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-is article is mainly concerned with the existence and the forms of entire solutions for several systems of the second-order partial
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 . Our results about the existence and the forms of solutions for these systems

generalize the previous theorems given by Xu and Cao, Gao, Liu, and Yang. In addition, we give some examples to explain the
existence of solutions of this system in each case.

1. Introduction and Main Results

-e issue on the existence and form of solutions for Fermat-
type equation xm + yn � 1 has attracted considerable at-
tention from many scholars. Especially, Taylor and Wiles
[1, 2] pointed out that this equation does not admit a
nontrivial solution in rational numbers for m � n≥ 3, and
this equation does admit a nontrivial rational solution for
m � n � 2. In fact, the study of this issue should go back to
sixty years ago or even earlier; Montel [3] and Gross [4] had
pointed out that the entire solutions of the functional
equation fm + gn � 1 for m � n � 2 are f �

cos a(z), g � sin a(z), where a(z) is an entire function; for
m � n> 2, there are no nonconstant entire solutions.

In 2004, Yang and Li [5] investigated a certain nonlinear
differential equational of Malmquist type, by making use of
Nevanlinna theory, and obtained the following.

Theorem 1 (See [5]). Let a1, a2, and a3 be nonzero mero-
morphic functions. -en, a necessary condition for the dif-
ferential equation,

a1f
2

+ a2f′
2

� a3, (1)

to have a transcendental meromorphic solution satisfying
T(r, ak) � S(r, f), k � 1, 2, 3 is (a1/a3) ≡ constant.

In the past ten years, Liu and his collaborators inves-
tigated the existence of solutions for a series of complex
difference equations and complex differential difference
equations of Fermat type, by using the difference Nevanlinna
theory for meromorphic functions (see [6–8]), and obtained
a lot of interesting original results (see [9–11]). In order to be
consistent with the following text, here, we only list one of
results are given by Liu.

Theorem 2 (See [10], -eorem 9). İe transcendental entire
solutions with finite order of

f′(z)
2

+ f(z + c)
2

� 1, (2)

must satisfy f(z) � sin(z ± Bi), where B is a constant and
c � 2kπ or c � (2k + 1)π, where k is an integer.

In 2019, Liu and Gao [12] further studied the entire
solutions of the second-order differential and difference
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equation with single complex variable and obtained the
following.

Theorem 3 (see [12], -eorem 2.1). Suppose that f is a
transcendental entire solution with finite order of the complex
differential difference equation

f″(z)
2

+ f(z + c)
2

� Q(z). (3)

-en, Q(z) � c1c2 is a constant, and f(z) satisfies

f(z) �
c1e

az+b
+ c2e

− az− b

2a
2 , (4)

where a, b ∈ C and a4 � 1, c � (log(− ia2) + 2kπi/a), where
k ∈ Z.

In 2016, Gao [13] further investigated the form of solu-
tions for a class of system of differential difference equations
corresponding to -eorem 2 and obtained the following.

Theorem 4 (See [13], -eorem 7). Suppose that (f1, f2) is a
pair of finite-order transcendental entire solutions for the
system of differential difference equations

f1′(z) 
2

+ f2(z + c)
2

� 1,

f2′(z) 
2

+ f1(z + c)
2

� 1.

⎧⎪⎨

⎪⎩
(5)

-en, (f1, f2) satisfies

f1(z), f2(z)(  � sin(z − bi), sin z − b1i( ( ,

or f1(z), f2(z)(  � sin(z + bi), sin z + b1i( ( ,
(6)

where b, b1 are constants and c � kπ, where k is a integer.
For the differential difference equations with several

complex variables, Xu and Cao [14, 15] recently investigated
the existence of the entire and meromorphic solutions for
some Fermat-type partial differential difference equations by
using the Nevanlinna theory in several complex variables
and obtained the following theorems.

Theorem 5 (See [14], -eorem 7). Let c � (c1, c2) be a
constant in C2. -en, the Fermat-type partial differential
difference equation,

zf z1, z2( 

zz1
 

n

+ f z1 + c1, z2 + c2( 
m

� 1, (7)

does not have any transcendental entire solution with finite
order, where m and n are two distinct positive integers.

Theorem 6 (See [14], -eorem 8). Let c � (c1, c2) be a
constant in C2. -en, any transcendental entire solution with
finite order of the partial differential difference equation,

zf z1, z2( 

zz1
 

2

+ f z1 + c1, z2 + c2( 
2

� 1, (8)

has the form of f(z1, z2) � sin(Az1 + B), where A is a
constant on C satisfying AeiAc1 � 1 and B is a constant on C;

in the special case, whenever c1 � 0, we have f(z1, z2) �

sin(z1 + B).

Inspired by the form of the abovementioned equations in
-eorems 3–6, a question naturally arises: What will happen
about the existence and the form of the solutions when the
equations are put into the system and the first-order partial
differential is replaced by the second-order partial differentials?
For nearly two decades, although there were a lot of important
and meaningful results focusing on the solutions of the
complex difference equation of single variable (including
[8, 16–21]), as far as we all know, there are few literature about
the system of the second-order partial differential difference
equations of Fermat type in several complex variables. It seems
that this topic has never been treated before.

-e purpose of this article is concerned with the prop-
erties of the solutions for some Fermat-type systems including
both the difference operator and the second-order partial
differential by making use of the (difference) Nevanlinna
theory of several complex variables [22, 23]. We give the
existence theorem and the forms of solutions for the Fermat-
type systems of the second-order partial differential difference
equations, which are generalization of the previous theorems
given by Liu, Liu et al., Gao, Xu and Cao, and Xu et al.
[9, 10, 13, 14, 24]. Here and below, let z + w � (z1 + w1, z2 +

w2) for any z � (z1, z2), w � (w1, w2), and c � (c1, c2). Now,
our main results of this paper are listed as follows.

