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This article is mainly concerned with the existence and the forms of entire solutions for several systems of the second-order partial
(@ (£ (20,2))/02}) + B@ f (21,2)02))" + f (2, + ¢y 2y +¢y)™ =11
(@ (3 f,(21,2,)102) + B f (21, 2)102))" + f1 (21 + €1, 2, +6,))™ = 1

. Our results about the existence and the forms of solutions for these systems

differential difference equations of Fermat type { and

(0 f1(21,2,)1022) + fr (2, + €12y +6,) = 1
(0 f1(21,2,)102) + f1 (2, + 1,2, +6,)° = 1
generalize the previous theorems given by Xu and Cao, Gao, Liu, and Yang. In addition, we give some examples to explain the

existence of solutions of this system in each case.

1. Introduction and Main Results

The issue on the existence and form of solutions for Fermat-
type equation x™ + y" =1 has attracted considerable at-
tention from many scholars. Especially, Taylor and Wiles
[1, 2] pointed out that this equation does not admit a
nontrivial solution in rational numbers for m = n>3, and
this equation does admit a nontrivial rational solution for
m = n = 2. In fact, the study of this issue should go back to
sixty years ago or even earlier; Montel [3] and Gross [4] had
pointed out that the entire solutions of the functional
equation f"+g"'=1 for m=n=2 are f=
cosa(z), g = sina(z), where a(z) is an entire function; for
m = n>2, there are no nonconstant entire solutions.

In 2004, Yang and Li [5] investigated a certain nonlinear
differential equational of Malmquist type, by making use of
Nevanlinna theory, and obtained the following.

Theorem 1 (See [5]). Let ay,a,, and a; be nonzero mero-
morphic functions. Then, a necessary condition for the dif-
ferential equation,

a1f2+a2f'2 = az, (1)

to have a transcendental meromorphic solution satisfying
T(r,a;) =S(r, f), k=1,2,3 is (a,/a;) = constant.

In the past ten years, Liu and his collaborators inves-
tigated the existence of solutions for a series of complex
difference equations and complex differential difference
equations of Fermat type, by using the difference Nevanlinna
theory for meromorphic functions (see [6-8]), and obtained
alot of interesting original results (see [9-11]). In order to be
consistent with the following text, here, we only list one of
results are given by Liu.

Theorem 2 (See [10], Theorem 9). ie transcendental entire
solutions with finite order of

@)+ f(z+c) =1, (2)

must satisfy f (z) = sin(z + Bi), where B is a constant and
¢ =2km or ¢ = (2k + 1)1, where k is an integer.

In 2019, Liu and Gao [12] further studied the entire
solutions of the second-order differential and difference
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equation with single complex variable and obtained the
following.

Theorem 3 (see [12], Theorem 2.1). Suppose that f is a
transcendental entire solution with finite order of the complex
differential difference equation

"2+ f(z+0) =Q(2). (3)

Then, Q(z) = ¢,c, is a constant, and f (z) satisfies

az+b —az-b

fley=98 *2¢ (4)
2a
where a,b € C and a* = 1,c = (log(—ia®) + 2kni/a), where
kez.
In 2016, Gao [13] further investigated the form of solu-
tions for a class of system of differential difference equations
corresponding to Theorem 2 and obtained the following.

Theorem 4 (See [13], Theorem 7). Suppose that (f,, f,) isa
pair of finite-order transcendental entire solutions for the
system of differential difference equations

[f1@) + frz+0° =1,

i 2 2 (5)
(2] + fi(z+0) = 1.
Then, (f,, f,) satisfies
(f1(2), f5(2)) = (sin(z - bi), sin(z - b;i)), ©

or (f,(2), f,(2)) = (sin(z + bi), sin(z + b;i)),

where b, b; are constants and ¢ = km, where k is a integer.

For the differential difference equations with several
complex variables, Xu and Cao [14, 15] recently investigated
the existence of the entire and meromorphic solutions for
some Fermat-type partial differential difference equations by
using the Nevanlinna theory in several complex variables
and obtained the following theorems.

Theorem 5 (See [14], Theorem 7). Let ¢ = (¢y,¢,) be a
constant in C>. Then, the Fermat-type partial differential
difference equation,

(M) faranta) =1L ()
0z,

does not have any transcendental entire solution with finite
order, where m and n are two distinct positive integers.

Theorem 6 (See [14], Theorem 8). Let ¢ = (c¢;,c,) be a
constant in C*. Then, any transcendental entire solution with
finite order of the partial differential difference equation,

2
(e eanraran ®
0z,

has the form of f(z,,z,) =sin(Az, + B), where A is a
constant on C satisfying Ae'* = 1 and B is a constant on C;
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in the special case, whenever ¢, =0, we have f(z,,z,) =
sin(z; + B).

Inspired by the form of the abovementioned equations in
Theorems 3-6, a question naturally arises: What will happen
about the existence and the form of the solutions when the
equations are put into the system and the first-order partial
differential is replaced by the second-order partial differentials?
For nearly two decades, although there were a lot of important
and meaningful results focusing on the solutions of the
complex difference equation of single variable (including
[8, 16-21]), as far as we all know, there are few literature about
the system of the second-order partial differential difference
equations of Fermat type in several complex variables. It seems
that this topic has never been treated before.

