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Two-sided assembly lines are widely used in the large-size product manufacturing industry, especially for automotive assembly
production. Balancing the assembly line is significant for assembly process planning and assembly production. In this study, we
develop a novel and exact method to optimize the two-sided assembly line balancing problemwith zoning constraints (TALBz), in
which the aim is to minimize the number of mated-stations considering the task restrictions. A mixed-integer programming
model is employed to exactly describe the TALBz problem. To strengthen the computational efficiency, we apply Dantzig–Wolfe
decomposition to reformulate the TALBz problem. We further propose a branch-and-price (B&P) algorithm that integrates the
column generation approach into a branch-and-bound frame. Both the benchmark datasets with zoning constraints and without
zoning constraints are tested to evaluate the performance of the B&P algorithm. *e numerical results show that our proposed
approach can obtain optimal solutions efficiently on most cases. In addition, experiments on the real-world datasets originating
from passenger vehicle assembly lines are conducted. *e proposed B&P algorithm shows its advantage in tackling practical
problems with the task restrictions. *is developed methodology therefore provides insight for solving large-scale TALBz
problems in practice.

1. Introduction

In the final production process in automotive manufacturing,
parts and components are installed on the painted body in the
assembly shop. Assembly production is very labour-intensive
in a passenger vehicle plant, with more than half of workforces
assigned on the assembly line. In the automotive industry, the
assembly line balancing (ALB) problem involves searching for
the optimum assignment of assembly tasks to workstations
given precedence constraints according to a predefined single
or multiobjective goal [1]. Based on the structure of the
workstation, the ALB problem can be categorized into the
simple assembly line balancing (SALB) problem and the two-
sided assembly line balancing (TALB) problem. In the simple
assembly line, there is one worker working at each worksta-
tion. *is pattern is common in the preassembly line where
vehicle parts are produced. In contrast, workers can be
arranged to both the left and right sides of workstations on the

two-sided assembly line. Workstations with the left and right
positions are called mated-stations, which construct most
sections in the main assembly line. Workers install parts lo-
cated on one side of the vehicle at the corresponding position.
Spaces on both sides of the assembly line can be efficiently used
to store materials and parts. Walking time spent taking the
parts is reduced on the two-sided assembly line. However, the
complexity of the TALB problem increases considerably
compared to the SALB problem. In the TALB problem, tasks
can be operated on both sides of a mated-station. *e posi-
tional characteristic of the task and work station results in
more variables in the TALB problem model. For different
objective functions, the TALB problem can also be classified
into the TALB type-I (TALB-I) problem and the TALB type-II
(TALB-II) problem. *e TALB-I problem minimizes the
number of workstations under a given cycle time, while in the
TALB-II problem, the objective is to obtain a minimum cycle
time for the assembly line with a fixed length.
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In practice, there exist assignment restrictions related to
the features of assembly process, the allocation of instru-
ments, and the production resource. One kind of these
assignment restrictions is the task restrictions which are also
called zoning constraints [2]. Zoning constraints define
which tasks must be performed at the same workstation and
which tasks must be assigned to different workstations [3].
*e former situation is often found in the workstations
which have tools shared by different tasks. *e process,
equipment, or quality requirements may also define this
restriction of assignment. On the other hand, some tasks are
forbidden to assign to the same workstation. *e zone
constrained type-I two-sided assembly line balancing
(TALBz-I) problem is studied in this work to minimize the
number of mated-stations.

*e SALB problem is a demonstrated NP-hard problem.
Considering the additional sequence and positional and
zone constraints, the TALBz problem is harder to optimally
solve than the SALB problem. Because of these constraints,
the TALBz problem is a unique type of mixed-integer
programming problem. *e column generation method is
proven effective for solving large-scale integer program-
ming. However, to the best of the authors’ knowledge, no
research has thus far reported the development of a column
generation approach to solve the TALBz problem. *us, the
proposed branch-and-price algorithm reformulates the
mathematical models, designs the column generation pro-
cedure, and develops the branching strategy for the TALBz
problem.

*e remainder of this article is stated as follows: In
Section 2, the authors mention the literature review based on
methods, constraints, and characteristics of the TALB
problem. In Section 3, the mathematical model of the
TALBz-I problem and D-W decomposition of the original
model are presented. Reformulation of the TALBz-I prob-
lem is constructed through the master problem and sub-
problems. In Section 4, the overall structure of the branch-
and-price algorithm is first presented. Details of the initial
solution generation and the branching scheme are also
described in this section. In Section 5, the most commonly
used benchmark datasets as well as four new datasets from
the real production line, which happen at a premier brand
automaker’s assembly shop, are tested. *e results are
compared with the original models and the state-of-the-art
algorithms. A summary is given in Section 6.

2. Literature Review

*e assembly line balancing problem has been widely
studied by many researchers, as reviewed by Erel and Sarin
[4], Scholl and Becker [5], and Boysen et al. [6]. Due to its
utilization for large-size product manufacturing, especially
for automotive assembly, the two-sided assembly line be-
comes the key element in the structure of the assembly
production system. *e study of the TALB problem has
gained importance in the last two decades [7]. Methodol-
ogies for solving the TALB problem can be categorized into
three main approaches: exact algorithms, heuristic algo-
rithms, andmetaheuristics. Bartholdi [8] first introduced the

TALB problem and designed a heuristic algorithm based on
the “first-fit” rule. *e general structure of the TALB
problem was defined. Additionally, he contributed test data
of the 148-task problem for a real assembly line. Lee et al. [9]
designed a heuristic procedure for the TALB problem and
considered work relatedness and work slackness as the
decision criteria. *e heuristic rules of the TALB problem
were then discussed, and two problems (65-task and 205-
task) from a truck assembly line were presented in the
experimental results. Hu et al. [10] proposed a heuristic
algorithm based on a station-oriented enumerative assign-
ment procedure for the TALB problem. *eir tests were
performed on small-sized problems (P9 to P24). Wu et al.
[11] presented a branch-and-bound algorithm to minimize
the total length of the assembly line and the number of
opened stations as the objective of the TALB problem. Hu
et al. [12] continued their works to develop a branch-and-
bound algorithm that integrated a new lower bound,
dominance rule, and reduction rules for the TALB-I
problem. Sepahi and Naini [13] proposed a new heuristic
algorithm for the TALB problem that allows for a parallel
performance of tasks. Li and Coit [14] proposed new priority
rules that are specific to the TALB problem. Michels et al.
[15] applied Benders’ decomposition to solve the multi-
manned assembly line balancing problem. *ese published
exact and heuristic methods are efficient only on medium-
sized instances, since computational demands and memory
requirements grow exponentially for large-scale problems
[4]. Özcan and Toklu [16] proposed an exact solution ap-
proach, which is the goal programming, to solve the small-
sized line balancing problem with zoning constraints. Li,
Kucukkoc, and Zhang [17] developed new exact methods
applying the Hoffman heuristic and branch bound and
remember (BB&R) algorithm, to minimize the number of
mated-stations in the TALB problem. New dominance rules,
lower bounds, and a novel task enumeration procedure were
designed in their research. *e proposed BB&R algorithm
achieved better solutions than the current best heuristic
algorithm.

Various metaheuristic algorithms have been applied to
solve the TALB problem. *e genetic algorithm was applied
to solve the ALB problem by some researchers [18–20].
Baykasoglu and Dereli [21] proposed an ant colony-based
and group assignment heuristic algorithm to solve the TALB
problem with zoning constraints. Simaria et al. [22] de-
veloped an ant colony algorithm named 2-ANTBAL to solve
the TALB problem to optimality. A mathematical pro-
gramming model was built, whose major objective was to
minimize the number of workstations. A simulated
annealing algorithm was presented by Özcan and Toklu [23]
to tackle the mixed-model two-sided assembly line bal-
ancing problem. A new mixed-integer programming model
that involves some specific additional constraints such as
zoning constraints, positional constraints, and synchronism
constraints was illustrated. Özcan [24] studied the TALB
problem with stochastic task times. A simulated annealing
algorithm was selected as the approach to solve the problem,
which was modelled as chance-constrained, piecewise-lin-
ear, and mixed-integer programming. *e bees algorithm
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was adopted to solve the TALBz problem by Özbakır and
Tapkan [3]. Tapkan et al. [25] also applied the bees algorithm
and artificial bee colony algorithms to solve the TALB
problem, which is fully constrained.

