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Extreme learning machine (ELM), as a new simple feedforward neural network learning algorithm, has been extensively used in
practical applications because of its good generalization performance and fast learning speed. However, the standard ELM
requires more hidden nodes in the application due to the random assignment of hidden layer parameters, which in turn has
disadvantages such as poorly hidden layer sparsity, low adjustment ability, and complex network structure. In this paper, we
propose a hybrid ELM algorithm based on the bat and cuckoo search algorithm to optimize the input weight and threshold of the
ELM algorithm. We test the numerical experimental performance of function approximation and classification problems under a
few benchmark datasets; simulation results show that the proposed algorithm can obtain significantly better prediction accuracy
compared to similar algorithms.

1. Introduction

In recent years, artificial intelligence algorithms have drawn
extensive attention from scientific research. As an important
part of artificial intelligence, machine learning has been
widely used in data mining [1], speech recognition [2],
feature selection [3, 4], learning incentivization strategy [5],
natural language processing [6], and the nonlinear function
approximation and benchmark problem [7]. As a branch of
machine learning, neural networks have been successfully
applied in many tasks of learning from data. However, most
of the traditional neural networks use the gradient learning
algorithm for network training, which makes the network
make problems such as low training efficiency, slow speed,
and easy to fall into local optimal.

Extreme Learning Machine (ELM) is a new method of
training artificial neural networks and includes supervised
training methods, which is a kind of neural network
structure put forward by Huang et al. using single hidden
layer feedforward networks (SLFN) [8–10]. Huang et al. [11]

argue that the existing neural networks have some defects in
learning speed; the main reason for the low rate of learning is
that all the parameters on the network are determined re-
peatedly by a training method. In the ELM learning algo-
rithm, the weight feedback and threshold are generated
randomly. +en, the output of the hidden layer matrix is
used to calculate the final output weight. Computing the
final weights was obtained using Moore–Penrose (MP)
generalized inverse. Compared with other neural networks
based on the gradient learning algorithm, the ELM learning
algorithm has great advantages in learning speed, and it is
capable of producing good generalization performance and
greatly reduces the computational complexity of complex
application problems [12, 13]. Meanwhile, these good per-
formances have been widely promoted in various practical
application fields such as biomedicine [14–16], fault diag-
nosis [17, 18], and indoor positioning systems [19, 20].
However, since the input parameters are generated ran-
domly and the ELM requires a large number of hidden
neurons, the amplitude of the output weight will be large
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when the output matrix of the hidden layer is ill, which will
cause the trained model to fall into the local minimum and
show the phenomenon of overfitting [21]. In [22, 23], an
ELM based on different regularization was proposed to
effectively overcome the overfitting phenomenon. +e ac-
curacy and effectiveness of the ELM algorithm largely rest
with the internal parameters of the model. So as to choose
the suitable model parameters, many researchers use a bi-
onic optimization algorithm to optimize the input weights
and thresholds.

In the literature [24], the improved ELM algorithm was
proposed, which used a differential evolution algorithm to
choose the input weights and then used MP generalized
inverse analysis to determine the output weights. +is
improvement enables it to obtain better generalization
performance in a compact network. In the literature [25],
the coral reefs optimization (CRO − ELM) has been used
for carrying out evolution in ELM weights to enhance the
performance of these machines. A new evolutionary al-
gorithm, particle swarm optimization (PSO − ELM), is
introduced to optimize the input weight and hidden bias of
ELM [26, 27] so that the network has better generalization
performance in the benchmark classification experiment
and is more suitable for some prediction problems. A real-
coded genetic algorithm (RCGA − ELM) was proposed
[28] to select the number of hidden neurons and the input
weights, such that the generalization performance of the
classifier is a maximum. But it needed to adjust many
parameters in genetic operators artificially. +e cuckoo
search algorithm (CS − ELM)was proposed [29–33], which
was used to pretrain the ELM ensuring optimal solutions
and to further improve the accuracy and stability of
CS − ELM. References [34, 35] proposed ICS model, which
combines the improved cuckoo search algorithm with
ELM. Both CS − ELM and ICS − ELM select the input
weights and biases before calculating the output weights,
and they ensure the full column rank of the hidden layer
output matrix.