The purpose of this article is concerned with the prop-
erties of the solutions for some Fermat-type systems including
both the difference operator and the second-order partial
differential by making use of the (difference) Nevanlinna
theory of several complex variables [22, 23]. We give the
existence theorem and the forms of solutions for the Fermat-
type systems of the second-order partial differential difference
equations, which are generalization of the previous theorems
given by Liu, Liu et al., Gao, Xu and Cao, and Xu et al.
[9, 10, 13, 14, 24]. Here and below, let z + w = (z; + w;, 2, +
w,) forany z = (z,2,), w = (W, w,), and ¢ = (¢;,¢,). Now,
our main results of this paper are listed as follows.

Theorem 7. Let ¢ = (¢;,¢,) € C% and mj,n; (j=1,2) be
positive integers, and «, 3 be constants in C that are not zero
at the same time. If the following system of Fermat-type
partial differential difference equations,

aazfl (21,2,) +/382f1 (21,2,
0z? 072

n
)) +fo(z ez te)M =1,

(aazfz (z1,22) " azfz (z1,2,)

L)
0z2 B 0z2 > + /1 (Zl tc 2, "’Cz)mz =1
1 2

9
satisfies one of the conditions
(i) mym, >mnyn,
(ii) m; > (nj/nj —1) for nj>2, j= 1,2,then system (9)

does not have any pair of transcendental entire so-
lution with finite order.

Remark 1. Here, (f,g) is called as a pair of finite-order
transcendental entire solutions for the system

{fnlJ“g'"1 =1,
frrgh=1,

if f,g are transcendental
p = max{p(f),p(g)} < oo.

(10)

entire functions and

Remark 2. By observing the proof of Theorem 7, it is easy to
see that the conclusions of Theorem 7 also hold if
(azfj(zl,zz)/azf) or (azfj(zl,zz)/azg) of system (9) is
replaced by (82f]- (21,2,)/02,02,), j = 1,2.
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Theorem 8. Let ¢ = (c,,c,) € C*. Then, any pair of tran-
scendental entire solution (f,, f,) with finite order for the
system of Fermat-type difference equations,

(Bzfl(zl,z2

2
o7 )) + f5(z, +¢152, +c2)2 =1,
(11)
(E)Zfz(zl,zz

2
022 )) + f1(z + e, 2 +Cz)2 =1
1

is of the following forms:

(f1(2), f,(2)) = ( £sin(L(z) + By), tcos(L(z) + By)),
(12)
or
(f1(2), f5(2)) = (xcos(L(z) + By), tcos(L(z) + By)),
(13)
where L(2) = a,z, + az,, at = 1, e
constant in C.

= 41, and B, is a

The following examples show the existence of solutions
for system (11).

Example 1. Let a = (a;,a,) = (1, 1), ¢ = (c,¢c,) = (m,1),
L(z) = z, + nz,, and
(f1(2), f5(2)) = (-sin(L(2z) + By), —cos (L(z) + By)),
(14)

where B, is a constant in C. Thus, (f,, f,) satisfies the
following system:

o .2)\
(%) + [z +mzy + 1)2 =1,
1

(15)
3 f,(z1,2,)\
(fza(zzzl ZZ)) +fi(z vz +1) =1
1
Example 2. Let a= (a,a,) = (-i,1), c¢=(c,c,)=

(= (n/2), ), L(z) = =iz, + z,, and

(f1(2), f5(2)) = (—cos(L(z) + By), cos(L(z) + By)),
(16)

where B, is a constant in C. Thus, (f,, f,) satisfies the
following system:

Pfi(z1,2,) 2
(%) +f2<zl_g,zz+7'[> = 1,
(17)

Pfr(z2)\ 2
(%) +f1<zl—g,zz+7r) =1

Theorem 9. Let ¢ = (c,,c,) € C*. Then, any pair of tran-
scendental entire solution (f,, f,) with finite order for the
system of Fermat-type partial differential difference
equations,

31 (21,2,) 0 fi(z02))
< fla(zzl 2) J;lz(lalzz 2)> +fo(z tenz v 6) =1,
1

2 2,) 5 (z12)\
< fza(zzzl =) + ];zz(zlz Z2)> +f1(z ez, +Cz)2 =1
1 102,

(18)
is of the following forms:
(f1(2), f,(2)) =( £ sin(L(z) + By), = cos(L(z) + By)),

(19)

or
(f1(2), f,(2)) = (£ cos(L(z) + By), + cos(L(2) + By)),
(20)
where L(z) =a,z, +a,z,, la,(a, +a,)]* =1, & =1,

and B, is a constant in C.

We also list two examples to exhibit the existence of
solutions for system (18).