Tapkana et al. [26] studied the TALB problem considering
the walking time in parallel lines and developed the bees
algorithm and artificial bee colony algorithm. Tang et al. [27]
proposed an improved discrete artificial bee colony (DABC)
algorithm to solve the type-II TALB problem. *e proposed
method found 22 brand-new results for large-size problems
and outperformed nine other metaheuristic algorithms in the
experiments. Li et al. [28] illustrated a new local search
method called the iterated greedy (IG) approach to solve the
type-I TALB problem based on an encoding scheme of task
permutation. Some recent works studied TALB problems
with specific line configurations or additional constraints,
such as underground workstations [29], robotic workstations
[30], real-world constraints [31], worker assignment [32],
space and resource constraints [33], varying or uncertain task
times [34], and multiworker workstations [35]. Although
metaheuristic algorithms have been widely used, some dis-
advantages still exist. Since the search of solutions proceeds
randomly, metaheuristic algorithms generate nondetermin-
istic results. In addition, metaheuristics require additional
training to specify suitable parameters, which is time-con-
suming and not deterministic [14].

3. Description and Modelling of the
TALBz-I Problem

*e two-sided assembly line, which is shown in Figure 1, can
represent the key structure of the main assembly line.
Automotive parts and components are delivered to material
areas on the line side and installed onto the semifinished
vehicle according to the assembly sequence. Workers can
perform the installation operations in both the left and right
positions in the workstation. Some basic concepts that occur
in the TALB problem are first introduced to better under-
stand the assembly production process:

(i) Cycle time: cycle time is determined by the pro-
duction rate of the assembly line. It defines how
long the vehicle can stay in one workstation for
installations.

(ii) Idle time: apart from assembly operations in one
cycle time, the spare time without any activity
occurring is called the idle time.

(iii) Mated-station: in the two-sided assembly line, a
workstation with two facing positions is called a
mated-station.

(iv) Precedence relationship: the assembly processes
must satisfy the structural relations of products.
*e assembly sequence is given as the constraints
of the line balancing design. It defines which task
must be done before one task can begin.

(v) Predecessor: tasks that must be performed before
the referenced task are called the latter’s
predecessor.

(vi) Successor: tasks that follow the referenced task in
the precedence diagram are called the latter’s
successor.

(vii) Linked tasks: these are tasks that must be assigned
to the same workstation due to the zoning
constraints.

(viii) Incompatible tasks: these are tasks that must not be
assigned to the same workstation due to the zoning
constraints.

3.1. ProblemDescription. Given a fixed cycle time, the type-I
TALB problem seeks a line balancing result that possesses
the minimum number of mated-stations. *is value will
determine the length of the assembly line. Figures 2 and 3
illustrate an example of the TALB problem with sixteen tasks
taken from the study by Lee et al. [9]. Figure 2 presents the
precedence diagram. Labels of task numbers are connected
by arrows that indicate the sequence relationship between
tasks. For example, tasks 4 and 5 must be finished before task
7 starts. *e first value in the bracket equals the task’s
operation time, where the second item in the bracket rep-
resents the position information of the task. Lmeans the task
must be done on the left position in the mated-station, while
tasks labelled with R belong to the right position. E-type
tasks can be assigned to either the left or the right position.

In a simple assembly line, task assignment on the
workstation is continuous.*e idle time for one worker may
only occur when he or she finishes all the operations at the
end of one cycle. *e capacity constraint requires that the
summation of tasks’ operation time is less than the cycle time
in the SALB problem. However, this is not sufficient in the
TALB problem. Task assignment must consider the se-
quence relations of tasks on both sides of mated-stations and
the position constraints in the TALB problem. Continuous
working plans can be interrupted by the sequence con-
straints among tasks that are assigned to opposite positions
in a mated-station. An operator may wait for the comple-
ment of work in the opposite position. *is type of waiting
time is called the sequence-induced idle time, which does
not exist in the SALB problem. Figure 3 describes a line
balancing solution for the above sixteen tasks case under a
cycle time of 20 time units. For example, in the assignment of
mated-station 2, task 10 must be done in the right position
and after task 7. *us, there is an idle time of 16 units before
task 10. Zoning constraints are usually established according
to the requirement of assembly process which forces or
forbids the distribution of different tasks to the same
workstation. *ese constraints should be satisfied in the line
balancing result in addition to cycle time and precedence
constraints.

3.2. Mathematical Model of the TALBz-I Problem. To ease
presentation, the notations that appear in the models are
given as follows:

Indices:

i, h, p: task number
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j, g: mated-station
k: side of the assembly line

Parameters:

I: set of tasks
J: set of mated-stations
K(i): set of available positions of the task i
P0: set of tasks which have no immediate predecessor
P(i): set of immediate predecessors of task i

Pa(i): set of total tasks which precede task i
Sa(i): set of total tasks which follow task i
SL/SR: lower bound of numbers of left/right
workstations
TSumL/R/E: sum of the operation time of the set of left/
right/either position tasks
Xj: assignment j for one mated-station in a given
solution set
B: set of assignments in the master problem
ct/CT: cycle time
ti: operation time of task i
μ: multiplier as the big M
π: set of values of the dual variable

Variables:

xijk: if task i is assigned to side k of station j,� 1;
otherwise,� 0
Nj: if station j is open for assembly production,� 1;
otherwise,� 0
t
f
i : finish time of task i.
zip: indicator variable to represent assembly sequence
of task i and p.
λj: if assignment j is included in the solution,� 1;
otherwise,� 0.
yi: if column j is selected in the solution,� 1;
otherwise,� 0.
vi: if task i is taken in the assignment,� 1;
otherwise,� 0
sik: if task i is taken on the k side in the assignment,� 1;
otherwise,� 0

We build the mathematical model of the type-I TALBz
problem based on the model presented by Kim et al. [20].
*ey studied the type-II TALB problem in which their
objective was to minimize the cycle time given a fixed
number of mated-stations. *e objective of our model is to
minimize the length of the assembly line, which equals the
minimization of the number of mated-stations. We use 0–1
variable Nj to represent whether a station j is used.

Minimize􏽘
j∈J

Nj. (1)

Subject to

R

L

worker

worker

Material

Material Material

Material

Mated-station_1 Mated-station_2 Mated-station_3

Figure 1: Two-sided assembly line of vehicle manufacturing.
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Figure 2: Precedence diagram with sixteen assembly tasks (Lee
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􏽘
j∈J

􏽘
k∈K(i)

xijk � 1 ∀i ∈ I, (2)

􏽘
g∈J

􏽘
k∈K(h)

g · xhjk ≤ 􏽘
j∈J

􏽘
k∈K(i)

j · xijk ∀i ∈ I − P0, h ∈ P(i), (3)

t
f

i − t
f

h + μ · 1 − 􏽘
k∈K(i)

xijk
⎛⎝ ⎞⎠ + μ · 1 − 􏽘

k∈K(h)

xhjk
⎛⎝ ⎞⎠≥ ti ∀i ∈ I − P0, h ∈ P(i), j ∈ J, (4)

t
f
i − t

f
p + μ · 1 − xijk􏼐 􏼑 + μ · 1 − xpjk􏼐 􏼑 + μ · zip ≥ ti

∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉, j ∈ J, k ∈ K(i)∩K(p),
(5)

t
f
p − t

f
i + μ · 1 − xijk􏼐 􏼑 + μ · 1 − xpjk􏼐 􏼑 + μ · 1 − zip􏼐 􏼑≥ tp

∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉, j ∈ J, k ∈ K(i)∩K(p),
(6)

ti ≤ t
f
i ≤ ct ∀i ∈ I, (7)

􏽘
i∈I

􏽘
k∈K(i)

xijk ≤ Wjk

�����

����� · Nj ∀j ∈ J, (8)

􏽘
g∈J

􏽘
k∈K(i)

g · xigk − 􏽘
g∈J

􏽘
k∈K(j)

g · xjgk � 0 ∀(i, j) ∈ LT,
(9)

􏽘
g∈J

􏽘
k∈K(i)

g · xigk − 􏽘
g∈J

􏽘
k∈K(j)

g · xjgk ≠ 0 ∀(i, j) ∈ IT,
(10)

xijk � 0 or 1 ∀i ∈ I, j ∈ J, k ∈ K(i), (11)

Nj � 0 or 1 ∀j ∈ J, (12)

zip � 0 or 1 ∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉. (13)

*ree types of common constraints of the TALB
problem (i.e., occurrence constraints, precedence con-
straints, and cycle time constraints) and extended zoning
constraints are included in the type-I TALBz model. Con-
straint set (2) describes the type of occurrence constraint
that ensures that each task is assigned one and only one time.
Constraints sets (3)–(6) define the sequence constraints in
the TALB problem. Constraint set (3) restricts the sequence
relationships of tasks between different mated-stations, and
it can also be applied to the SALB problem; that is to say,
tasks cannot be assigned to the former stations before their
predecessors. Constraint set (4) is applied to tasks that have
precedence relationships and assigned to the same mated-
station. Since there is sequence-induced idle time in the
TALB problem, the assembly sequence must be determined
for tasks assigned to the same station. We introduce the
variable t

f
i to define the finishing time of task i. Predecessors

must be finished before their reference task begins when they
are done in the same mated-station. For tasks without
precedence relationships and appearing in the same work-
station, constraint sets (5) and (6) become active. zip is set as
the indicator variable which is a 0–1 variable. When zip � 1

task i is arranged before task p, constraint set (6) is effective;
when task p is planned before task i, zip � 0 and constraint set
(5) becomes active. Constraint set (7) is the set of cycle time
constraints. *e finish time of one task must be no greater
than the cycle time, which is larger than the task’s operation
time. ||Wj|| represents the number of works assigned to
station j. Once there is one task i assigned to workstation j on
side k, the value of variable xijk is 1; then, station j is counted
as the total number of open stations, and the value of Nj is
equal to 1. Additionally, zoning constraint sets (9) and (10)
describe the restrictions of tasks’ relationships. For tasks (i, j)
which belong to the linked task (LT) set, they must be
assigned to the same mated-station (9). Meanwhile, con-
straint set (10) guarantees that tasks (i, j) defining the in-
compatible task (IT) set are finished at different mated-
stations.

3.3. Decomposition of theMixed-Integer ProgrammingModel.
A key to implementing the branch-and-price algorithm is
the use of D-W decomposition for the original problem. It is
a standard approach to obtain the linear programming
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model used in the master problem of the column generation
method.

Appelgren [36] first applied D-Wdecomposition to solve
an integer programming-based ship scheduling problem. To
address the fractional solution, Appelgren [37] adopted a
branch-and-bound searching tree to seek the integer solu-
tion based on D-W decomposition. Lubbecke and Desros-
iers [38] provided remarks on the column generation
method and discussed the theoretical details of Dant-
zig–Wolfe decomposition and integer programming column
generation algorithms. In the mathematical model

introduced in the former section, decision variables are set to
assign task to different stations. We apply D-W decompo-
sition to the original model of the TALBz problem and
present a reformulation of the original model. *is method
is used to determine which solution in the assignment set is
adopted for a mated-station in D-W decomposition.

Minimize􏽘
j∈J

λj. (14)

Subject to

􏽘
j∈J

􏽘
k∈K(i)

λjX
ik
j � 1 ∀i ∈ I, (15)

􏽘
g∈J

􏽘
k∈K(h)

g · λg · X
hk
g ≤ 􏽘

j∈J
􏽘

k∈K(i)

j · λj · X
ik
j ∀i ∈ I − P0, h ∈ P(i), (16)

t
f

i − t
f

h + μ · 1 − 􏽘
k∈K(i)

λjX
ik
j

⎛⎝ ⎞⎠ + μ · 1 − 􏽘
k∈K(h)

λjX
hk
j

⎛⎝ ⎞⎠≥ ti ∀i ∈ I − P0, h ∈ P(i), j ∈ J, (17)

t
f
i − t

f
p + μ · 1 − λjX

ik
j􏼐 􏼑 + μ · 1 − λjX

pk
j􏼐 􏼑 + μ · zip ≥ ti

∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉, j ∈ J, k ∈ K(i)∩K(p),
(18)

t
f
p − t

f
i + μ · 1 − λjX

ik
j􏼐 􏼑 + μ · 1 − λjX

pk
j􏼐 􏼑 + μ · 1 − zip􏼐 􏼑≥ tp

∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉, j ∈ J, k ∈ K(i)∩K(p),
(19)

ti ≤ t
f
i ≤ ct ∀i ∈ I, (20)

􏽘
g∈J

􏽘
k∈K(i)

g · λg · X
ik
g − 􏽘

g∈J
􏽘

k∈K(j)

g · λg · X
jk
g � 0 ∀(i, j) ∈ LT, (21)

􏽘
g∈J

􏽘
k∈K(i)

g · λg · X
ik
g − 􏽘

g∈J
􏽘

k∈K(j)

g · λg · X
jk
g ≠ 0 ∀(i, j) ∈ IT, (22)

λj � 0 or 1 ∀j ∈ J, (23)

zip � 0 or 1 ∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉. (24)

Given a group of line balancing solutions X, the decision
variable λj means that if assignment j is selected in the final
solution, then λj � 1; otherwise, when assignment j is not
included in the solution, λj � 0. *e objective function is to
obtain the minimum number of mated-stations. Constraint
set (15) is the occurrence constraint which is transferred
from (2). Constraint set (16) describes the sequence con-
straints of tasks that are assigned to different mated-stations,
which are constructed as (3) in the original model. For tasks
that are distributed in the same workstation, constraint sets
(17)–(19) ensure that the assembly sequence can satisfy the
precedence graph. *e use of these constraints can be re-
ferred to (4)–(6) in the former model. Constraint set (17) and
constraint sets (18) and (19) are effective for tasks with and

without precedence relationships, respectively. Indicator
variables zip are still utilized in the sequence constraint sets
(18) and (19) in the Dantzig–Wolfe decomposition model.
*e decision variable of the task’s finish time is the same as
that of the original model. *e cycle time constraints (20)
also remain the same as (7). Constraint sets (21) and (22)
define the zoning constraints (9) and (10) that established in
the original model.

3.4. Master Problem and Pricing Subproblem of
Reformulation. In the model of Dantzig–Wolfe decompo-
sition, each column constitutes task assignments for one
workstation. Since there are an enormous number of
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possible assignments related to a workstation, it is not
feasible to enumerate all the assignment solutions of the
model.*erefore, we develop a column generation approach
to solve the reformulation model obtained from Dant-
zig–Wolfe decomposition.

Gilmore and Gomory first used the column generation
method to solve the cutting stock problem [39, 40]. Bin
packing and cutting stock problems became one classic
application for the column generation method, as studied by
Vance et al. [41], Chen et al. [42], and Vanderbeck [43].
Degraeve et al. [44] embedded the column generation
procedure within the branch-and-bound frame for the
cutting stock problem. Peeters and Degraeve [45] proposed a
column generation algorithm to calculate the lower bound of
type-I SALB problem. Column generation has been proven
to be one of the most successful approaches for solving large-
scale integer programming, especially for problems that
contain an enormous number of columns in its mathe-
matical model. Rather than enumerating all columns ex-
plicitly, the column generation method solves this problem
by bringing the column into the basis only when needed.*e
main advantage of column generation is that the original
problem is formulated in the master problem, which only
has a selected set of columns and subproblems. *us, the
master problem is defined as the restricted master problem
(RMP).

*e column generation procedure deals with the
reformulation model by iteratively solving RMP and pricing
problems. *e simple idea in column generation is not to
represent all variables (columns) explicitly; it works with a
reasonably small subset of columns. Similar to looking for
new basic variables in the simplex algorithm, column
generation deals with adding columns to the master prob-
lem. A column with the most negative reduced cost is added
to the master problem after solving the pricing problem.

*e RMP model for the TALBz problem is

Minimize􏽘
j∈J

yj. (25)

Subject to

􏽘
j∈J

Bijyj � 1 ∀i ∈ I, (26)

0≤yj ≤ 1 ∀j ∈ J. (27)

*e objective is to minimize the sum of mated-stations
which are represented as yi in (25). Variables are set to decide
the values of the columns in the assignment set and are
relaxed into continuous variables. We keep task occurrence
constraint set (26) in the master problem. *e set of Bij
consists of task assignments at different stations. Each
column in this set represents a pattern for one mated-sta-
tion’s assignment solution.