Theorem 7. Let c � (c1, c2) ∈ C2, and mj, nj(j � 1, 2) be
positive integers, and α, β be constants in C that are not zero
at the same time. If the following system of Fermat-type
partial differential difference equations,

α
z2f1 z1, z2( 

zz2
1

+ β
z2f1 z1, z2( 

zz2
2

 

n1

+ f2 z1 + c1, z2 + c2( 
m1 � 1,

α
z2f2 z1, z2( 

zz2
1

+ β
z2f2 z1, z2( 

zz2
2

 

n2

+ f1 z1 + c1, z2 + c2( 
m2 � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)
satisfies one of the conditions

(i) m1m2 > n1n2

(ii) mj > (nj/nj − 1) for nj ≥ 2, j � 1, 2,then system (9)
does not have any pair of transcendental entire so-
lution with finite order.

Remark 1. Here, (f, g) is called as a pair of finite-order
transcendental entire solutions for the system

f
n1 + g

m1 � 1,

f
n2 + g

m2 � 1,
 (10)

if f, g are transcendental entire functions and
ρ � max ρ(f), ρ(g) <∞.

Remark 2. By observing the proof of -eorem 7, it is easy to
see that the conclusions of -eorem 7 also hold if
(z2fj(z1, z2)/zz2

1) or (z2fj(z1, z2)/zz2
2) of system (9) is

replaced by (z2fj(z1, z2)/zz1zz2), j � 1, 2.
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Theorem 8. Let c � (c1, c2) ∈ C2. -en, any pair of tran-
scendental entire solution (f1, f2) with finite order for the
system of Fermat-type difference equations,

z2f1 z1, z2( 

zz2
1
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2
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is of the following forms:

f1(z), f2(z)(  � ± sin L(z) + B0( , ±cos L(z) + B0( ( ,

(12)

or

f1(z), f2(z)(  � ±cos L(z) + B0( , ±cos L(z) + B0( ( ,

(13)

where L(z) � a1z1 + a2z2, a4
1 � 1, e2iL(c) � ±1, and B0 is a

constant in C.

-e following examples show the existence of solutions
for system (11).

Example 1. Let a � (a1, a2) � (1, π), c � (c1, c2) � (π, 1),
L(z) � z1 + πz2, and

f1(z), f2(z)(  � − sin L(z) + B0( , − cos L(z) + B0( ( ,

(14)

where B0 is a constant in C. -us, (f1, f2) satisfies the
following system:
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zz2
1

 

2
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(15)

Example 2. Let a � (a1, a2) � (− i, 1), c � (c1, c2) �

(− (π/2), π), L(z) � − iz1 + z2, and

f1(z), f2(z)(  � − cos L(z) + B0( , cos L(z) + B0( ( ,

(16)

where B0 is a constant in C. -us, (f1, f2) satisfies the
following system:

z2f1 z1, z2( 
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2
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Theorem 9. Let c � (c1, c2) ∈ C2. -en, any pair of tran-
scendental entire solution (f1, f2) with finite order for the
system of Fermat-type partial differential difference
equations,

z2f1 z1, z2( 

zz21
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(18)

is of the following forms:

f1(z), f2(z)(  � ± sin L(z) + B0( , ± cos L(z) + B0( ( ,

(19)

or

f1(z), f2(z)(  � ± cos L(z) + B0( , ± cos L(z) + B0( ( ,

(20)

where L(z) � a1z1 + a2z2, [a1(a1 + a2)]
2 � 1, e2iL(c) � 1,

and B0 is a constant in C.

We also list two examples to exhibit the existence of
solutions for system (18).

Example 3. Let a � (a1, a2) � (
�
2

√
− 1, 2), c � (c1, c2) �

(− (
�
2

√
+ 1)π, π), L(z) � (

�
2

√
− 1)z1 + 2z2, and

f1(z), f2(z)(  � sin L(z) + B0( , − cos L(z) + B0( ( ,

(21)

where B0 is a constant in C. -us, (f1, f2) satisfies the
following system:
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(22)
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Example 4. Let a � (a1, a2) � (− 1, 2), c � (c1, c2) �

(π, (π/4)), L(z) � − z1 + 2z2, and

f1(z), f2(z)(  � cos L(z) + B0( , cos L(z) + B0( ( ,

(23)

where B0 is a constant in C. -us, (f1, f2) satisfies the
following system:

z2f1 z1, z2( 

zz2
1
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zz1zz2
 

2

+ f2 z1 + π, z2 +
π
4

 
2

� 1,
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2

+ f1 z1 + π, z2 +
π
4

 
2

� 1.
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⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Remark 3. In fact, in view of the proofs of-eorems 8 and 9,
it is easy to get that the conclusions of -eorem 9 still holds,
if the system (18) is replaced by the following systems:

z2f1 z1, z2( 

zz1zz2
 

2

+ f2 z1 + c1, z2 + c2( 
2

� 1,

z2f2 z1, z2( 
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(25)

or

z2f1 z1, z2( 

zz2
1
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2
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2
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zz2
1
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z2f2 z1, z2( 
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2

+ f1 z1 + c1, z2 + c2( 
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⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(26)

respectively. -e only thing that we need to do is to modify
the condition [a1(a1 + a2)]

2 � 1 to (a1a2)
2 � 1 or [a2(a1+

a2)]
2 � 1, respectively.

2. Proof of Theorem 7

To prove -eorem 7, we need the following lemmas.