Example 3. Let a= (a;,a,) = (V2 = 1,2), c¢= (c;,¢;) =
(- (V2 + Dm, ), L(2) = (V2 = 1)z, +2z,, and

(f1(2), f5(2)) = (sin(L(2) + B,),—cos(L(z) + By)),
(21)

where B is a constant in C. Thus, (f,, f,) satisfies the
following system:

2 2 2
(a /i (21)Zz)+a fi (21’22)> + fo(z - (V2 + 1)7r,z2+71)2 =1,

0z3 0z,0z,

(22)

(azfz(znzz) +azf2(zl’22)> +f1(z - (V2 + D, z, +71)2 =1

0z2 0z,0z,



Example 4. Let
(1, (n/4)), L(z) =

(f1(2), f5(2)) = (cos(L(z) + By), cos(L(z) + By)),
(23)

a=(a;a,) = (-1,2),
-z, +2z,, and

c=(c1,6) =

where B, is a constant in C. Thus, (f,, f,) satisfies the
following system:

o (ZI’ZZ) o f (szz) ( ")2
Z 4+ Mz, =) =1,
( 0z2 0z,0z, fa\= 2y

o’ fz(zvzz) o’ fz(ZpZz) ( ”)2
s -] =1L
( 0z2 02,0z, th Armanty

(24)

Remark 3. In fact, in view of the proofs of Theorems 8 and 9,
it is easy to get that the conclusions of Theorem 9 still holds,
if the system (18) is replaced by the following systems:

<azf1 (z1,2,) ’

) + fo(z, + ¢y, 2, +c2)2 =1,

0z,0z,
(25)
o f, (2,2 :
<%) + 11z +cpzy+6) =1,
or
azfl (21,2,) azfl (21,2,) ’ 2
( o2 + 22,02, +fo(z1+cpz+6) =1,

2 2)\
'gzz(glz ZZ)) + 1z +epz+6) =1,
1 2

(26)

(azfz (21,2,) +
0z2

respectively. The only thing that we need to do is to modify
the condition [a, (a, + (12)]2 =1to (a1a2)2 =1or [a,(a;+
a,)]* = 1, respectively.

( f] zl>Z2)) :m(r,f] Zl>z2))
f] ZI’ZZ)

IN
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2. Proof of Theorem 7

To prove Theorem 7, we need the following lemmas.

Lemma 1 (See [25, 26]). Let f be a nonconstant mero-
morphic function on C", and let I = (i},...,i,) be a multi-
index with length |I| = Z] 1 ij. Assume that T(ro,f) >e for

some r,. Then,
1
m(r,%) =S, f),

holds for all r >, outside a set E C (0,+00) of finite loga-
rithmic ~ measure _[Edt/t <oco, where o'f=("f/
0z}, ...,0zy)).

(27)

Lemma 2 (See [22, 23]). Let f be a nonconstant mero-
morphic function with finite order on C" such that
f(0)#0,00, and let €>0. Then, for c € C",

( f{(?c))m( f(fz(:)6)> Sewf. (28)

holds for all r >r, outside a set E C (0,+00) of finite loga-
rithmic measure IEdt/t < 00.

Proof. The proof of Theorem 7: suppose that (f,, f,) is a
pair of transcendental entire functions with finite order,
satisfying system (9); then, it follows that «(9° f, (z,,2,)/
0z2) + B(3°f,(21,2,)/023)  and  a(d*f,(z,,2,)/023)+
ﬁ(a2 f,(z,2,)/023) are transcendental. Here, the following
two cases will be considered:

(i) Case 1: m;m, >nn,: in view of Lemma 2, it yields
that

fj(zl’zz) - .
m<r)fj(zl +C,2) +C2)> - S(r’fj)’ ] = 1, 2:
(29)

hold for all > 0 outside of a possible exceptional set
E; c [1,+00] of finite logarithmic measure
'[Eidt/t < 00. Thus, it follows from (29) that

J

for all r ¢ E=: E, UE,. In view of (30), Lemma 1,
and the Mokhon’ko theorem in several complex
variables ([27], Theorem 3.4), it yields that

m(r,f @ oz +c2)) +m(r,fj (z; + ¢ 2y +c2)) +log?2,

(30)

m(r, fJ Zytcepzy t CZ)) + S(T, fj)’

T(r,f (21 +cppzy + Cz)) + S("’fj)’
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mT(r, f,(21,2,)) <mT(r, f5(z; +¢1,2, +¢5)) +S(7, f5)s

=T(r, fr(z, + ¢z, +6)™) +S(r, f5),

an(r)“azfl (21,22) +ﬂ52f1 (z1,25)

2 2
0z, 0z,

ERYAREYAL

o’ fi(z1,2,) azfl(zl’zz)
= e ) RIS ARYS

<m <m<r, el (ZI,ZZ)/a;l (J;lﬁ(zaz)fl (ZI’ZZ)/322)> +m(r, f, (szz))) +8(r, f1) +S(r, f2),

=mT(r, f1(21,2,)) +S(r. f1) +S(r, f5)s
(31)

for all reE. Similarly, we have Since f,, f, are transcendental and m,m, >nn,,
this is a contradiction.
m,T (r, Z1,2,)) <n,T(r, Z,2
T fi(enz))<mT(n f(202) (ii) Case 2: m; > (n In; —l)forn >2,j=1,2:in view of

+8(r, f1)+S(r. f5), r¢E. the Nevanhnna second fundamental theorem,
(32) Lemma 2, and system (9), it follows that

In view of (31) and (32), it yields that

(mym, - ”1”2)T(r’ fi (szz)) <S(r, f1) +S(r. f5), r¢E
(33)