Column generation is an extension of the simplex al-
gorithm. *e RMP only contains a small subset of possible
columns at the beginning, and then other columns are
generated by solving pricing subproblems. In each iteration
of column generation, a column of task assignment with the
most negative reduced cost is appended to the solution set Bij
of the RMP. Since the reduced cost (RC) can be calculated as

RC � Min 1 − 􏽘

n

i�1
πi]i

⎛⎝ ⎞⎠ � 1 − Max􏽘

n

i�1
πi]i ∀ i ∈ I,

(28)

where vi is the task variable in the new assignment solution
and π represents the dual cost vector, which consists of dual
variables of the RMP.We can design the pricing subproblem
to seek the minimum RC.

*e subproblem is to obtain one assignment solution
given a list of dual variables of the current RMP. *e ob-
jective of the subproblem derived from (28) is displayed in
(29), where the minimum RC is equal to the maximum sum
of the products of variable vi and π.

Maximize􏽘
i∈I

πivi. (29)

*e constraints can be divided into five blocks: position
assigning constraints (30), sequence (among different sta-
tions) constraints (31), sequence (in one station) constraints
(32)–(34), and cycle time constraints (35), and zoning
constraints (36)–(37).

􏽘
k∈K(i)

sik � vi ∀i ∈ I, (30)

vi1 + 􏽘

i3∈F∗ i2( )

vi3 − F
∗

i2( 􏼁
����

���� · vi2 ≤ 1 ∀i1 ∈ P i2( 􏼁, i2 ∈ I − P0, (31)

t
f
i − t

f

h + μ · 1 − ]i( 􏼁 + μ · 1 − ]h( 􏼁≥ ti ∀i ∈ I − P0, h ∈ P(i), (32)

t
f
i − t

f
p + μ · 1 − sik( 􏼁 + μ · 1 − spk􏼐 􏼑 + μ · zip ≥ ti

∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉, k ∈ K(i)∩K(p),
(33)
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t
f
p − t

f
i + μ · 1 − sik( 􏼁 + μ · 1 − spk􏼐 􏼑 + μ · 1 − zip􏼐 􏼑≥ tp

∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉, k ∈ K(i)∩K(p),
(34)

ti ≤ t
f
i ≤ ct ∀i ∈ I, (35)

]i − ]j � 0 ∀ i, j􏼈 􏼉 ∈ LT, (36)

]i − ]j ≠ 0 ∀ i, j􏼈 􏼉 ∈ IT, (37)

sik � 0 or 1 ∀i ∈ I, k ∈ K(i), (38)

]i � 0 or 1 ∀i ∈ I, (39)

zip � 0 or 1 ∀i ∈ I, p ∈ r|r ∈ I − Pa(i)∩ Sa(i)( 􏼁 and i< r􏼈 􏼉. (40)

*e solution of the subproblem represents the task
assignment for one mated-station. Since there are two
positions in one mated-station, decision variables sik are
established to determine on which side (k � left or right)
task i is distributed. If task i is assigned on any side of the
station, then the variable vi is recorded as a ‘1’ element in
the solution; otherwise, it is equal to ‘0’. *is relationship is
expressed in constraint (30). Constraint set (31) ensures
the precedence sequence for tasks among different sta-
tions. In the original model, these are realized through
constraint set (3). We reformulated this constraint into a
nonredundant constraint set (31). After reducing the di-
mensions, it is more parsimonious compared to the
established expressions. Constraint (31) prevents that
situation from occurring: immediate predecessors and
successors of task i are selected in the solution, but task i
does not appear in the assignment. *is situation would
violate the sequence constraints among different mated-
stations. Constraint (32) inherits from (17), which defines
the precedence relationship for tasks assigned in the same
mated-stations. For tasks without any precedence se-
quence requirement, constraint sets (33) and (34) become
active when two tasks occur in the same position in one
mate-station. *e indicator variable zip is created to
control the appearance sequence of two tasks: when task i
is before task p, zip equals 1, while if the sequence reverses,
zip is 0. Cycle time constraints (35) are kept as constraint
set (20) in the D-W decomposition model. Constraint sets
(36) and (37) represent the zoning constraints. Tasks in the
set of LT are required to install at the same workstation as
guaranteed by constraint (36), while tasks in the set of IT
must be assembled at different workstations as limited by
constraint (37).

4. Proposed Branch-and-Price Algorithm

4.1. General Procedure of Column Generation. *e branch-
and-price algorithm is usually integrated into the framework
of the branch-and-bound approach. We apply the column
generation method to solve the linear model of the TALB
problem at each node in the branch-and-price searching tree.

We start from the root node in the branch-and-price
tree. *e TALB problem is first resolved through an initial
heuristic algorithm. Based on this solution, the branch-and-
price algorithm can enter the branching node calculation
stage. *e column generation method is designed in the
branching node calculation part. *e initial solution of the
RMP is derived from the heuristic algorithm. *en, the
TALBz problem is solved through the iterations between
computing the RMP and subproblems. Dual values of the
RMP can be utilized as parameters of objective function (29)
in the model of subproblems. *e subproblem is solved after
obtaining a set of optimal dual values of the RMP. *e new
column, which represents a work station’s line balancing
solution, is added into the RMP if its reduced cost value is
negative, because a column with a negative reduced cost
value can improve the RMP.

*e column generation iterations stop when the value of
the RMP is not larger than the lower bound. Two conditions
indicate that the column generated by the subproblem
cannot improve the RMP anymore, and the column gen-
eration loop breaks:

(1) If the value of the reduced cost from the current
subproblem is nonnegative, no better solution could
be obtained through further iterative calculations.

(2) When the reduced cost is negative, its absolute
magnitude is so small that the RMP cannot reach a
better result even when absorbing that new column.
*is is because the final solution of the line balancing
problem contains an integer number of worksta-
tions. *e rounded-up value of the improved RMP
equals the solution in the current loop when the
reduced cost is located within a range where
⌈ZB⌉� ⌈ZB/(1−RC)⌉.

When the column generation finishes at an active node,
an integer assessment is made to examine the results of the
RMP model. If the RMP solution satisfies the integer con-
dition and is better than the best value, we update the current
best value with this solution and fathom the active node.*e
latest updated value is compared with the lower bound. If it
equals the value of the lower bound, then the algorithm
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breaks and returns this result as the optimal value. If the
RMP delivers a fractional result, options are taken for dif-
ferent cases:

(i) For fractional node iwhere Zi>Zbest − 1, the node i is
fathomed for bounding.

(ii) For fractional node j where Zj ≤ Zbest − 1, branching
takes place on the result derived from the node
calculation process. New child nodes are generated
according to the result of the active node.

*e search tree is formed from nodes that are unsolved.
*en, the algorithm selects and enters into the next node in
the branch-and-price searching tree. *is procedure con-
tinues until all nodes in the searching tree are detected or the
termination condition is invoked during the calculation.

SL � ⌈
TSumL

CT
⌉, (41)

SR � ⌈
TSumL

CT
⌉, (42)

SE � ⌈
max TSumL − SL + SR( 􏼁 × CT − TSumL + TSumR( 􏼁( 􏼁( 􏼁, 0( 􏼁

CT
⌉,

(43)

LBNM � max SL, SR( 􏼁 +⌈
max SE − SL − SR

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑, 0􏼐 􏼑

2
⌉. (44)

*e lower bound and the upper bound also play im-
portant roles in the branch-and-price algorithm. In this
algorithm, the lower bound of the number of mated-stations
LBNM is calculated as (41)–(44), which is taken as Lower
bound 1 fromWu et al. [11] and the initial upper bound is set
as the value of the heuristic solution obtained at the root
node.

In addition to measuring via the reduced cost value, the
node calculation will stop when its solution meets the lower
bound. *e upper bound is updated according to the latest
integer solution. *e algorithm keeps narrowing the gap
between the lower bound and the upper bound until the
search is finished. *us, a high-quality initial upper bound
can facilitate the resolving process. Although heuristic
methods for SALB and TALB problems were studied, these
methods cannot be directly applied in the branch-and-price
algorithm, since initial solutions must satisfy the
Ryan–Foster branching rule implemented in the branch-
and-price algorithm. We therefore design a novel heuristic
procedure to obtain this type of solution based on the
“earliest start time” priority rule.

