1 x∗2

f1 517 518
f2 379 374
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(iii) Step 2: According to Table 1 and step 1 in Example
2, the pay-off matrix of f1 and f2 can be obtained,
and the results are shown in Table 3.

(iv) Step 3: according to the pay-off matrix in Step 2, the
maximum and minimum values are as follows:

L1 � 143,

U1 � 208;

L2 � 167,

U2 � 265.

(28)

(v) Step 4: according to the results of Step 3, the S-type
membership function expressions of the two ob-
jective functions are as follows:

φf1
�

1, f1 < 143,

0.999, f1 � 143,

1

1 + 10− 3
× e

13.813× f1− L1( )/ U1−L1( )[ ]
, f1 ∈ (143, 208),

0.001, f1 � 208,

0, f1 > 208,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φf2
�

1, f2 < 167,

0.999 f2 � 167,

1

1 + 10− 3
× e

13.813× f2− L2( )/ U2−L2( )[ ]
, f2 ∈ (167, 265),

0.001, f2 � 265,

0, f2 > 265.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

According to the weight ratio (w1, w2) and global
evaluation parameter α, the multiobjective transportation
decision-making model can be changed into the following
fuzzy compromise programming model:

M
α
w φf1

,φf2
  � Max w1Φ

α
f1

+ w2Φ
α
f2

 
1/α

,

s.t.


4

j�1
x1j � 8, 

4

j�1
x2j � 19, 

4

j�1
x3j � 17,



3

i�1
xi1 � 11, 

3

i�1
xi2 � 3, 

3

i�1
xi3 � 14, 

3

i�1
xi4 � 16,

xij ≥ 0, i � 1, 2, 3; j � 1, 2, 3, 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

In this paper, MATLAB software is used to solve the
problem, and the calculation results of the model are
given under different weights and global evaluation pa-
rameter α value. Considering the actual situation, the

literature [23] takes xij as a nonnegative integer, so this
example only considers integer solutions. Table 4 shows
the optimal compromise solution under different
weights when α � 0. Table 5 shows the optimal com-
promise solution under different weights when α � 1.
Table 6 shows the optimal compromise solution under
different weights when α � 2. When α⟶ −∞, f1 � 160,
f2 � 195, ϕf1

� 0.9642, ϕf2
� 0.9507. .e optimal com-

promise solution in this example depends on the pref-
erence of the decision-makers, as can be seen from
Tables 4–6:

(1) When the decision-maker considers that the satis-
faction of f1 and f2 is almost the same, that is, they

Table 4: .e optimal compromise solution for different weight
ratios (α � 0).

(0.0, 1.0) (0.05, 0.95) (0.1, 0.9) (0.2, 0.8)
f1 208 168 168 164
f2 167 185 185 190
Φf1

0.001 0.8312 0.8312 0.9201
Φf2

0.9875 0.9750 0.9750 0.9507
(0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4)

f1 164 160 160 160
f2 190 195 195 195
Φf1

0.9201 0.9642 0.9642 0.9642
Φf2

0.9750 0.9507 0.9507 0.9507
(0.7, 0.3) (0.8, 0.2) (0.9, 0.1) (1.0, 0.0)

f1 160 156 156 143
f2 195 200 200 265
Φf1

0.9642 0.9844 0.9844 0.999
Φf2

0.9507 0.9051 0.9051 0.001

Table 5: .e optimal compromise solution for different weight
ratios (α � 1).

(0.0, 1.0) (0.05, 0.95) (0.1, 0.9) (0.2, 0.8)
f1 208 176 168 164
f2 167 175 185 190
Φf1

0.001 0.4735 0.8312 0.9201
Φf2

0.999 0.9969 0.9875 0.9750
(0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4)

f1 164 160 160 156
f2 190 195 195 200
Φf1

0.9201 0.9642 0.9642 0.9844
Φf2

0.9750 0.9507 0.9507 0.9051
(0.7, 0.3) (0.8, 0.2) (0.9, 0.1) (1.0, 0.0)

f1 156 156 156 143
f2 200 200 200 265
Φf1

0.9844 0.9844 0.9844 0.999
Φf2

0.9051 0.9051 0.9051 0.001

Table 3: Pay-off matrix of f1 and f2 of Example 2.

x∗1 x∗2

f1 143 208
f2 265 167
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are equally important, then (160, 195) is the optimal
compromise solution. Currently, the corresponding
satisfaction degree is (0.9642, 0.9507), and the sat-
isfaction degree exceeds 0.95.