(n, - 1)T(r,aazfl (21,2,) +/362f1 (zpzz))

2 2
0z] 0z,

<Nl r 9 f (Zl’zz) O f1 (szz) - 1
_N<’ oz P z; ) ZN(’ (0’ f, (z1,2,)1027 ) + B(0° f (zl,zz)/az§>—wq>

+ S<r’aazf1 (z1,2,) ﬁa S (Zl»zz))

0z} 0z; (34)

~N| r 1 - afl(zpzz) azfl(zpzz))
SN( ’(a(azfl(zl,zz)/azf)+ﬁ(a2fl(zl,zz)/az;))”l_1>+S<’ R

sN(r, ! >+S(r>f1)

fa(z1 +c1,2, +65)

ST(r, f (21 + ¢, 2, + ) +S(r, f1) +S(r. 1),



6
where w, is a root of w™ — 1 = 0. Similarly, we have
(n, — 1)T<r,ocazf1 (zzl’ZZ) ﬁaZfl (ZI’ZZ)>
0z, 0z;

ST (r, f1(z + 1,2, +63)) +S(r, f1) +S(r, f2)-
(35)

On the other hand, by the Mokhon’ko theorem in several
complex variables ([27], Theorem 3.4), it follows from
system (9) that

m T (r, f, (21 +¢1,2, +65)),
=T(r, fo(z, + ez +6)™) + S
azfl (ZI’ZZ)

= T(r, <oc az%

—nT afl(ZDzZ)
1 az

(r. f2),

+f362fla(zzgl’22)>nl B 1) +8(r f5),

(36)
Similarly, we have

myT(r, f1 (2, +¢1,2, +63)),

2 2
_ nzT(r,oca fi (ZZI’ZZ) +ﬁa fi (szzz)) (37)
0z, 0z,

1) +8(r, f2)-
In view of (34)-(37) and m; > (nj/n]- -

+S(r, f

1), it follows that

(ml _nlni 1>T(r’f2 (2112, +6)) <S(r f1) +S(r. £2),

<m2 _nni 1>T(r’f1 (z1 + €12, +6,)) <S(r, f1) +S(r, f5)-
(38)

It leads to a contradiction with the assumption that
f1> f, are transcendental entire functions.
Therefore, this completes the proof of Theorem 7.

[azfl (21,2,)
oz

[azfz (z1,2,)
0z}

Since f,, f, are transcendental entire functions with
finite order, then by (40), we can see that the functions

f1(z1:2)
:8 a; )+S(”’fl)+s(’3f2)'

tifa(ai+enz +Cz)] [M

+if1(zl+c1,z2+c2)Ha fale

Journal of Mathematics

3. Proofs of Theorems 8 and 9

The following lemma plays the key role in proving Theorems
8 and 9.

Lemma 3 (See [28, 29]). For an entire function F on C",
F(0) #0 and put p(ng) = p < co. Then, there exist a canonical
function frp and a function gpeC" such that
F(z)=fp (2)e97 @), For the special case n=1, fp is the
canonical product of Weierstrass.

Remark 4. Here, we denote p(np) to be the order of the
counting function of zeros of F.

Lemma 4 (See [30]). If g and h are entire functions on the
complex plane C and g (h) is an entire function of finite order,
then there are only two possible cases: either

(a) the internal function h is a polynomial, and the ex-
ternal function g is of finite order or else

(b) the internal function h is not a polynomial but a
function of finite order, and the external function g is
of zero order

Lemma 5 (See [31], Lemma 3). Let fj( =0),j=1,2,3 be
meromorphic functions on C" such that f is not constant
and fi+ f,+ f3 =1 and such that

> {N2<r,f1j> +2N(r, f].)} AT(r, £,) +O(log T(r, 1)),

j=1
(39)

for all r outside possibly a set with finite logarithmic measure,
where A<1 is a positive number. Then, either f, =1 or

fi=1

3.1. The Proof of Theorem 8. Suppose that (f,, f,) is a pair
of transcendental entire solutions with finite order of system
(11). System (11) can be represented as follows:

5 —ifz(zl+c1,zz+c2)] =1,
0z

(40)

821 22) ifl(zl+cl,z2+cz)]:1.
Z]
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2
M +if, (2, +¢,2, +6,),
0z,
2
LZ;’ZZ) —if,(z + 12y +6y),
0z
(41)
2
LZZI’ZZ)HJII (21 +c1p2y +6y)s
0z;
o ,
/2 (Zz1 2) —if (2, + 12y +63),
0z,

have no any zeros and poles. Moreover, by Lemmas 3 and 4,
we have that there exist two polynomials p, (2), p, (z) such
that

’ azfl(zpzz)

ip, (z,+c2,+¢;)
2 bl
0z)