4.2. Earliest Start Time Calculation. In our research, an
initial solution of the TALBz problem is needed for the
column generation process at each node in the branch-and-
price tree. Both the sequence and position constraints affect
the final result of the TALBz problem. To minimize the idle
time induced by the sequence constraints and the direction
constraints on the two-sided assembly line, one strategy is to
schedule task assignments continuously. *us, tasks are

recommended to start at the earliest possible time. In the
enumeration procedure, one task can start if all of its pre-
decessors have been finished. One task’s finish time can be
calculated through the time transfer function:

T
f
j � T

s
j + tj ∀i ∈ Pool, j ∈ P

s
i , (45)

A set of “unassigned tasks” is created in the heuristic
algorithm. *is set includes tasks that are not distributed to
workstations. *e heuristic process also creates a “Pool” set
that contains items in the “unassigned tasks” set for which
preceding tasks are finished. When there is any predecessor j
for task i at the current mated-station, the finish time of j is
equal to its start time plus task j’s operation time (45). If
predecessor j does not appear in the current mated-station,
its finish time is set to zero. *en, the earliest start time of a
task on the current station can be determined by its pre-
decessors’ finish time. For the tasks that have a fixed position
(left or right) attribute:

ESTi � max max T
f

j􏼐 􏼑, Cw􏼐 􏼑 ∀i ∈ Pool, j ∈ P
s
i , w ∈ Di,

(46)

*e earliest start time (EST) chooses the maximum value
among the predecessors’ finish time and the current capacity
time of one position Cw (depending on which side the task is
allowed to perform).

For tasks allowed to be done on both the left and right
sides of the assembly line, the earliest start time is calculated
by

ESTi � median max T
f
j􏼐 􏼑, min Cw( 􏼁, max Cw( 􏼁􏼐 􏼑

∀i ∈ Pool, j ∈ P
s
i , w ∈ Di,

(47)

Since tasks without a positional preference are flexible for
assignment on both sides of a station, we prefer the position that
provides an earlier start time.*us, the earliest start time of task
i, ESTi, selects the median value of three parameters: (1) the
maximum finish time of task i’s predecessors, which are
assigned in the same mated-station; (2) the minimum capacity
of the left position and right position; and (3) the maximum
capacity of the left position and right position.

Once we complete an assignment, the start time and
finish time of that task will be updated.*e just assigned task
is removed from the “Pool” and “Unassigned” sets, and new
tasks are added into the “Pool” set according to their pre-
decessors’ status.

4.3. Heuristic Rules. Based on the time transfer function and
the method of the earliest start time calculation, we develop
the mated-station-oriented heuristic algorithm for the TALBz
problem. Both sides of a mated-station are simultaneously
checked to determine the current best assignment. Several
rules are discussed here to minimize the total idle time:

(i) For tasks whose predecessors have already been
finished, we select the task with the minimum value
of the earliest start time. *is could reduce the
sequence-induced idle time among tasks.

Journal of Mathematics 9



(ii) If tasks have the same start time, tasks with a fixed
positional attribute (L or R) are proposed to give
greater priority than the E type task.

(iii) If parallel tasks still exist, the task with the longest
operation time is preferable. *is could increase the
utilization of the current workstation.

For candidate tasks in the set of “Pool,” the feasibility of
the solution is tested. In the SALB problem, a task-oriented
heuristic algorithm only checks the cycle time capacity for
the solution. However, initial solutions are needed not only
in the root node but also in branching nodes in the branch-
and-price algorithm. Due to the Ryan–Foster branching rule
used in this work, we follow the branching constraints in the
process of generating initial solutions. As required by the
zoning and branching constraints, some tasks should be
assigned to the same workstation and some to different
workstations. Possible assignments of different tasks are
created, and some may be pruned if constraints are violated.
In general, two conditions exist when the solution can be
pruned.

*e first condition is that the last finish time of the task’s
assignment exceeds the cycle time.

LFTi � max ESTj + tj􏼐 􏼑,

LFTi > ct ∀i ∈ Pool, j ∈ Gi.
(48)

In (48), LFTi is the last finish time of tasks in setGi, where
task i belongs to the “Pool” set. Assignments in the heuristic
procedure take the branching constraints into consideration.
For the task i, which has a linked task pair, we search all
unassigned tasks that must be operated in the same mated-
station; the set of these tasks is referred to as group “Gi” of
task assignment. *e set of task groups consists of the
candidate task, its linked task pair, and all the predecessors of
the candidate task that have not yet been assigned. *e
procedure will search all of the linked tasks and predecessors
of the items in the group. *e group is updated as the new
related task is added into this set in an iterative way until all
of the related tasks are included in this group. *en, as-
signment of these tasks is taken simultaneously in one so-
lution. We record the longest finish time in the solution and
compare it with the cycle time. *e solution with the final
finish time that exceeds the cycle time is pruned.

*e second condition limits the solution which contains
contradictable tasks in one mated-station. We need to check
whether the following two cases occur in the solution:

(a) *e task in a possible assignment, either the can-
didate task or the grouping task, has a contradictory
task that has already been assigned to the current
mated-station.

∃]p � 1 ∀i ∈ Pool, j ∈ Gi, p ∈ Cj, (49)

Task i is the candidate task in the pool, and Gi is the
group of task i that should be packaged together. Cj
denotes the set of tasks that are incompatible items of
task j that cannot be assigned to the same work-
station. *ese tasks are defined according to the

zoning and branching constraints. When task p in Cj
has already been assigned, the value of variable
vpequals one.

(b) *e grouping tasks contain incompatible task pairs
in the assignment.

SCij � Gi ∩Cj ∀i ∈ Pool, j ∈ Gi,

∃m ∈ SCij ≠∅.
(50)

*e set SCij consists of self-contradictory items in the
group set of task i in the pool. As the number of
nodes grows, branching constraints become com-
plicated. *us, some linked and incompatible task
pairs may be identical in the grouping set. *ere will
not be any feasible result because of contradictory
requirements. Assignment design that violates these
constraints must be pruned.

4.4. Initial SolutionGeneration. *ekey steps in the heuristic
are illustrated in Heuristic Algorithm 1.

4.5. Branching Scheme. Since the RMP is a linear relaxation
of the Dantzig–Wolfe decomposition model, fractional so-
lutions may appear in the optimal solution. However, an
integer result is needed to meet the requirements of practical
production. In the common method of handling the linear
programming problem, integer solutions can be obtained
using the branch-and-bound method. Effective branching
based on the fractional variables can result in child nodes
with integer solutions. In this proposed branch-and-price
method, the branch-and-price parameter combines column
generation with a branch-and-bound algorithm. *e theo-
retical principle was illustrated by Yin et al. [46] who
adopted this method to solve the SALB problem.

*e common approach of branching in the branch-and-
bound method is dealing with the fractional variable.
Fractional variables are rounded up/down by adding ad-
ditional constraints to the original model. However, this
method does not work in the branch-and-price algorithm.
Variables corresponding to columns in the set of line bal-
ancing results make up the RMP solution. In addition to the
initial part, which originates from the heuristic algorithm,
other columns are generated from the pricing subproblem.
Since constraints in the RMP model cannot control the
pricing subproblem, columns that are eradicated in the RMP
may return again in the later process of column generation.
Additionally, adding new constraints to the model of the
master problem will change its dual problem. *us, we
design a new branching strategy for the TALBz problem
based on the Ryan–Foster branching rule. In this work,
branching constraints are realized in the pricing subproblem
instead of in the RMP.

After determining a pair of tasks from the fractional
solution, two child nodes are built in the left branch and the
right branch. *e following constraints are added to the
subproblemmodel of (29)–(40) at different nodes. For nodes
in the left branch,
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]l � ]m ∀ l, m{ } ∈ L. (51)

In the left branch, constraints require that task {l, m} in
the left branch pair L be assigned together to one mated-
station. Either vl� vm � 1, which means that tasks l andm are
included in the assignment, or vl� vm � 0, which means that
the current solution does not contain l or m.

For nodes in the right branch,

]l + ]m ≤ 1 ∀ l, m{ } ∈ R. (52)

In the right branch, constraints require that the task pair of
{l, m} in the right branch pair R be distributed to different
mated-stations. *us, assignments of the mated-station may
cover only one task (vl � 0, vm � 1 or vl � 1, vm � 0), or none of
the tasks {l, m} appear in the currentmated-station (vl � vm � 0).

Based on the above approach, branching constraint sets
(51) and (52) can match the zoning constraint sets (36) and
(37) that appear in the subproblem model, which contains
the restrictions among tasks. Our proposed method has
more advantages in handling this type of problem than other
methods that adopt the original model. However, zoning
constraint sets (36) and (37) in the B&P algorithm do restrict
these relationships of tasks. *us, they can be directly

applied to define the branching constraints instead of adding
additional expressions.