Lemma 1 (See [25, 26]). Let f be a nonconstant mero-
morphic function on Cn, and let I � (i1, . . . , in) be a multi-
index with length |I| � 

n
j�1 ij. Assume that T(r0, f)≥ e for

some r0. -en,

m r,
z

I
f

f
  � S(r, f), (27)

holds for all r≥ r0 outside a set E ⊂ (0, +∞) of finite loga-
rithmic measure 

E
dt/t<∞, where zIf � (z|I|f/

(zz
i1
1 , . . . , zz

in
n )).

Lemma 2 (See [22, 23]). Let f be a nonconstant mero-
morphic function with finite order on Cn such that
f(0)≠ 0,∞, and let ε> 0. -en, for c ∈ Cn,

m r,
f(z)

f(z + c)
  + m r,

f(z + c)

f(z)
  � S(r, f), (28)

holds for all r≥ r0 outside a set E ⊂ (0, +∞) of finite loga-
rithmic measure 

E
dt/t<∞.

Proof. -e proof of -eorem 7: suppose that (f1, f2) is a
pair of transcendental entire functions with finite order,
satisfying system (9); then, it follows that α(z2f1(z1, z2)/
zz2

1) + β(z2f1(z1, z2)/zz2
2) and α(z2f2(z1, z2)/zz2

1)+

β(z2f2(z1, z2)/zz2
2) are transcendental. Here, the following

two cases will be considered:

(i) Case 1: m1m2 > n1n2: in view of Lemma 2, it yields
that

m r,
fj z1, z2( 

fj z1 + c1, z2 + c2( 
  � S r, fj , j � 1, 2,

(29)

hold for all r> 0 outside of a possible exceptional set
Ej ⊂ [1, +∞] of finite logarithmic measure


Ej
dt/t<∞. -us, it follows from (29) that

T r, fj z1, z2(   � m r, fj z1, z2(  

≤m r,
fj z1, z2( 

f z1 + c1, z2 + c2( 
  + m r, fj z1 + c1, z2 + c2(   + log 2,

� m r, fj z1 + c1, z2 + c2(   + S r, fj ,

� T r, fj z1 + c1, z2 + c2(   + S r, fj , j � 1, 2,

(30)

for all r ∉ E � : E1 ∪E2. In view of (30), Lemma 1,
and the Mokhon’ko theorem in several complex
variables ([27], -eorem 3.4), it yields that
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m1T r, f2 z1, z2( (  ≤m1T r, f2 z1 + c1, z2 + c2( (  + S r, f2( ,

� T r, f2 z1 + c1, z2 + c2( 
m1(  + S r, f2( ,

� T r, α
z2f1 z1, z2( 

zz2
1

+ β
z2f1 z1, z2( 

zz2
2

 

n1

− 1  + S r, f2( ,

� n1T r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

  + S r, f2(  + S r, f1( ,

� n1m r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

  + S r, f2(  + S r, f1( 

≤ n1 m r,
αz

2
f1 z1, z2( /zz

2
1 + β z

2
f1 z1, z2( /zz

2
2 

f1 z1, z2( 
⎛⎝ ⎞⎠ + m r, f1 z1, z2( ( ⎛⎝ ⎞⎠ + S r, f1(  + S r, f2( ,

� n1T r, f1 z1, z2( (  + S r, f1(  + S r, f2( ,

(31)

for all r∈E. Similarly, we have

m2T r, f1 z1, z2( ( ≤ n2T r, f2 z1, z2( ( 

+ S r, f1(  + S r, f2( , r ∉ E.

(32)

In view of (31) and (32), it yields that

m1m2 − n1n2( T r, fj z1, z2(  ≤ S r, f1(  + S r, f2( , r ∉ E.

(33)

Since f1, f2 are transcendental and m1m2 > n1n2,
this is a contradiction.

(ii) Case 2: mj > (nj/nj − 1) for nj ≥ 2, j � 1, 2: in view of
the Nevanlinna second fundamental theorem,
Lemma 2, and system (9), it follows that

n1 − 1( T r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

 

≤N r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

  + 

n1

q�1
N r,

1
α z

2
f1 z1, z2( /zz

2
1  + β z

2
f1 z1, z2( /zz

2
2  − wq

⎛⎝ ⎞⎠

+ S r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

 

≤N r,
1

α z
2
f1 z1, z2( /zz

2
1  + β z

2
f1 z1, z2( /zz

2
2  

n1
− 1

⎛⎝ ⎞⎠ + S r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

 

≤N r,
1

f2 z1 + c1, z2 + c2( 
  + S r, f1( 

≤T r, f2 z1 + c1, z2 + c2( (  + S r, f1(  + S r, f2( ,

(34)
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where wq is a root of wn1 − 1 � 0. Similarly, we have

n2 − 1( T r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

 

≤T r, f1 z1 + c1, z2 + c2( (  + S r, f1(  + S r, f2( .

(35)

On the other hand, by theMokhon’ko theorem in several
complex variables ([27], -eorem 3.4), it follows from
system (9) that

m1T r, f2 z1 + c1, z2 + c2( ( ,

� T r, f2 z1 + c1, z2 + c2( 
m1(  + S r, f2( ,

� T r, α
z2f1 z1, z2( 

zz2
1

+ β
z2f1 z1, z2( 

zz2
2

 

n1

− 1  + S r, f2( ,

� n1T r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

  + S r, f1(  + S r, f2( .

(36)

Similarly, we have

m2T r, f1 z1 + c1, z2 + c2( ( ,

� n2T r, α
z
2
f1 z1, z2( 

zz
2
1

+ β
z
2
f1 z1, z2( 

zz
2
2

 

+ S r, f1(  + S r, f2( .