+if,(zy+cpz,+cy) =€

O f(zp2 i
fla( 3 2)‘ —ify(z+epz )= P (reree),
2]
O f, (212 i
fza( 21 —2) +ify (21 + ¢z, +¢y) =P (Zlﬂl’zzﬂz),
2]
O f,(zpz2 i
fza( 21 2 —ifi(z1tepzte)=e 22 (zrreneaie),
2]
(42)
In view of (42), it yields that
[’ f, (z125) _ P& 4 i)
2 - bl
0z; 2
ipy(2) _ -ip)(2)
e —e
zZ+¢)=— ———,
fa(z+0) .
4 (43)
aZf2 (Zl’zz) ~ P22 4 mipa(2)
2 - bl
0z; 2
ip,(2) _ —ipy(2)
e —e
zZ+c) = ,
| Siz+9) 2i

which implies

2
[azﬁ . i(%) ] £ (21 (204,)

azi azl

2 2
. {a b l(%) :|ei(p1 (z40)-p, (2)) _ RINCRISY

azi azl

(44)

7
|:azp1 . l(%>2] ei(pz(z+c)+p1 (Z))
2
azl 8z1
P 2
) 0 le B l(%) o (P2 (40-p () _ 2ipa (240 _
azl aZI
(45)
Now, we claim that (9°p,(z,,2,)/0z%) —i(dp,

(2,,2,)102,)* = 0. If (0p(z,,2,)/0z,) =0, then equation
(44) becomes %P1 (Z1+e227%) 4 | = 0, and this is impossible
since p, (z) is a nonconstant polynomial. If (8*p,(z,,z,)
/0z%) —i(dp, (zl,zz)/azl)2 =0 and (0p,(z,,2,)/0z,) =0,
then (0u/0z,) = iu?, where u = (0p,(z,,2,)/9z;). Solving
this equation, we have —(1/u) =iz, + ¢, (z,), that is,
(0p, (21,2,)10z,) = u = —(1/iz; + ¢, (z,)), where ¢, (z,) is
a polynomial in z,. Thus, it follows that
P, (z1,2,) =ilogliz, + ¢, (z,)] + ¢, (z,), where ¢,(z,) is a
polynomial in z,. This is a contradiction with the as-
sumption of p,(z,,z,) being a nonconstant polynomial.
Hence, (3°p,(z,,2,)/0z%) —i(0p, (21,2,)/ 0z;)* = 0. Sim-
ilarly, we have (3%p, (z,,2,)/0z3)+ i(3p, (z,,2,)/0z,)* = 0
and (9°p, (z,,2,)/023) + i(3p,(z,, 2,)/0z,)* = 0.

In view of Lemma 5 and (44) and (45), it follows that

2 2
|:8 Py, 1(%) :|ei(P1 (z+0)+p,(2) = ¢

azf azl
o ap,\’
or p22 _i op, o (P10 p2(2) _ L
azl 8z1
(46)
o o, \’
P +i op; ei(Pz(Z+C)+P1 (2)) _ 1
> =
azl azl
o ap,\
or [221 (22 ot nion 2
azl azl
Now, the four cases will be taken into account below.
(i) Case 1
2
62p2 vi % ei(pl (z+0)+p, (2)) =1
azf az1 ’

(47)

2 2

Since p, (2), p,(z) are polynomials, from (47), it
follows that pi(z+c)+p,(2) =C, and
p,(z +¢) + p; (2) = C,, and here and below, C,,C,
are constants. Thus, it yields that p,(z+2c)—
p1(z)=C,-C,and p,(z+2c) - p,(2) =C, - C,.
Hence, we have that p,(z)= L(z)+H(2)+
By, p,(z) = -L(z) — H(z) + B,, where L is a linear
function of the form L(z)=a,z, +a,2,,
a,(#0),a,,B,,B, are constants, and H(z): =
H (s), H(s)isapolynomialinsinC, s = ¢,z, — ¢,2,.



Here, we will prove that H(z) = 0. If deg.H =n,
equation (47) implies

&H  (dH)

ds’ ’ i( ds ) = o
that is,

&I’H dH\?

ds’ =bo- i( ds ) , )

where {, € C. By comparing the degree of s in both
sides of the abovementioned equation, we have
n—-2=2(n-1), that is, n = 0. Thus, the form of
L(z)+H(z)+B is still the linear form of
A,z, + Az, + B, which means that H (z) = 0. Thus,
this means that (3°p,/dz3) = (9°p,/0z%) = 0.
Substituting these into (47), we have

{ iafeiL(c)Jri(BlJrBz) =1,

(50)
%e—iL(c)Jri(BlJrBz) -1

ia
In addition, in view of (44)-(47), it follows that
2 2
[E) Py 1(%) ]ei(pl (z+0)-p2 () 1
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which means that

{ _ia%e—iL(c)—i(BﬁBz) =1,

_ia?eiL(c)—i(BlJrBz) =1

(52)

Thus, we can deduce from (50) and (52) that

a‘l1 =1,
QHLE Z (53)
afeiL(c)+i(Bl+Bz) -

In view of (43), f,, f, are of the forms

¢ (- L(2)+B,)+L(c) _ ¢ (L(2)-B,)-iL(c)

fi(z)= (54)

2i

i (L(2)+B,)—iL(c) _ _i(~L(2)-B,)+L(c)
e ! e ! (55)

fz(z)= 2

If aj=1 and el© =1, then L(c)=2kn and
¢ Bi+B:) — i Thus, it follows from (54) and (55)
that