5. Computational Experiments

*ree categories of numerical experiments are carried out.
In the first part, benchmark datasets with the zoning con-
straints are tested to evaluate the proposed B&P algorithms
for the TALBz problem. In the second part, the benchmark
problems without any zoning constraints are resolved to
make a comparison with the most recent studies of TALB
problem. In the third part, four new datasets from the real-
world production line, which happen at a premier brand
automaker’s assembly shop, are tested to verify the effec-
tiveness of the B&P algorithm for practical problems. *e
proposed B&P is coded in Python 3. An interface with the
Gurobi 7.5.2 solver is built in the algorithm. *e computer
on which the experiments are conducted has an Intel Core
(TM) i7-3770 3.4GHz CPU and 8GB RAM memory.

5.1. Benchmark Instances with the Zoning Constraints. Six
benchmark problems, which originate from the literature,
are studied in this part. *ese instances can be classified into

(1) Initialize Pool� P0
(2) while Pool not empty do
(3) for task i in Pool do
(4) Pre-assignment of task i
(5) end for
(6) if all task i LFTi>CT then
(7) Start a new workstation assignment
(8) end if
(9) Earliest start time calculation
(10) Sorting tasks in Pool
(11) for task in Pool do
(12) Assignment of task
(13) Workstation capacity update
(14) end for
(15) Pool set update
(16) end while
First Step. Initialize the task assignment from the first workstation with the set of P0. Create a candidate Pool that copies P0.
Second Step. Capacity checking is done through the assignment test. To ensure that there is enough time capacity for the tasks in the

candidate set, a test run of the assignments on the current workstation is performed. For a task without any linked pair task on the
left branch, the operation time of this task is compared with the residual time capacity. For a task that has a linked pair task on the
left branch, the largest finish time of the packing group is compared with the current station’s remaining capacity. If all tasks’ finish
time periods are beyond the limit of cycle time, the heuristic begins to plan a new workstation.

Bird Step. Calculate the earliest start time for all tasks in the candidate set based on the time transfer function.
Fourth Step. Sort the tasks in the candidate set according to the priority rule discussed in the former section.
Fifth Step. Assign the first task in the sorted list. Assigning strategies are designed according to the different attributes of task branching

constraints: (1) For a task that has neither a left pair nor a right pair, task assignment can be done directly. (2) *e second type of
task has a right pair but not a left pair. *e heuristic procedure checks whether there is any contradictory task at the current station.
(3) For a task with left pair constraints, a package of tasks related to the left pair constraints needs to be determined. *e time
capacity constraint and the right pair task constraints are tested for this package. Assignment of the task package is taken if all these
constraints are satisfied. *e latest capacity of the workstation is updated after the assignment.

Sixth Step. Update the set of candidate tasks, remove the task that was just distributed, and append new tasks into the candidate set. If
all predecessors of one task have already been assigned, then list this task in the pool.

Last Step. Return to Step 2 until all tasks have been assigned to the assembly line.

ALGORITHM 1: Pseudo-code of initial solution.
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small-sized problems, P12–P16–P24, and large-sized
problems: P65–P148–P205. Problems P12 and P24 are
studied with reference to [18]. *e data of problems P16,
P65, and P205 are taken from [9]. P148 contains 148 tasks
and was first designed by Bartholdi [8]. We modified the
value of task 79 from 281 to 111 and task 108 from 282 to 43
according to Lee et al. [9]. *e zoning constraints of these
instances listed in Table 1 are taken from Baykasoglu and
Dereli [21] and Özcan and Toklu. [16].

Computational results are shown in Table 2. *e per-
formance criterion of the number of mated-stations (NMs)
is used to evaluate the proposed algorithm. *ere are a few
studies considering the two-sided assembly line balancing
problemwith the zoning constraints. Results of the proposed
B&P were compared with those reported in the best studies.
*e ant colony (AC) by Baykasoglu and Dereli [21], the goal
programming (GP) by Özcan and Toklu [16], and the bees
algorithm (BA) by Özbakır and Tapkan [3] have obtained
the best solutions for the criterion of the number of work
stations. But, these published results are not available for
direct comparison, since their objective is to minimize the
number of workstations. An equivalent number of mated-
stations of the published results are calculated for com-
parison.*e number of workstations in the published results
is used, and it is divided by 2. *e equivalent number of
mated-stations equals to this value. If it is not an integer
value, then round it up.*e average number of workstations
is taken from Özbakır and Tapkan [3]; the minimum
number of workstations is taken from Baykasoglu and Dereli
[21] and Özcan and Toklu [16]. Additionally, the original
models (1–13) are tested using the Gurobi solver to compare
with the models reformulated in the proposed B&P
algorithm.

Tests are conducted under various cycle times (CTs). *e
value of “computing minimum mated-stations” (CMSs) is
calculated directly using the summation of the total tasks’
operation time divided by the double value of CT, which is
CMS�TSum/(2 ∗ CT). *is value can measure the slack
time between the theoretical minimum number of mated-
stations and the lower bound (LB). *e lower bound on the
mated-station’s number is equivalent to the value in [11].We
set a time limit of 300 s for the computation. When the run
time of the program exceeds this limit, the algorithm ter-
minates and returns the current best solution. Instances not
tested or solved by an algorithm are labelled with “-” for
results in Table 2 and in the later results. *e proposed B&P
obtained the best solutions in 27 of 32 instances considering
the zoning constraints. *e original models are effective on
small-sized problems (P12, P16, P24), and large-sized
problems cannot be solved by the Gurobi solver within the
time limit. *e GP only tests the small-sized problems P12,
P16, and P24. *e BA outperforms other algorithms in the
reported research. *e BA generated better solutions on 5
instances compared with the B&P algorithm. *e proposed
B&P generated 3 better solutions than the AC. However,
these results cannot strictly evaluate the performance of the
algorithms.*is is mainly because of the following: First, the
real number of mated-stations may be larger than the
equivalent value used in this study when some mated-

stations only have the task assignments on the single-side
workstation. Second, although the average number of
workstations for each instance is given, the results generated
by the AC and BA are nondeterministic and the values vary
for each computation.

5.2. Benchmark Instances without the Zoning Constraints.
In order to make a comparison with themost recent research
of the general TALB problem, benchmark problems without
any zoning constraints are tested. *e results are shown in
Table 3. *e proposed method is compared with the heu-
ristic algorithm of group assignment (GA) by Lee et al. [9],
the branch-and-bound (B&B) algorithm of Wu et al. [11],
the tabu search (TS) algorithm of Özcan and Toklu [47], the
reported best metaheuristic of the modified simulated
annealing (mSA) algorithm of Khorasanian et al. [48], and
the state-of-the-art branch bound and remember (BB&R)
algorithm of Li Z. et al. [17]. Additionally, the original
models (OM) with removed zoning constraint sets (9) and
(10) are solved using Gurobi solver to evaluate the refor-
mulated models in the B&P algorithm.

*e B&P algorithm yielded the best solutions in 25 of 32
instances. *e proposed algorithm was quite efficient and
effective for small-scale problems. All the tests of P12, P16,
and P24 reached the optimal results. Seven cases of the large-
size problem, P65 (CT 326), P148 (CT 204), and P205 (CT
1322, 1510, 1699, 2077, 2454) returned the final result which
has a one unit gap with the value of the best solution. Lee
et al. [9] showed their computational results of P65, P148,
and P205 instances. B&P found better solutions in 9 in-
stances than GA did in terms of the number of mated-
stations. Wu et al. [11] tested P12, P16, P24, P65, and P148 in
their study, where B&B algorithm outperformed the B&P
algorithm in only one instance of P148 (CT 204). *e B&P
algorithm also obtained solutions with fewer mated-stations
than the TS algorithm for 7 instances. *e mSA presented
the results with four better solutions than the B&P in P148
and P205. *e BB&R is an effective and efficient method for
the TALB problem, and it produced seven better results than
the B&P. *e original model is still effective at solving the
small-scale problems (P12, P16, P24), and it can barely
obtain a feasible solution for large-scale problems (P65,
P148, P205).