(37)

In view of (34)–(37) and mj > (nj/nj − 1), it follows that

m1 −
n1

n1 − 1
 T r, f2 z1 + c1, z2 + c2( ( ≤ S r, f1(  + S r, f2( ,

m2 −
n2

n2 − 1
 T r, f1 z1 + c1, z2 + c2( ( ≤ S r, f1(  + S r, f2( .

(38)

It leads to a contradiction with the assumption that
f1, f2 are transcendental entire functions.

-erefore, this completes the proof of -eorem 7.

3. Proofs of Theorems 8 and 9

-e following lemma plays the key role in proving-eorems
8 and 9.

Lemma 3 (See [28, 29]). For an entire function F on Cn,
F(0)≠ 0 and put ρ(nF) � ρ<∞. -en, there exist a canonical
function fF and a function gF ∈ Cn such that
F(z) � fF(z)egF(z). For the special case n � 1, fF is the
canonical product of Weierstrass.

Remark 4. Here, we denote ρ(nF) to be the order of the
counting function of zeros of F.

Lemma 4 (See [30]). If g and h are entire functions on the
complex planeC and g(h) is an entire function of finite order,
then there are only two possible cases: either

(a) the internal function h is a polynomial, and the ex-
ternal function g is of finite order or else

(b) the internal function h is not a polynomial but a
function of finite order, and the external function g is
of zero order

Lemma 5 (See [31], Lemma 3). Let fj( ≡ 0), j � 1, 2, 3 be
meromorphic functions on Cm such that f1 is not constant
and f1 + f2 + f3 � 1 and such that



3

j�1
N2 r,

1
fj

  + 2N r, fj  < λT r, f1(  + O log+
T r, f1( ( ,

(39)

for all r outside possibly a set with finite logarithmic measure,
where λ< 1 is a positive number. -en, either f2 � 1 or
f3 � 1.

3.1. -e Proof of -eorem 8. Suppose that (f1, f2) is a pair
of transcendental entire solutions with finite order of system
(11). System (11) can be represented as follows:

z
2
f1 z1, z2( 

zz
2
1

+ if2 z1 + c1, z2 + c2(  
z
2
f1 z1, z2( 

zz
2
1

− if2 z1 + c1, z2 + c2(   � 1,

z
2
f2 z1, z2( 

zz
2
1

+ if1 z1 + c1, z2 + c2(  
z
2
f2 z1, z2( 

zz
2
1

− if1 z1 + c1, z2 + c2(   � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Since f1, f2 are transcendental entire functions with
finite order, then by (40), we can see that the functions
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z
2
f1 z1, z2( 

zz
2
1

+ if2 z1 + c1, z2 + c2( ,

z
2
f1 z1, z2( 

zz
2
1

− if2 z1 + c1, z2 + c2( ,

z
2
f2 z1, z2( 

zz
2
1

+ if1 z1 + c1, z2 + c2( ,

z
2
f2 z1, z2( 

zz
2
1

− if1 z1 + c1, z2 + c2( ,

(41)

have no any zeros and poles. Moreover, by Lemmas 3 and 4,
we have that there exist two polynomials p1(z), p2(z) such
that

z
2
f1 z1, z2( 

zz
2
1

+ if2 z1 + c1, z2 + c2(  � e
ip1 z1+c1 ,z2+c2( ),

z
2
f1 z1, z2( 

zz
2
1

− if2 z1 + c1, z2 + c2(  � e
− ip1 z1+c1 ,z2+c2( ),

z
2
f2 z1, z2( 

zz
2
1

+ if1 z1 + c1, z2 + c2(  � e
ip2 z1+c1 ,z2+c2( ),

z
2
f2 z1, z2( 

zz
2
1

− if1 z1 + c1, z2 + c2(  � e
− ip2 z1+c1 ,z2+c2( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

In view of (42), it yields that

z
2
f1 z1, z2( 

zz
2
1

�
e

ip1(z)
+ e

− ip1(z)

2
,

f2(z + c) �
e

ip1(z)
− e

− ip1(z)

2i
,

z
2
f2 z1, z2( 

zz
2
1

�
e

ip2(z)
+ e

− ip2(z)

2
,

f1(z + c) �
e

ip2(z)
− e

− ip2(z)

2i
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

which implies

z
2
p2

zz
2
1

+ i
zp2

zz1
 

2
⎡⎣ ⎤⎦ e

i p1(z+c)+p2(z)( )

+
z
2
p2

zz
2
1

− i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)− p2(z)( ) − e
2ip1(z+c) ≡ 1,

(44)

z
2
p1

zz
2
1

+ i
zp1

zz1
 

2
⎡⎣ ⎤⎦ e

i p2(z+c)+p1(z)( )

+
z
2
p1

zz
2
1

− i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)− p1(z)( ) − e
2ip2(z+c) ≡ 1.

(45)

Now, we claim that (z2p2(z1, z2)/zz2
1) − i(zp2

(z1, z2)/zz1)
2 ≡ 0. If (zp(z1, z2)/zz1) ≡ 0, then equation

(44) becomes e2ip1(z1+c1 ,z2+c2) + 1 ≡ 0, and this is impossible
since p2(z) is a nonconstant polynomial. If (z2p2(z1, z2)

/zz2
1) − i(zp2(z1, z2)/zz1)

2 ≡ 0 and (zp2(z1, z2)/zz1) ≡ 0,
then (zu/zz1) � iu2, where u � (zp2(z1, z2)/zz1). Solving
this equation, we have − (1/u) � iz1 + φ1(z2), that is,
(zp2(z1, z2)/zz1) � u � − (1/iz1 + φ1(z2)), where φ1(z2) is
a polynomial in z2. -us, it follows that
p2(z1, z2) � i log[iz1 + φ1(z2)] + φ2(z2), where φ2(z2) is a
polynomial in z2. -is is a contradiction with the as-
sumption of p2(z1, z2) being a nonconstant polynomial.
Hence, (z2p2(z1, z2)/zz2

1) − i(zp2(z1, z2)/ zz1)
2 ≡ 0. Sim-

ilarly, we have (z2p2(z1, z2)/zz2
1)+ i(zp2(z1, z2)/zz1)

2 ≡ 0
and (z2p2(z1, z2)/zz2

1) ± i(zp2(z1, z2)/zz1)
2 ≡ 0.