_ei (L(2)-B,) n ei (-L(2)+B,)

azf 0z, fi(z1,2) = % = —sin(L(2) + By),
(51) (56)
2 2
%_ 1(apl> ei(’l’z (z+0)- p, (2)) =1, where B, = -B,, and
aZ% aZl
f (z . ) ~ ei(L(z)+Bl) _ ei(—L(z)—Bl) B ei(L(z)—Bz)ei(Bl+Bz) _ ei(—L(z)+Bz)e_i(Bl+Bz)
221 22) = 2% 5 ,
(57)
ei(L(z)—Bz) N ei(—L(z)+Bz)
= 5 = —cos(L(z) + By).
Ifaj =1and eL© = _1 then L(c) = (2k + 1) and
e!Bi+By) = i Thus, it follows from (54) and (55) that
ei(L(z>—Bz) _ ei(—L(z)JrBz)
fi(z12,) = 5 = sin(L(z) + By),
_i(L2+B,) | Ji(-L(2)-B,) __i(L(2)-B,) i(B+B,) , ,i(~L(2)+B,) —i(B,+B,)
Fr(znzy) = e +e e e +e e ’ (58)
2i 2i
ei(L(z)—Bz) N ei(—L(z)+Bz)
= 3 —cos(L(z) + By).
- Z1,2,) = —sin(L(z) + B,),
If a% =_1 and €L = 1, then L(c)=2kn and fl( 1 2) ( 0) (59)

¢/ Bi*B2) = Thus, it follows from (54) and (55) that

f2(z1,2,) = cos(L(z) + By).
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If a2 =-1 and ¢l© = _1, then L(c) = 2k+ )
and ¢B1*B) = i Thus, it follows from (54) and
(55) that

f1(z1,2,) = sin(L(z) + By),

(60)
f2(z1,2,) = cos(L(2) + By).
(ii) Case 2
62p2 +l<%)2 ei(Pl(Z+C)+P2(Z)) =1,
az% azl
(61)

2
[62p1 _ l(%) j|ei(pz(z+c)p1 (2)) -1

az% azl

Since p, (), p,(2z) are polynomials, from (61), it
follows  that  p,(z+c)+p,(2) =C, and
py(z+¢c)-p,(z) =C,, which imply that
py(z+2c)+ p,(z) =C, +C,, and this is a con-
tradiction with the condition of p,(z) being a
nonconstant polynomial.

(iii) Case 3

_az a 27 )
Lo i) et ner 2,

i az% azl

(62)

-2 27
o (%) ¢ (P Eon @) _

1
2
i azl azl

Since p, (2), p,(z) are polynomials, from (62), it
follows that p, (z + ¢) — p,(z) = C, and p,(z + o)+
p1(z) =C,, which imply that p,(z+2c)+
p1(2) = C, +C,, and this is also a contradiction.

(iv) Case 4

2 2

az% azl

(63)
Ipfop) i (py (240, (2)
PG 2P e (pet0-pi ) 2
()]

Since p, (z), p, (z) are polynomials, then from (63), it
follows that p,(z+c)-p,(z)=C, and p,(z+¢)-
p1(z) = C,. This means that p,(z +2c) — p,(2) =C, +C,
and p, (z + 2¢) - p,(z) = C; + C,. Similar to the argument
as in case 1 in Theorem 8, we can deduce that
p1(z) =L(2) + By, p,(z) = L(2) + B,, where L is a linear
function of the form L(z) = a,z, + a,z,, a,(#0),4a,, B,, B,
are constants. Hence, it follows that (0 p,/02%) =
(0*p,/0z%) = 0. Substituting these into (63), we have

{ ot (64)

_iaieiL(c)H' (B,-By) _ L

9
In addition, in view of (44)-(47), it follows that
2 2
9P, +i % ei(—pl (z+0)+p, (2)) -1
az% aZI ’
(65)
2 2
o p +i % ei(—pz(z+c)+p1 (2)) -1
az% 8z1 ’
which means that
iaie—iL(c)H(Bz—Bl) =1,
o (66)
iafe_lL(C)H(Bl_Bz) =1
Thus, we can deduce from (63) and (64) that
4
a, =1,
e =, (67)
a?eiL(c)ﬂ'(Bl—Bz) =;
In view of (43), f,, f, are of the forms
ei(L(z)+BZ)—iL(c) _ ei(—L(z)—Bz)H'L(c) (
f1(2) 2 >
ei(L(z)+Bl)—iL(c) _ ei(—L(z)—B1)+iL(c) (69)

fa(2) = 2i
If a2 =1 and €19 =1, then L(c) = (2k + (1/2))7 and
e!Bi=B2) = 1. Thus, it follows from (68) and (69) that

_iei(L(z)+Bz) _ iei(—L(z)— B,)
filz12) = - = —cos(L(z) + By),

2i
(70)

where B, = B,, and
_iet(L@+By) _ ;i (-L(2)-B,)

2i

fa(z1.25) =

_iei (L(z)+B2)ei(Bl—Bz) _ iei (—L(z)—Bz)ei(Bz—Bl)

2i

¢l (L(2)+B,) e (-L(2)-B,)

= 5 = —cos(L(z) + By).