Bat algorithm (BA) [36, 37] and cuckoo search algorithm
(CS) [38, 39] are two new heuristic swarm intelligence
optimization algorithms. Bat algorithm has the advantages
of a simple model, fast convergence rate, strong global
optimization, and so on and has been widely used in en-
gineering optimization, model identification, and other
problems. +e cuckoo search algorithm has the character-
istics of simple and efficient, few parameters, easy to im-
plement, and excellent random search path and has been
successfully applied to medical image optimization [40],
multiobjective optimization [41], image processing [42], and
other practical problems. Literature [43] shows that bat
algorithm and cuckoo search algorithm have great advan-
tages over genetic algorithm and particle swarm optimiza-
tion in the newmetaheuristic environment. In this paper, we
combine the BACS hybrid algorithm with traditional ELM
and propose an optimization algorithm of ELM based on
BACS.+e basic thought of the BACS − ELM algorithm is to
use the BACS algorithm to train the input weight and
threshold value randomly generated by ELM to find the
optimal parameter and then determine the output weights

by using MP generalized inverse so as to improve the
convergence speed and stability of the network model. +e
main contributions are as follows:

(1) Based on the idea of a group intelligence optimi-
zation algorithm, this paper introduces how to train
ELM by BACS hybrid algorithm. By using this
method, the input weights and thresholds of the
ELM network can be reasonably optimized to solve
the randomness problem of hidden layer parameters
so that the network parameters can reach the
optimum.

(2) By improving the traditional ELM network by BACS
hybrid algorithm, the local and global optimization
problems are effectively balanced, and the general-
ization performance of the network is improved.

(3) Nonlinear function fitting and classification prob-
lems present that the BACS − ELM algorithm can
acquire better approximation effect and generaliza-
tion performance than other algorithms.

+e rest of the paper is arranged as follows: Section 2
introduces the traditional ELM network model and algo-
rithm. Section 3 introduces the principles and imple-
mentation steps of the bat algorithm and cuckoo search
algorithm. +e hybrid algorithm of Extreme Learning
Machine based on the bat cuckoo algorithm is described in
Section 4. Some numerical experiments are discussed in
Section 5. Section 6 offers some conclusions for this paper.

2. The Preliminary of ELM

In this section, we begin with the introduction of standard
ELM, the network model of ELM is shown in Figure 1, and
its network model can be divided into three layers, which are
the input layer, hidden layer, and output layer. All of these
works provide fundamental theoretical support for the new
method proposed next. (xj, oj) ∈ Rn × Rm represents P ar-
bitrary various samples, where xj � (xj1, xj2, . . . , xjn)T ∈ Rn

and oj � (oj1, oj2, . . . , ojm)T ∈ Rm; the traditional SLFNwith
L hidden nodes can be mathematically modeled as

hL xj  � 
L

i�1
βiG wi, bi, xj  � tj, j � 1, 2, . . . , P, (1)

where G(wi, bi, xj) is an activation function, which can take
various kinds forms, such as the sigmoid function:

G(w, b, x) �
1

1 + exp − wTxT
+ b  

(2)

or Gaussian function:

G(w, b, x) � exp −b‖w − x‖
2

 . (3)

+e above SLFN can approximate these P samples in the
training process of gradual iteration. When the learning
error is reduced to zero, 

P
j�1 ‖tj − oj‖ � 0, the learning

capacity of the ELM is optimal, and then there exist (wi, bi)

and βi such that
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L

i�1
βiG wi, bi, xj  � oj, (4)

where wi � (wi1, wi2, . . . , win)T ∈ Rn is the input weight,
which links the i-th hidden node as presented in Figure 1,
bi ∈ R is the threshold of the i-th hidden node and is
generated randomly, βi � (βi1, βi2, . . . , βim)T ∈ Rm is the
output weight of the i-th hidden node, and tj represents the
actual output of input xj in the network.