In view of Lemma 5 and (44) and (45), it follows that

z
2
p2

zz
2
1

+ i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)+p2(z)( ) ≡ 1

or
z
2
p2

zz
2
1

− i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)− p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

+ i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)+p1(z)( ) ≡ 1

or
z
2
p1

zz
2
1

− i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)− p1(z)( ) ≡ 1.

(46)

Now, the four cases will be taken into account below.

(i) Case 1

z
2
p2

zz
2
1

+ i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)+p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

+ i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)+p1(z)( ) ≡ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(47)

Since p1(z), p2(z) are polynomials, from (47), it
follows that p1(z + c) + p2(z) ≡ C1 and
p2(z + c) + p1(z) ≡ C2, and here and below, C1, C2
are constants. -us, it yields that p1(z + 2c)−

p1(z) ≡ C1 − C2 and p2(z + 2c) − p2(z) ≡ C2 − C1.
Hence, we have that p1(z) � L(z) + H(z)+

B1, p2(z) � − L(z) − H(z) + B2, where L is a linear
function of the form L(z) � a1z1 + a2z2,
a1(≠ 0), a2, B1, B2 are constants, and H(z): �

H(s), H(s) is a polynomial in s inC, s � c2z1 − c1z2.
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Here, we will prove that H(z) ≡ 0. If degsH � n,
equation (47) implies

d2H
ds

2 + i
dH

ds
 

2

≡ ζ0, (48)

that is,

d2H
ds

2 ≡ ζ0 − i
dH

ds
 

2

, (49)

where ζ0 ∈ C. By comparing the degree of s in both
sides of the abovementioned equation, we have
n − 2 � 2(n − 1), that is, n � 0. -us, the form of
L(z) + H(z) + B is still the linear form of
A1z1 + A2z2 + B, which means that H(z) ≡ 0.-us,
this means that (z2p1/zz2

1) ≡ (z2p2/zz2
1) ≡ 0.

Substituting these into (47), we have

ia
2
1e

iL(c)+i B1+B2( ) ≡ 1,

ia
2
1e

− iL(c)+i B1+B2( ) ≡ 1.

⎧⎪⎨

⎪⎩
(50)

In addition, in view of (44)–(47), it follows that

z
2
p2

zz
2
1

− i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i − p1(z+c)− p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

− i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i − p2(z+c)− p1(z)( ) ≡ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(51)

which means that

− ia
2
1e

− iL(c)− i B1+B2( ) ≡ 1,

− ia
2
1e

iL(c)− i B1+B2( ) ≡ 1.

⎧⎪⎨

⎪⎩
(52)

-us, we can deduce from (50) and (52) that

a
4
1 � 1,

e
2iL(c)

� 1,

a
2
1e

iL(c)+i B1+B2( ) ≡ − i.

(53)

In view of (43), f1, f2 are of the forms

f1(z) �
e

i − L(z)+B2( )+iL(c)
− e

i L(z)− B2( )− iL(c)

2i
, (54)

f2(z) �
e

i L(z)+B1( )− iL(c)
− e

i − L(z)− B1( )+iL(c)

2i
. (55)

If a2
1 � 1 and eiL(c) � 1, then L(c) � 2kπ and

ei(B1+B2) � − i. -us, it follows from (54) and (55)
that

f1 z1, z2(  �
− e

i L(z)− B2( ) + e
i − L(z)+B2( )

2i
� − sin L(z) + B0( ,

(56)

where B0 � − B2, and

f2 z1, z2(  �
e

i L(z)+B1( ) − e
i − L(z)− B1( )

2i
�

e
i L(z)− B2( )e

i B1+B2( ) − e
i − L(z)+B2( )e

− i B1+B2( )

2i
,

� −
e

i L(z)− B2( ) + e
i − L(z)+B2( )

2
� − cos L(z) + B0( .

(57)

If a2
1 � 1 and eiL(c) � − 1, then L(c) � (2k + 1)π and

ei(B1+B2) � i. -us, it follows from (54) and (55) that

f1 z1, z2(  �
e

i L(z)− B2( ) − e
i − L(z)+B2( )

2i
� sin L(z) + B0( ,

f2 z1, z2(  �
− e

i L(z)+B1( ) + e
i − L(z)− B1( )

2i
�

− e
i L(z)− B2( )e

i B1+B2( ) + e
i − L(z)+B2( )e

− i B1+B2( )

2i
,

� −
e

i L(z)− B2( ) + e
i − L(z)+B2( )

2
� − cos L(z) + B0( .