(71)

~Ifaj=1and el = —j then L(c) = (2k — (1/2))7 and
e!Bi=B2) = _1. Thus, it follows from (68) and (69) that

f1(z1,2,) = cos(L(z) + By),
f2(z1,2,) = —cos(L(z) + By).

. If a3 = -1 and el = then L(c) = (2k + (1/2))7r and
e!Bi=B2) = _1. Thus, it follows from (68) and (69) that

f1(z1,2,) = —cos(L(z) + By),
f2(z1,2,) = cos(L(z) + By).

(72)

(73)
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Ifa; = -1and e = _j then L(c) = (2k — (1/2))7r and
e'Bi=B2) = 1. Thus, it follows from (68) and (69) that

f1(21,2,) = cos(L(z) + By),

(74)
£ (z1,2,) = cos(L(z) + By).

[¥f4w+#fww

azf azlaz2

Fﬁga+fn@>

0z, 0z,0z,

Since f,, f, are transcendental entire functions with
finite order, then by (75), we can see that the functions

fi(z) Ifi(2) .
azf + 92,0z, +if,(z+0),
3f1(2) f () .
Bzf + 92,02, —if,(z+0),
, , (76)
0°f,(2) 0 f,(2) .
az% + 32,02, +if,(z+0),
f,(z) 3f,(2) .
azf + 92,02, —if,(z+0),

( azfl (21,2,) + azfl (21,2,)
2
azl az1822

azfl (21,2,) + azfl (21,2,)
2
0z] 0z,0z,

azfz (21,2,) + azfz (2),2,)
2
0z) 0z,0z,

62f2 (215 Zz) " 82f2 (215 Zz)
2
0z; 0z,0z,

In view of (77), it yields that

If1(2) 1)

Journal of Mathematics

Thus, in view of Cases 1-4, this completes the proof of
Theorem 8.

3.2. The Proof of Theorem 9. Suppose that (f,, f,) is a pair
of transcendental entire solutions with finite order of system
(18). System (18) can be represented as follows:

+if2(z+c)H

71,(2) , 9f,(2)

—ifz(z+c)] =1,

az% azlaZ2
(75)

+if1(z+c)H

+if,(zy+cpz,+¢,) =€
—ify(z,+cpz+0,) =€
+if(z1+cpz+¢) =€

—ifi(z1+cpz+c) =e

—ifl(z+c)] =1L

0z’ 0z,0z,

have no any zeros and poles. Moreover, by Lemmas 3 and 4,
we have that there exist two polynomials p, (2), p, (z) such
that

ip, (z1+c12,4¢;)
—ip, (z1+¢,2,+¢,)
(77)

ip, (zl+c1,zz+c2)’

—ip, (z,+¢),2,4¢;)
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( aZfl (z) N azf1 (2) _ P @ 4 min (@ which implies
az? azlazz 2 ’
eipl (z) _ e ip; (2)
z+¢)=—m—
falerg =
3 (78)
aZfz (2) N azfz (2) - eiPz(Z) +e ip(z)
0z 02,0z, 2 ’
ez’p2 (z) _ e ip,(z)
zZ+¢)=—m—
| fiero=—F
(P21 n iPzz)ei(pl (z+0)+p, (2)) n (PZI _ iPzz)ei(pl (z+0)-p,(2)) _ ezipl (z+¢) =1, (79)
(Pll + iplz)ei(Pz (z+c)+py (Z)) + (Pll _ iplz)ei(Pz (z+c)- p, (Z)) _ eZipz (z+c) =1, (80)
where In view of the Nevanlinna second fundamental theorem,
82) and (83), it follows that
. ¥ P (82) (83)
11==2 >
azi 0z,0z, T(l’ Qi (z1+c1,zz+c2)>
op,\" 9p, 0
P12 - (1)1> + ﬂ ﬂ’ 1 1
0z, 0z, 0z, <N ey el e N{ r, %
(81) oip: (z1+c12246,) P (z1+c1.254¢,) i1
azpz azp2
2 BZ% i aZ1azz, * S(?’, €2ip2 (ZIHI’ZerCZ))

Py, = (apz)z + % %
0z, 0z, 0z,

Now, we claim that P, —iP,, =0. If P, —iP,, =0;
then, equation (79) becomes (P,; +iP,,)e!(P1(#¥)+p2(2)_
ein@ranta) = 1 If P, +iP,, =0, then it yields
e?iP(zi+e2%e) = 1) and this is a contradiction with the
condition of p, being a nonconstant polynomial. If
P,, +iP,, =0, we have

(PZI n iPzz)ei(Pl (z+0)+p, (2)) = 2in (z1+c122+6,) i1 (82)
By making use of the Mokhon’ko theorem in several

complex variables ([27], Theorem 3.4), in view of (82), it
follows that

T(r, b (Zl*”1’22“2)> = T(h (Pyy +iPyy)el (P& P (z)))

+O(1).
(83)

1
<N| r, -
(P21 + ipzz)el(‘pl (z+c)+p (2))

n S(T, ezip2 (zl+c1,zz+c2)>

<N[r 1 . + S(T, ezip2 (z1+c1>zz+c2)>
P,, +iP,,

<O(T (r,py)) + S(r, &P <)>

(84)

outside possibly a set of finite Lebesgue measure. This is a
contradiction with the fact that

e oo, (85)
r—oo T(r, p,)
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for p,(z) being a nonconstant polynomial. Hence,
P, —iP,, =0. Similarly, we have P, +iP,,=0 and
P, +iP,, = 0.