Regarding the running time, we list the computation
times of the original models (OM Gurobi) and the proposed
B&P algorithm. *e CPU times of B&B for P12–P148 were
solved between 0.001 and 68.125 s on a Pentium 4 2.0GHz
PC [11].*e CPU times of the TS algorithmwere reported to
be between 0.06 and 2100 s on a Pentium 4 3.0GHz PC [47].
*e computation times of the mSA algorithm were less than
5 seconds for every problem case on an Intel Core 2 Duo
T9600 PC with 2.8GHz CPU [48]. *e BB&Rmethod found
optimal solutions for all tested instances in 1.0 s on average
with an Intel Core (TM) i7-4790S 3.2 GHZ CPU PC. Due to
the great differences among these algorithms in terms of
computers, programming compilers, and running systems, it
is difficult to accurately distinguish the performance of al-
gorithms based on the reported results. However, it is clear
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that the B&P algorithm is quite fast obtaining optimal so-
lutions for small-sized problems. All instances of P12, P16,
P24 and P65 were solved optimally within 20 seconds. For
the large-scale problem of P148 and P205, 8 out of 16 in-
stances obtained the optimal result in less than 20 seconds.

5.3. Real Production Cases. Next, four new problems, P56,
P58, P81, and P161, which were derived from real pro-
duction cases at BMW assembly shops, were tested in this
paper. Problems P56, P58, and P81 were taken from one
powertrain system assembly line at the BMW-Brilliance

Plant Dadong and contained 56, 58, and 81 tasks, re-
spectively. *e total operation times of the installations of
P56, P58, and P81 are 889.46 s, 731.28 s, and 1006.96 s,
respectively. *ese three cases occurred in three different
sections in the powertrain assembly line. *is powertrain
system was installed in the preassembly area with a cycle
time of 101 seconds. *e production rate (PR) of the
powertrain part was 33 units per hour. Problem P161
consists of 161 tasks of underbody component assembly
that showed at BMW-Brilliance Plant Tiexi. *e majority
of underbody parts are installed in the tilting line, which is
shown in Figure 4. *e tilting line is one key part of the

Table 1: Zoning constraints for the benchmark problems.

Test problem
Set of task pairs

LT IT
P12 {1, 4} {3, 5}
P16 {3, 6, 7} {8, 9, 10}
P24 {1, 11}; {7, 10} {14, 24}
P65 {3, 23, 24}; {31, 32}; {36, 37} {10, 30}; {46, 56}

P148 {29, 31}; {37, 38}; {40, 41}; {8, 145}; {30, 70}; {48, 110}; {55, 71};
{50, 51}; {11, 12, 13}; {90, 111, 112} {102, 108}; {122, 125}; {142, 147}

P205 {2, 3}; {7, 8, 9, 10, 11, 12}; {25, 27}; {29, 33}; {35, 110}; {93, 109}; {114, 174};
{20, 21, 22, 23}; {30, 31, 32}; {37, 38, 39} {144, 154}; {156, 190}; {77, 88}; {87, 100}; {40, 70}

Table 2: Performance comparison of the benchmark instances with zoning constraints.

Problem CT CMS LBNM
AC GP BA OM (Gurobi) B&P
NM NM NM NM CPU time NM CPU time

P12

4 3.13 4 — — — 4 0.244 4 0.282
5 2.5 3 3 3 3 3 0.285 3 0.494
6 2.08 3 3 3 3 3 0.353 3 0.494
7 1.79 2 3 2 2 2 0.167 2 1.563

P16

15 2.73 4 — 3 4 4 0.518 4 0.072
18 2.28 3 — 3 3 3 0.311 3 0.060
20 2.05 3 — 3 3 3 0.397 3 0.059
22 1.86 2 — 3 3 3 0.446 3 0.154

P24

25 2.8 3 — 3 3 3 2.397 4 40.479
30 2.33 3 3 3 3 3 17.231 3 0.122
35 2.00 2 3 2 2 2 2.924 3 27.771
40 1.75 2 2 2 2 2 1.443 2 0.121

P65

326 7.82 8 9 — 9 — 302.390 9 244.108
381 6.69 7 8 — 8 — 302.035 8 0.395
490 5.20 6 6 — 6 6 301.505 6 0.384
544 4.68 5 5 — 5 5 301.445 5 0.413

P148

204 12.55 13 13 — 14 — 321.140 14 315.203
255 10.05 11 11 — 11 — 317.802 11 2.474
357 7.18 8 9 — 8 — 312.138 8 2.017
408 6.28 7 8 — 7 — 312.026 8 312.928
459 5.58 6 7 — 7 — 310.547 7 314.697
510 5.02 6 6 — 6 — 310.696 6 2.376

P205

1133 10.30 11 13 — 12 — 315.844 12 1.829
1322 8.83 9 11 — 11 — 315.469 11 1.820
1510 7.73 8 10 — 9 — 316.281 10 252.363
1699 6.87 7 9 — 9 — 323.579 9 1.918
1888 6.18 7 8 — 8 — 316.097 8 1.708
2077 5.62 6 8 — 8 — 316.238 8 308.554
2266 5.15 6 7 — 7 — 315.647 8 318.713
2454 4.76 5 7 — 7 — 315.148 7 1.762
2643 4.42 5 7 — 7 — 316.396 7 1.660
2832 4.12 5 6 — 6 — 315.917 6 1.747
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main assembly line that it is operated in the two-sided
mode. Using the tilting line improves the ergonomics of
assembly production. *e main parts installed in the
tilting line include the harness, brake lines, fuel supply
system, roof antenna, and numerous plugs on the vehicle
body. *e working process consists of 1615.82 s of op-
erations in total. To simplify the line balancing problem,
some continuous operations are combined as one task
according the standard referenced instructions. For ex-
ample, preparation of the fuel tank assembly involves
three key processes: fuel task scanning (operation time
10.26 s), adhesive pad bonding (operation time 15.66 s),
and fuel tank installation (operation time 10.15 s). *ese
three processes are performed continuously in practice
and integrated as task 132 (operation time 36.00 s) in P161
problem. Finally, 161 tasks are counted in the P161
problem. *ese works are completed by 38 workers at 19
mate-stations in the current production line we studied.
*e current PR of the main assembly line in the BMW
Tiexi plant is 60 units of cars per hour with a cycle time of
55.38 seconds. Zoning constraints are involved in prac-
tical production problems, and the linked task pairs (LT)
and the incompatible task pairs (IT) are designed for each
problem.

After optimization using the B&P algorithm, the number
of mated-stations is reduced for all cases compared to that in
previous production schedules. For the middle-sized
problems P56 and P58, the NM reached the lower bound.
For the large-sized problem P81, the value of CMS is almost
equal to the lower bound; we obtained the current best
solution with six mated-stations. In problem P161, the
number of mated-stations is reduced to 15 in total. *is
value also equals to the lower bound. Since these instances
are new datasets for the TALBz problem, we test the original
models (OM) of these problems through theGurobi solver to
compare their performances. *e optimization results are
shown in Table 4.

To test our proposed method for more practical cases, we
set various lengths for the cycle time in experiments. In-
stances are extended for situations when the production rate
(PR) increases. *e passing time Tp of the vehicle on each
station is calculated as

Tp �
3600
PR

. (53)

*e recommended CT for assembly production is in the
range of (0.92∼0.95) ∗ Tp. For problems P56, P58, and P81
involving the powertrain system assembly, we set PR to

Table 3: Performance comparison of the benchmark instances without zoning constraints.