(58)

If a2
1 � − 1 and eiL(c) � 1, then L(c) � 2kπ and

ei(B1+B2) � i. -us, it follows from (54) and (55) that

f1 z1, z2(  � − sin L(z) + B0( ,

f2 z1, z2(  � cos L(z) + B0( .
(59)
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If a2
1 � − 1 and eiL(c) � − 1, then L(c) � (2k + 1)π

and ei(B1+B2) � − i. -us, it follows from (54) and
(55) that

f1 z1, z2(  � sin L(z) + B0( ,

f2 z1, z2(  � cos L(z) + B0( .
(60)

(ii) Case 2

z
2
p2

zz
2
1

+ i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)+p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

− i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)− p1(z)( ) ≡ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(61)

Since p1(z), p2(z) are polynomials, from (61), it
follows that p1(z + c) + p2(z) ≡ C1 and
p2(z + c) − p1(z) ≡ C2, which imply that
p2(z + 2c) + p2(z) ≡ C1 + C2, and this is a con-
tradiction with the condition of p2(z) being a
nonconstant polynomial.

(iii) Case 3

z
2
p2

zz
2
1

− i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)− p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

+ i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)+p1(z)( ) ≡ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Since p1(z), p2(z) are polynomials, from (62), it
follows that p1(z + c) − p2(z) ≡ C1 and p2(z + c)+

p1(z) ≡ C2, which imply that p1(z + 2c)+

p1(z) ≡ C1 + C2, and this is also a contradiction.
(iv) Case 4

z
2
p2

zz
2
1

− i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i p1(z+c)− p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

− i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i p2(z+c)− p1(z)( ) ≡ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(63)

Since p1(z), p2(z) are polynomials, then from (63), it
follows that p1(z + c) − p2(z) ≡ C1 and p2(z + c)−

p1(z) ≡ C2. -is means that p1(z + 2c) − p1(z) ≡ C1 + C2
and p2(z + 2c) − p2(z) ≡ C1 + C2. Similar to the argument
as in case 1 in -eorem 8, we can deduce that
p1(z) � L(z) + B1, p2(z) � L(z) + B2, where L is a linear
function of the form L(z) � a1z1 + a2z2, a1(≠ 0), a2, B1, B2
are constants. Hence, it follows that (z2p1/zz2

1) ≡
(z2p2/zz2

1) ≡ 0. Substituting these into (63), we have

− ia
2
1e

iL(c)+i B1− B2( ) ≡ 1,

− ia
2
1e

iL(c)+i B2− B1( ) ≡ 1.

⎧⎪⎨

⎪⎩
(64)

In addition, in view of (44)–(47), it follows that

z
2
p2

zz
2
1

+ i
zp2

zz1
 

2
⎡⎣ ⎤⎦e

i − p1(z+c)+p2(z)( ) ≡ 1,

z
2
p1

zz
2
1

+ i
zp1

zz1
 

2
⎡⎣ ⎤⎦e

i − p2(z+c)+p1(z)( ) ≡ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(65)

which means that

ia
2
1e

− iL(c)+i B2− B1( ) ≡ 1,

ia
2
1e

− iL(c)+i B1− B2( ) ≡ 1.

⎧⎪⎨

⎪⎩
(66)

-us, we can deduce from (63) and (64) that

a
4
1 � 1,

e
2iL(c)

� − 1,

a
2
1e

iL(c)+i B1− B2( ) ≡ i.

(67)

In view of (43), f1, f2 are of the forms

f1(z) �
e

i L(z)+B2( )− iL(c)
− e

i − L(z)− B2( )+iL(c)

2i
, (68)

f2(z) �
e

i L(z)+B1( )− iL(c)
− e

i − L(z)− B1( )+iL(c)

2i
. (69)

If a2
1 � 1 and eiL(c) � i, then L(c) � (2k + (1/2))π and

ei(B1− B2) � 1. -us, it follows from (68) and (69) that

f1 z1, z2(  �
− ie

i L(z)+B2( ) − ie
i − L(z)− B2( )

2i
� − cos L(z) + B0( ,

(70)

where B0 � B2, and

f2 z1, z2(  �
− ie

i L(z)+B1( ) − ie
i − L(z)− B1( )

2i

�
− ie

i L(z)+B2( )e
i B1− B2( ) − ie

i − L(z)− B2( )e
i B2− B1( )

2i

� −
e

i L(z)+B2( ) + e
i − L(z)− B2( )

2
� − cos L(z) + B0( .

(71)

If a2
1 � 1 and eiL(c) � − i, then L(c) � (2k − (1/2))π and

ei(B1− B2) � − 1. -us, it follows from (68) and (69) that

f1 z1, z2(  � cos L(z) + B0( ,

f2 z1, z2(  � − cos L(z) + B0( .
(72)

If a2
1 � − 1 and eiL(c) � i, then L(c) � (2k + (1/2))π and

ei(B1− B2) � − 1. -us, it follows from (68) and (69) that

f1 z1, z2(  � − cos L(z) + B0( ,

f2 z1, z2(  � cos L(z) + B0( .
(73)
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If a2
1 � − 1 and eiL(c) � − i, then L(c) � (2k − (1/2))π and

ei(B1− B2) � 1. -us, it follows from (68) and (69) that

f1 z1, z2(  � cos L(z) + B0( ,

f2 z1, z2(  � cos L(z) + B0( .
(74)

-us, in view of Cases 1–4, this completes the proof of
-eorem 8.