+e above P equations can be rewritten as the following
matrix form:

Hβ � O, (5)

where

H w1, . . . ,wL, b1, . . . , bL, x1, . . . , xP( 

�

G w1, b1, x1(  · · · G wL, bL, x1( 

⋮ ⋱ ⋮

G w1, b1, xP(  · · · G wL, bL, xP( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×L

,

β �

βT
1

⋮

βT
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×m

,

O �

oT
1

⋮

oT
P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×m

,

(6)

where H is called the output matrix of the hidden layer and β
represents the final output matrix. +e basic principle of
ELM is to obtain the output weight β through formula
Hβ � O.

In practical training, the number of nodes L in the
hidden layer is usually less than the number of training
samples P. +erefore, on the premise that the activation
function is differentiable, input weights and thresholds
randomly selected before training should remain unchanged
during training. In this way, the output weight of the

network can be obtained by solving the least squares of the
following linear system:

min
β

‖Hβ − O‖, (7)

and the explicit solution is
β � H†O, (8)

where H† represents the MP generalized inverse of H [44].
+erefore, ELM can be described as follows (Algorithm 1).

3. Algorithm Description

3.1. Bat Algorithm. Bat algorithm (BA) is a swarm intelli-
gence optimization algorithm that simulates the predation
behavior of bats. Because of its simple model, fast conver-
gence speed, and strong global optimization, it has been
widely used in data mining, wireless sensors, and power
systems. However, there are also some problems in practical
applications, such as easy premature convergence and low
optimization accuracy.

+e bat algorithm determines the optimal bat in the
current search space by adjusting the frequency, wavelength,
and loudness and then obtains the optimal solution to the
optimization problem. For this algorithm, in order to
simulate this predation behavior, the following assumptions
are proposed in the process:

(1) All bat individuals can use echolocation to perceive
the distance and distinguish the difference between
the target and the obstacle in a special way

(2) +e bat flies randomly at position xi at speed vi, finds
the target with frequency fmin, variable wavelength
λ, and loudness A0, and automatically adjusts the
wavelength (or frequency) and pulse emission rate
r ∈ [0, 1] through the distance from the target and so
on

(3) Assume that the loudness changes from the maxi-
mum value A0 to the minimum value Amin

Assuming that, in the search space with dimension d, the
number of iterations is t, the update formulas for the fre-
quency, velocity, and position of the bat individual i in the
t-th generation are as follows:

fi � fmin + fmax − fmin( β, (9)

v
t
i � v

t−1
i + x

t−1
i − x

∗
 fi, (10)

x
t
i � x

t−1
i + v

t
i , (11)

where fi represents the frequency of the i-th bat and its
adjustment range is [fmin, fmax], β is a random number that
obeys a uniform distribution in [0, 1], and x∗ represents the
current optimal solution.

For the current local search domain, a random number
rand1 is generated. If rand1 > randi, the current new solution
is generated by the random disturbance of the optimal
solution. +e update formula is as follows:

XP

1

i

L

n

j

m

(wi,bi) 1 1
β

βi
βi1
βij

βim

Input OutputHidden layer

Figure 1: +e structure of the ELM model.
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xnew � xold + εAt
, (12)

where ε is a random number in [−1, 1] and At represents the
average loudness of the bat population.

When the bat is constantly approaching the target, its
loudness A will drop to a fixed value, and at this time, r will
continue to increase. Randomly generate a number rand2; if
rand2 <Ai and the new fitness value f(xnew)>f(xold), the
new solution generated by (12) is accepted; that is
xt+1

i � xnew. +e update formula for the loudness Ai and
pulse rate ri of the first bat is as follows:

A
t+1
i � αA

t
i , (13)

r
t+1
i � r

0
i [1 − exp(−σt)], (14)

where α represents the loudness attenuation coefficient and
0< α< 1. σ represents the pulse frequency enhancement
coefficient and σ > 0.