In view of Lemma 5 and (79) and (80), it follows that

(Py, +iPyy)e (P12 (3) =
or (P21 1P2 ) ’(Pl (z+0)- pz(z)) =1,
(Pll +iP, ) i(p, (z+0)+p, (2)) -1

or ( 1P12 ’(Pz (z+c)- p, (Z) =1

(86)

Now, we will consider the four cases below.

Case 1

P, +iP ei(Pl (z+0)+p, (2)) =1,
{ ( 21 22) (87)

(P, +iPy,)e (P20 @) =

Since p, (z), p,(z) are polynomials, from (87), it fol-
lows that p,(z+c)+p,(2)=C, and p,(z+0c)+
p1(z) =C,. Thus, it vyields that p,(z+2¢c)-
p1(z)=C;-C, and p,(z+2c)-p,(z)=C,-C,.
Hence, similar to the argument as in case 1 of Theorem
8, we have that p, (z) = L(2) + By, p,(2) = -L(2) + B,,
where L is a linear function of the form L(z) = a,z,+
a,2,, a,(#0),a,# —a,,B,,B, are constants, which
means that (3%p,/0z3) = (3°p,/ 0z%) = (3°p,/
0z,0z,) = 0. Substituting these into (87), we have

ia (a; + az)eiL(C)+i(B]+BZ) =1 (88)
ia, (a; + az)e_iL(c)+i(Bl+Bz) =1.

In addition, in view of (79)-(87), it follows that

[le - ipzz]ei(_‘o1 (z40)-p:(2) =1 (89)
[Pll _"1312]61'(7172(?“)717l @) = 1,

which means that

{ —ia, (a, +ay)e MO (BB 2

iL(E)-i (Bi+By) _ | (90)

—ia, (a, + a,)e
Thus, we can deduce from (88) and (90) that
af (a; + az)z =1,

QU@ 1 (91)

a, (‘11 + az)eiL(c)+i(Bl+Bz) =

—i.

Similar to the argument as in the proof of Theorem 8
and by combining with (91), we have that (f,, f,) is of
the form

Journal of Mathematics

(£ sin(L(z) + By), + cos(L(z) + By)).
(92)

(fi. f2) =

Case 2

Py, +iPyy)el (@) o
{ ( 21 22) (93)

(P11 - iPlz)ei(P2(2+C)_Pl(z)) =1.
Since p, (z), p,(2z) are polynomials, from (93), it fol-
lows that p,(z+¢)+p,(2)=C; and p,(z+c)-
p1(z) = C,, which imply that p,(z+2¢c) + p,(2) =
C, + C,, and this is a contradiction with the condition
of p,(z) being a nonconstant polynomial.

Case 3

P.. —iP ei(P1(Z+C)*P2 )— 1,
{ ( 21 22) (94)

(P + 1'P12)ei(p2 (24041 ()

Since p, (2), p, (z) are polynomials, then from (94), it
follows that pi(z+¢c)-p,(2) =C, and

py(z+0)+p (=) =C,, which imply that
pi(z+2c)+p,(z2) =C, +C,, and this is also a
contradiction.
Case 4
(P, —iPy,)e i(pi(z+0)-py () _ =1, o5
(Py; - iplz)ei(Pz(z+C)_P1 @) =,

Since p, (2), p, (z) are polynomials, from (95), it follows
that p,(z+¢)—p,(2)=C, and p,(z+c)-p,(2)=C
This means that p,(z+2c)-p,(2)=C,+C, and
p>(z +2c) - p,(z) = C, + C,. Thus, similar to the argument
as in case 1 of Theorem 2, we can deduce that
p1(z) =L(2) + By, p,(z) = L(2) + B,, where L is a linear
function of the form L(z) =a,z; +a,z,, a;(#0),a,#
-a,,B,,B, are constants. Hence, it follows that
(0*p,/023) = (0°p,/922) = (8*p,/0z,0z,) = 0. Substituting
these into (95), we have

—ia, (a, + az)eiL(C)+i(B‘_Bz) =1,
(96)
—ia, (a, + az)eiL(C)+i(Bz_Bl) =1
In addition, in view of (80)-(87), it follows that
P, +iP,y)e (TP E0 @) = g
[Py 2] ‘ (97)
[P11 + iplz]e’(*Pz(Zﬂ)*Pl (2)) =1,

which means that
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ia, (al n az)e—iL(c)Jri(Bz—Bl) =1,

(98)
ia, (a; + az)efiL(C)”(B“Bz) =1.
Thus, we can deduce from (96) and (98) that
a? (a,+ az)z =1L
e =, (99)

a; (a; + az)eiL(c)H(BrBz) =1

Similar to the argument as in the proof of Theorem 8,
and by combining with (99), we can deduce that (f, f,) is
of the form

(f1, f2) = (£ cos(L(z) + By), = cos(L(z) + By)).
(100)

Thus, in view of cases 1-4, this completes the proof of
Theorem 8.
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