3.2. -e Proof of -eorem 9. Suppose that (f1, f2) is a pair
of transcendental entire solutions with finite order of system
(18). System (18) can be represented as follows:

z
2
f1(z)

zz
2
1

+
z
2
f1(z)

zz1zz2
+ if2(z + c) 

z
2
f1(z)

zz
2
1

+
z
2
f1(z)

zz1zz2
− if2(z + c)  � 1,

z
2
f2(z)

zz
2
1

+
z
2
f2(z)

zz1zz2
+ if1(z + c) 

z
2
f2(z)

zz
2
1

+
z
2
f2(z)

zz1zz2
− if1(z + c)  � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(75)

Since f1, f2 are transcendental entire functions with
finite order, then by (75), we can see that the functions

z
2
f1(z)

zz
2
1

+
z
2
f1(z)

zz1zz2
+ if2(z + c),

z
2
f1(z)

zz
2
1

+
z
2
f1(z)

zz1zz2
− if2(z + c),

z
2
f2(z)

zz
2
1

+
z
2
f2(z)

zz1zz2
+ if1(z + c),

z
2
f2(z)

zz
2
1

+
z
2
f2(z)

zz1zz2
− if1(z + c),

(76)

have no any zeros and poles. Moreover, by Lemmas 3 and 4,
we have that there exist two polynomials p1(z), p2(z) such
that

z
2
f1 z1, z2( 

zz
2
1

+
z
2
f1 z1, z2( 

zz1zz2
+ if2 z1 + c1, z2 + c2(  � e

ip1 z1+c1 ,z2+c2( ),

z
2
f1 z1, z2( 

zz
2
1

+
z
2
f1 z1, z2( 

zz1zz2
− if2 z1 + c1, z2 + c2(  � e

− ip1 z1+c1 ,z2+c2( ),

z
2
f2 z1, z2( 

zz
2
1

+
z
2
f2 z1, z2( 

zz1zz2
+ if1 z1 + c1, z2 + c2(  � e

ip2 z1+c1 ,z2+c2( ),

z
2
f2 z1, z2( 

zz
2
1

+
z
2
f2 z1, z2( 

zz1zz2
− if1 z1 + c1, z2 + c2(  � e

− ip2 z1+c1 ,z2+c2( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(77)

In view of (77), it yields that
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z
2
f1(z)

zz
2
1

+
z
2
f1(z)

zz1zz2
�

e
ip1(z)

+ e
− ip1(z)

2
,

f2(z + c) �
e

ip1(z)
− e

− ip1(z)

2i
,

z
2
f2(z)

zz
2
1

+
z
2
f2(z)

zz1zz2
�

e
ip2(z)

+ e
− ip2(z)

2
,

f1(z + c) �
e

ip2(z)
− e

− ip2(z)

2i
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(78)

which implies

P21 + iP22( e
i p1(z+c)+p2(z)( ) + P21 − iP22( e

i p1(z+c)− p2(z)( ) − e
2ip1(z+c) ≡ 1, (79)

P11 + iP12( e
i p2(z+c)+p1(z)( ) + P11 − iP12( e

i p2(z+c)− p1(z)( ) − e
2ip2(z+c) ≡ 1, (80)

where

P11 �
z
2
p1

zz
2
1

+
z
2
p1

zz1zz2
,

P12 �
zp1

zz1
 

2

+
zp1

zz1

zp1

zz2
,

P21 �
z
2
p2

zz
2
1

+
z
2
p2

zz1zz2
,

P22 �
zp2

zz1
 

2

+
zp2

zz1

zp2

zz2
.

(81)

Now, we claim that P21 − iP22 ≡ 0. If P21 − iP22 ≡ 0;
then, equation (79) becomes (P21 + iP22)e

i(p1(z+c)+p2(z))−

e2ip1(z1+c1 ,z2+c2) ≡ 1. If P21 + iP22 ≡ 0, then it yields
e2ip1(z1+c1 ,z2+c2) ≡ − 1, and this is a contradiction with the
condition of p1 being a nonconstant polynomial. If
P21 + iP22 ≡ 0, we have

P21 + iP22( e
i p1(z+c)+p2(z)( ) ≡ e

2ip1 z1+c1 ,z2+c2( ) + 1. (82)

By making use of the Mokhon’ko theorem in several
complex variables ([27], -eorem 3.4), in view of (82), it
follows that

T r, e
2ip1 z1+c1 ,z2+c2( )  � T r, P21 + iP22( e

i p1(z+c)+p2(z)( ) 

+ O(1).

(83)

In view of the Nevanlinna second fundamental theorem,
(82) and (83), it follows that

T r, e
2ip2 z1+c1 ,z2+c2( ) 

≤N r,
1

e
2ip2 z1+c1 ,z2+c2( )

  + N r,
1

e
2ip2 z1+c1 ,z2+c2( ) + 1

 

+ S r, e
2ip2 z1+c1 ,z2+c2( ) 

≤N r,
1

P21 + iP22( e
i p1(z+c)+p2(z)( )

⎛⎝ ⎞⎠

+ S r, e
2ip2 z1+c1 ,z2+c2( ) 

≤N r,
1

P21 + iP22
  + S r, e

2ip2 z1+c1 ,z2+c2( ) 

≤O T r, p2( (  + S r, e
2ip2 z1+c1 ,z2+c2( ) ,

(84)

outside possibly a set of finite Lebesgue measure. -is is a
contradiction with the fact that

lim
r⟶+∞

T r, e
2ip2 

T r, p2( 
� +∞, (85)
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for p2(z) being a nonconstant polynomial. Hence,
P21 − iP22 ≡ 0. Similarly, we have P21 + iP22 ≡ 0 and
P11 + iP12 ≡ 0.

In view of Lemma 5 and (79) and (80), it follows that

P21 + iP22( e
i p1(z+c)+p2(z)( ) ≡ 1

or P21 − iP22( e
i p1(z+c)− p2(z)( ) ≡ 1,

P11 + iP12( e
i p2(z+c)+p1(z)( ) ≡ 1

or P11 − iP12( e
i p2(z+c)− p1(z)( ) ≡ 1.

(86)

Now, we will consider the four cases below.