3.2. Cuckoo Search Algorithm. +e cuckoo search algorithm
(CS) is simplification and simulation of the cuckoo nest
finding and spawning behavior. +e special habit of cuckoos
is parasitic brooding; that is, other host birds hatch and
brood on their behalf. In order to make this phenomenon
difficult to detect, the bird will first find a bird with similar
characteristics to its own egg as the host during the breeding
period. After being recognized by the host bird, the egg is
removed or the host rebuilds the nest. In order to simulate its
reproductive behavior, the following assumptions are pro-
posed in the process:

(1) Each cuckoo lays only one egg at a time and ran-
domly selects the nest to hatch

(2) +e best bird’s nest is retained to the next generation
(3) +e number of available bird nests n remains un-

changed; there is a probability (pa) that the host bird
finds foreign eggs, pa ∈ [0, 1]

For the cuckoo search algorithm, randomly initialize n

bird nest positions in the d-dimensional search space and
leave the best position to the next generation. +e new
position is generated by Levy flight. +en the cuckoo’s nest
search path and position update formula are as follows:

x
t+1
i � x

t
i + α⊕ Levy(λ), (15)

where xt
i represents the position of the i-th bird nest in the

t-th generation, α represents the step-length control factor

and α> 0, ⊕ is the point-to-point multiplication, Levy(λ) is
the random search path, and Levy ∼ u � t− λ(1< λ≤ 3).

After the position is updated, compare the random
numbers r and pa, and 0≤ r≤ 1; if r>pa, then use the
random walk method to change the position so as to retain a
set of better values and obtain the current optimal bird nest
position and optimal solution through iteration. +e update
formula is as follows:

x
t+1
i � x

t
i + τ x

t
m − x

t
k , (16)

where τ represents the uniformly distributed scaling factor
within [0, 1] and both xt

m and xt
k represent the random

solution in the t-th generation.

3.3. Bat Cuckoo Hybrid Algorithm. Although the bat algo-
rithm has low convergence accuracy, its global search ability
is strong; in order to improve the quality of the cuckoo
population, the bat algorithm is integrated into the cuckoo
algorithm for optimization, and a bat cuckoo hybrid algo-
rithm (BACS) is proposed. For this algorithm, the nest
position obtained by the cuckoo algorithm is not directly
used as the initial position, but the bat algorithm is used to
continue to optimize the optimal value after the position is
updated, which greatly accelerates the global search ability of
the algorithm. +erefore, the integration of the two algo-
rithms effectively balances the problem of local and global
optimization. Based on this, the specific steps of the bat
cuckoo hybrid algorithm are shown in Table 1.

4. Hybrid Algorithm of Extreme Learning
Machine Based on Bat Cuckoo Algorithm

Extreme Learning Machine (ELM) selects hidden layer
parameters randomly and does not need to update itera-
tively during training, and the output weight can be de-
termined by the least square solution, which greatly
accelerates the learning process. Although ELM overcomes
the shortcomings of the traditional gradient descent al-
gorithm, the number of hidden nodes still needs to be set in
advance, which may lead to many redundant nodes.
+erefore, ELM requires more random hidden nodes in
some applications than traditional neural network algo-
rithms. However, this will lead to a decrease in the sparsity
and regulation ability of the hidden layer, the complexity of
the network structure, and the extension of the training
time and finally affect the generalization ability and ro-
bustness of the network.

Input: given a training set (xj, oj) ∈ Rn × Rm, activation function is G(wi, bi, xj), and the hidden nodes number is L.
Output β.
Step 1: setting learning parameters for hidden nodes wi and bi, 1≤ i≤ L.
Step 2: calculate the output matrix H based on (5).
Step 3: calculate the output weight β � H†O.