Problem CT CMS LBNM
GA B&B TS mSA BB&R OM (Gurobi) B&P
NM NM NM NM NM NM CPU time NM CPU time

P12

4 3.13 4 — 4 4 4 4 0.244 4 0.037
5 2.5 3 — 3 3 3 3 3 0.223 3 0.017
6 2.08 3 — 3 3 3 3 3 0.376 3 0.015
7 1.79 2 — 2 2 2 2 2 0.198 2 0.584

P16

15 2.73 4 — 4 4 4 4 1.241 4 0.043
18 2.28 3 — 3 3 3 3 0.525 3 7.884
20 2.05 3 — 3 3 3 3 0.504 3 2.715
22 1.86 2 — 2 2 2 2 2 0.483 2 10.574

P24

25 2.8 3 — 3 3 3 3 3 6.895 3 0.234
30 2.33 3 — 3 3 3 3 3 59.807 3 0.225
35 2.00 2 — 2 2 2.45 2 2 16.762 2 8.549
40 1.75 2 — 2 2 2 2 2 2.305 2 0.231

P65

326 7.82 8 9 - 9 9 8 - 305.460 9 15.643
381 6.69 7 8 7 8 7 7 - 304.837 7 0.904
490 5.20 6 6 6 6 6 6 6 304.146 6 0.713
544 4.68 5 6 5 5 5 5 6 303.641 5 2.301

P148

204 12.55 13 14 13 13 13 13 — 302.533 14 300.00
255 10.05 11 11 11 11 11 11 — 308.973 11 18.330
357 7.18 8 8 8 8 8 8 — 306.029 8 5.605
408 6.28 7 7 7 7 7 7 — 301.672 7 5.703
459 5.58 6 7 6 6 6 6 — 307.293 6 2.283
510 5.02 6 6 6 6 6 6 — 306.425 6 5.797

P205

1133 10.30 11 12 — 12 11 11 — 304.414 11 45.277
1322 8.83 9 11 — 11 9.7 9 — 305.732 10 300.00
1510 7.73 8 10 — 9 8 8 — 306.836 9 300.00
1699 6.87 7 8 — 9 7.1 7 — 306.261 8 300.00
1888 6.18 7 8 — 8 7 7 — 304.959 7 88.521
2077 5.62 6 7 — 7 6 6 — 304.935 7 300.00
2266 5.15 6 7 — 7 6 6 — 304.328 6 7.540
2454 4.76 5 6 — 6 5 5 — 304.302 6 300.00
2643 4.42 5 6 — 6 5 5 — 303.677 5 7.173
2832 4.12 5 5 — 5 5 5 — 303.620 5 1.134
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34∼42 (34, 36, 38, 40, 42) units. *e cycle time is taken as
0.94 ∗ Tp, which ranges from 80.57 s to 99.53 s. For problem
P161, we determined that the cycle time is 0.94 ∗ Tp as the
PR lifts from 61 to 69 (61, 63, 65, 67, 69) units per hour.*us,

the cycle time was taken from 54.48 s to 49.04 s. Table 4
summarizes the computing results.

As presented, Gurobi can deal with middle-sized TALBz
problems. However,Gurobiwas unable to resolve any case of

Figure 4: Assembly line of vehicle underbody parts.

Table 4: Performance comparison of vehicle assembly production instances with zoning constraints.

Problem
Zoning constraints

CT CMS LBNM
OM (Gurobi) B&P

LT IT NM CPU time NM CPU time

P56 {[9, 11], [16, 17], [51, 52]} {[38, 42]}

80.57 5.52 6 7 302.597 6 0.373
84.6 5.26 6 6 301.711 6 142.117
89.05 4.99 5 6 301.413 6 301.227
94.0 4.73 5 6 301.445 5 0.369
99.53 4.47 5 5 171.507 5 0.396
101 4.40 5 6 301.756 5 0.372

P58 {[18, 23], [33, 35], [43, 45]} {[4, 11], [25, 38]}

80.57 4.54 5 5 301.660 5 0.358
84.6 4.32 5 5 186.620 5 0.378
89.05 4.12 5 5 301.671 5 0.375
94.0 3.89 4 5 301.629 4 0.378
99.53 3.67 4 4 301.414 4 0.389
101 3.62 4 4 186.485 4 0.352

P81 {[3, 9], [23, 31], [35, 45], [60, 63], [70, 73]} {[5, 17], [28, 33], [48,
64]}

80.57 6.25 7 8 304.927 7 0.834
84.6 5.95 6 7 304.312 6 304.779
89.05 5.65 6 7 304.376 6 0.807
94.0 5.36 6 - 304.303 6 0.813
99.53 5.05 6 6 304.561 6 0.811
101 4.98 5 6 303.881 6 0.998

P161 {[16, 17], [46, 47], [76, 80], [131, 132], [137,
138]} {[14, 37], [71, 100]}

55.48 14.56 15 - 304.136 15 5.394
53.71 15.04 16 - 304.254 16 5.314
52.06 15.52 16 - 304.449 16 6.398
50.51 16.00 16 - 304.297 17 308.492
49.04 16.47 17 - 304.661 17 10.627
55.38 14.59 15 - 304.227 15 5.241
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the P161 problem within 300 s or returned a second-best
solution when the computation finished.*e B&P algorithm
provided 15 better solutions out of 24 cases than the Gurobi
solver. *e B&P algorithm gave results equal to the lower
bound for 21 of 24 cases. *ese instances were solved op-
timally. *ree cases (P56-CT89.05, P81-CT101, and P161-
CT50.51) obtained a final solution that has one unit gap with
the lower bound. For these instances, their CMS values were
equal to the lower bound which means that no slack time
remained.*is explains why the lower bounds are difficult to
reach. Fewer instances were solved optimality by Gurobi
dealing with the TALB problem with zoning constraints.
*ese additional restrictions have resulted in higher com-
plexity. However, the B&P algorithm can still return optimal
solutions in a very short time on most cases. To summarize,
the proposed B&P algorithm is effective for solving the
TALBz problems, while the Gurobi is not competitive. *e
B&P algorithm clearly outperformed Gurobi which adopts
the original models in terms of the computation time for all
cases.

From the test results of all instances above, the per-
formance of the branch-and-price algorithm is affected by
several factors. (1) *e scale of the problem size: for small-
and middle-sized problems (P12, P16, P24, P56, P58, and
P65), the proposed algorithm gave almost the optimal so-
lution for all cases. *e proceeding time of the program for
the small- and middle-sized problems was relatively short:
40 of 44 cases were solved optimally within 15 seconds. As
the size grew, the complexity increased, which resulted in
longer running times (from 0.811 to 318.713 s) for large-scale
problems (P81, P148, P161, and P205). It was difficult to
reach the optimal result for large-sized problems; 31 of 44
cases (P81, P148, P161, and P205) obtained the optimal
solution. (2) Slack time: the slack time is small when the
CMS is near the lower bound. It depends on various cycle
times and lower bounds of different cases. Although the
CMS is not calculated as rigorously as the value of the lower
bound, it can measure the possibility of reaching the lower
bound because of the inevitable sequence-induced idle time
in the TALB problem.*e smaller the slack time is, the more
difficult it is for the algorithm to reach the optimal solution.
*is limits the algorithm to obtain the optimal combination
of solutions in a short amount of time.

6. Summary

*is study verifies the effectiveness of using the column
generation method to solve the TALBz problems. A B&P
algorithm is presented to deal with the TALBz problem for
the first time. *e published models cannot be directly
applied to implement a column generation procedure. *us,
Dantzig–Wolfe decomposition of the original model is
conducted. Models of the master problem and subproblems
are reformulated. *e proposed branching strategy is
demonstrated to be effective in obtaining an integer solution.
Since the initial solution is used not only at the root node in
the branch-and-bound tree but also at branching nodes, the
heuristic procedure is able to generate feasible solutions
which are in accordance with constraints at different nodes.

*is novel exact algorithm shows advantages over pre-
vious exact approaches and metaheuristic methods. *e
solution procedure is more efficient than traditional exact
algorithms, especially for large-scale TALBz problems.
Different from the metaheuristic methods, the column
generation procedure is based on deterministic models. *e
specific restrictions of the TALBz problems, such as the
zoning constraints of tasks, can be directly embedded into
the mathematical model. *is approach makes it feasible to
implement more practical constraints, such as process re-
strictions, resource restrictions, and line configuration re-
strictions, in real-world assembly production. An
automotive company can minimize the production cost
based on the deterministic results of the TALBz problem.

Experiments were performed on 32 instances of the
general TALB problem and 56 instances with additional task
restrictions. *e proposed method obtained the optimal
results inmore than 80% of cases. Although the computation
time became longer as the task number increased, especially
for instances with a short slack time, promising results were
obtained in most cases. *e B&P algorithm has more ad-
vantages in solving real-world problems that have complex
restrictions compared with all other methods. Comparing
the performance of reformulated models and original
models reveals that the new models are more effective and
efficient to obtain optimal solutions (80.68% vs 39.77%). For
middle- and large-size problems of practical assembly
production, the B&P method outperformed the Gurobi
solver. In most cases, the B&P algorithm can generate op-
timal solutions faster than the Gurobi.

Further studies will be performed to extend this ap-
proach to mixed-model assembly lines, which are more
complex but more common than single-model assembly
lines in automotive manufacturing plants. Another inter-
esting direction could be designing a specific algorithm to
resolve the pricing problems that are handled by the solver
in this study. Designing some heuristic rules for the gen-
erated columns in that algorithm might improve the
performance of the B&P algorithm in instances with little
slack time.
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