Case 1

P21 + iP22( e
i p1(z+c)+p2(z)( ) ≡ 1,

P11 + iP12( e
i p2(z+c)+p1(z)( ) ≡ 1.

⎧⎪⎨

⎪⎩
(87)

Since p1(z), p2(z) are polynomials, from (87), it fol-
lows that p1(z + c) + p2(z) ≡ C1 and p2(z + c)+

p1(z) ≡ C2. -us, it yields that p1(z + 2c)−

p1(z) ≡ C1 − C2 and p2(z + 2c) − p2(z) ≡ C2 − C1.
Hence, similar to the argument as in case 1 of -eorem
8, we have that p1(z) � L(z) + B1, p2(z) � − L(z) + B2,
where L is a linear function of the form L(z) � a1z1+

a2z2, a1(≠ 0), a1 ≠ − a2, B1, B2 are constants, which
means that (z2p1/zz2

1) ≡ (z2p2/ zz2
1) ≡ (z2p2/

zz1zz2) ≡ 0. Substituting these into (87), we have

ia1 a1 + a2( e
iL(c)+i B1+B2( ) ≡ 1,

ia1 a1 + a2( e
− iL(c)+i B1+B2( ) ≡ 1.

⎧⎪⎨

⎪⎩
(88)

In addition, in view of (79)–(87), it follows that

P21 − iP22 e
i − p1(z+c)− p2(z)( ) ≡ 1,

P11 − iP12 e
i − p2(z+c)− p1(z)( ) ≡ 1,

⎧⎪⎨

⎪⎩
(89)

which means that

− ia1 a1 + a2( e
− iL(c)− i B1+B2( ) ≡ 1,

− ia1 a1 + a2( e
iL(c)− i B1+B2( ) ≡ 1.

⎧⎪⎨

⎪⎩
(90)

-us, we can deduce from (88) and (90) that

a
2
1 a1 + a2( 

2
� 1,

e
2iL(c)

� 1,

a1 a1 + a2( e
iL(c)+i B1+B2( ) ≡ − i.

(91)

Similar to the argument as in the proof of -eorem 8
and by combining with (91), we have that (f1, f2) is of
the form

f1, f2(  � ± sin L(z) + B0( , ± cos L(z) + B0( ( .

(92)

Case 2

P21 + iP22( e
i p1(z+c)+p2(z)( ) ≡ 1,

P11 − iP12( e
i p2(z+c)− p1(z)( ) ≡ 1.

⎧⎪⎨

⎪⎩
(93)

Since p1(z), p2(z) are polynomials, from (93), it fol-
lows that p1(z + c) + p2(z) ≡ C1 and p2(z + c)−

p1(z) ≡ C2, which imply that p2(z + 2c) + p2(z) ≡
C1 + C2, and this is a contradiction with the condition
of p2(z) being a nonconstant polynomial.
Case 3

P21 − iP22( e
i p1(z+c)− p2(z)( ) ≡ 1,

P11 + iP12( e
i p2(z+c)+p1(z)( ) ≡ 1.

⎧⎪⎨

⎪⎩
(94)

Since p1(z), p2(z) are polynomials, then from (94), it
follows that p1(z + c) − p2(z) ≡ C1 and
p2(z + c) + p1(z) ≡ C2, which imply that
p1(z + 2c) + p1(z) ≡ C1 + C2, and this is also a
contradiction.
Case 4

P21 − iP22( e
i p1(z+c)− p2(z)( ) ≡ 1,

P11 − iP12( e
i p2(z+c)− p1(z)( ) ≡ 1.

⎧⎪⎨

⎪⎩
(95)

Since p1(z), p2(z) are polynomials, from (95), it follows
that p1(z + c) − p2(z) ≡ C1 and p2(z + c) − p1(z) ≡ C2.
-is means that p1(z + 2c) − p1(z) ≡ C1 + C2 and
p2(z + 2c) − p2(z) ≡ C1 + C2. -us, similar to the argument
as in case 1 of -eorem 2, we can deduce that
p1(z) � L(z) + B1, p2(z) � L(z) + B2, where L is a linear
function of the form L(z) � a1z1 + a2z2, a1(≠ 0), a1 ≠
− a2, B1, B2 are constants. Hence, it follows that
(z2p1/zz2

1) ≡ (z2p2/zz2
1) ≡ (z2p2/zz1zz2) ≡ 0. Substituting

these into (95), we have

− ia1 a1 + a2( e
iL(c)+i B1− B2( ) ≡ 1,

− ia1 a1 + a2( e
iL(c)+i B2− B1( ) ≡ 1.

⎧⎪⎨

⎪⎩
(96)

In addition, in view of (80)–(87), it follows that

P21 + iP22 e
i − p1(z+c)+p2(z)( ) ≡ 1,

P11 + iP12 e
i − p2(z+c)+p1(z)( ) ≡ 1,

⎧⎪⎨

⎪⎩
(97)

which means that
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ia1 a1 + a2( e
− iL(c)+i B2− B1( ) ≡ 1,

ia1 a1 + a2( e
− iL(c)+i B1− B2( ) ≡ 1.

⎧⎪⎨

⎪⎩
(98)

-us, we can deduce from (96) and (98) that

a
2
1 a1 + a2( 

2
� 1,

e
2iL(c)

� − 1,

a1 a1 + a2( e
iL(c)+i B1− B2( ) ≡ i.

(99)

Similar to the argument as in the proof of -eorem 8,
and by combining with (99), we can deduce that (f1, f2) is
of the form

f1, f2(  � ± cos L(z) + B0( , ± cos L(z) + B0( ( .

(100)

-us, in view of cases 1–4, this completes the proof of
-eorem 8.
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