(2) When the decision-maker considers that the satis-
faction f1 is more thanf2, the optimal compromise
solution is (156, 200). At this time, the corresponding
satisfaction degree is (0.9844, 0.9051), and the sat-
isfaction is more than 0.9. .e satisfaction of f1 is
0.9844, which indicates that the decision-makers
prefer tof1.

(3) When the decision-maker considers that satisfaction
f2 exceeds f1, the optimal compromise solution is
(164, 190), and the corresponding satisfaction degree
is (0.9201, 0.9750), which is more than 0.9, and the
satisfaction degree f2 is 0.9750, which indicates that
decision-makers prefer to f2.

.e results are calculated by the methods used in the
literature [21–23], that is (160, 195), which is completely
consistent with the result of the first case of this example
which illustrates the effectiveness of the improved S-type
membership function method. In the multiobjective trans-
portation decision-making problem, the decision-makers can
select the optimal compromise solution according to their
actual conditions and referring to Tables 4–6 of this paper.

5. Conclusion

For the multiobjective transportation decision-making
problem, the decision-makers must determine the optimal
compromise solution from a set of nondominated solutions.
For the multiobjective transportation decision-making
problem with larger m and n, it is difficult to find the optimal
compromise solution when the objective units are not
consistent. However, the fuzzy compromise programming
method with an improved S-type membership function is
proposed in this paper. Meanwhile, by considering each
objective and the overall objective, the fuzzy compromise
programming method can find the optimal compromise

solution. By adjusting the weight w and the global evaluation
parameter α, the marginal evaluation of a single objective
and the global evaluation of all objectives are comprehen-
sively measured. However, in the actual engineering prob-
lem of multiobjective logistics transportation, the
determination of the weight of the objective function is an
important issue, which needs to be studied in detail based on
actual problems. .e S-type membership fuzzy compromise
programming method proposed in this paper is more
suitable for solving multitransportation problems and other
multiobjective programming problems.
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[6] O. İlker Kolak, O. Feyzioğlu, and N. Noyan, “Bi-level multi-
objective traffic network optimization with sustainability
perspective,” Expert Systems with Applications, vol. 104, no. 4,
pp. 294–306, 2018.

[7] C. Bai, B. Fahimnia, and J. Sarkis, “Sustainable transport fleet
appraisal using a hybrid multi-objective decision making
approach,” Annals of Operations Research, vol. 250, no. 2,
pp. 309–340, 2017.

[8] Z. Luo, “Path selection of multimodal transport based on
multi-objective mixed integer programming,” Journal of
Transportation Technologies, vol. 9, no. 4, pp. 462–473, 2019.

Table 6: .e optimal compromise solution for different weight
ratios (α � 2).

(0.0, 1.0) (0.05, 0.95) (0.1, 0.9) (0.2,0.8)
f1 208 172 168 164
f2 167 180 185 190
Φf1

0.001 0.6779 0.8312 0.9201
Φf2

0.999 0.9938 0.9875 0.9750
(0.3, 0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4)

f1 164 160 160 160
f2 190 195 195 195
Φf1

0.9201 0.9642 0.9642 0.9642
Φf2

0.9750 0.9507 0.9507 0.9507
(0.7, 0.3) (0.8, 0.2) (0.9, 0.1) (1.0, 0.0)

f1 156 156 156 143
f2 200 200 200 265
Φf1

0.9844 0.9844 0.9844 0.999
Φf2

0.9051 0.9051 0.9051 0.001

Journal of Mathematics 9



[9] J.-Y. Dong and S.-P. Wan, “A new method for solving fuzzy
multi-objective linear programming problems,” Iranian
Journal of Fuzzy Systems, vol. 16, no. 3, pp. 145–159, 2019.

[10] J.-Y. Dong and S.-P. Wan, “A new trapezoidal fuzzy linear
programming method considering the acceptance degree of
fuzzy constraints violated,” Knowledge-Based Systems,
vol. 148, pp. 100–114, 2018.

[11] S.-P. Wan and J.-Y. Dong, “Possibility linear programming
with trapezoidal fuzzy numbers,” Applied Mathematical
Modelling, vol. 38, no. 5-6, pp. 1660–1672, 2014.
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