ALGORITHM 1: ELM algorithm.
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BACS algorithm has the characteristics of strong search
accuracy, fast convergence speed, and not easy to fall into
local best and effectively balances local and global search.
Using this optimization ability, the hidden layer parameters
of ELM are selected appropriately to solve the problem that
the hidden layer parameters need to be optimized due to
randomness. +erefore, this paper considers the use of the
BACS algorithm to optimize ELM so as to propose a hybrid
algorithm of Extreme Learning Machine based on the bat
cuckoo algorithm (BACS − ELM). We first use the BACS
algorithm to train the input weights and thresholds ran-
domly generated by ELM. +e population is taken as the
initially hidden layer parameter of ELM, and the fitness
function of the BACS algorithm is used to conduct iterative
optimization. +e position of the individual of the pop-
ulation is constantly adjusted to find the optimal hidden
layer parameter until the maximum number of iterations or
search accuracy is reached. At the end of the iteration, the
optimal individual position is obtained, and the optimized
results are used as the input weights and thresholds of ELM
to train the network so as to improve the convergence speed
and stability of the network model. To prevent the problem
of output saturation caused by excessive input value, we use
the following formula to normalize the data:

y �
x − xmin

xmax − xmin
, (17)

where x is the original data and xmax and xmin represent the
maximum and minimum values of the original data,
respectively.

Next, the input weights and thresholds of ELM were
represented by the cuckoo individuals using real coding
rules. On the basis of Section 2, the number of neurons in the
input layer and hidden layer is fixed as n and L , respectively.
+erefore, the calculation formula of the coding length of the
cuckoo individual is

D � (n + 1)∗L. (18)

Individual position of cuckoo can be expressed as

X � x1, x2, x3, . . . , xL×n+L( . (19)

+e input weights wi and thresholds bi of ELM are mapped
to the individual position of the cuckoo, the population is
randomly initialized, and the obtained random individuals are
assigned to the input weights and thresholds of ELMone by one
and placed in the ELM network. Here, the assignments of input
weights and thresholds are, respectively, expressed as follows:

wi � x1, x2, x3, . . . , xL×n( ,

bi � xL×n+1, xL×n+2, . . . , xL×n+L( .
(20)

In the training sample process of ELM, in order to
evaluate the prediction performance more objectively, we
used the root mean square error as the evaluation index of
model prediction, so the fitness function was designed as

RMSE �

����

1
P



P

j�1




tj − oj 
2

, (21)

where P is the total number of samples, T � (t1, t2, . . . , tP)

represents the actual output value of samples, and
O � (o1, o2, . . . , oP) represents the expected output value of
samples. Table 2 shows the specific implementation steps of
the BACS − ELM algorithm.

5. Experimental Results

In order to verify the performance of the proposed algo-
rithm, a function fitting and several classification problems
are tested in this section, and the validity of BACS − ELM is
tested by comparing it with the ELM, BA − ELM, and CS −

ELM algorithms.

5.1. Function Fitting. In order to declare the performance of
the proposed algorithm more intuitively and effectively, we
take into account adopting ELM, BA − ELM, CS − ELM, and
BACS − ELM to approximate the Sinc function and then
compare the function approximation capabilities. +e ex-
pression for the Sinc function is defined as follows:

fx �

sin x

x
, x≠ 0,

1, x � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

+e training set and test set of 5000 samples were se-
lected, respectively, and the input variables xi obey the
uniform distribution in the interval [−10, 10]. In order to
increase the authenticity and improve the generalization
performance of the algorithm, random noise was added to
the training samples, whereas the testing data remained
noise-free. For different optimization methods, the initial
parameter settings are presented in Table 3, and the max-
imum iteration number is set I � 100. +e activation
function is the RBF function, and the fitness function is

Table 1: Steps of the bat cuckoo hybrid algorithm.

Step 1: initialize the basic parameters and set the loop termination criteria
Step 2: initialize the location of the bird nest, calculate the fitness value of each bird nest, and obtain the optimal position and optimal value
Step 3: record the optimal position of the previous generation, update according to formula (15) to obtain a new set of positions, calculate
the fitness value, and compare it with the value of the previous generation to determine the current better position
Step 4: compare the random number r with pa; if r>pa, update the position randomly; otherwise, it will not change
Step 5: use the new position as the initial point of the bat algorithm and use equations (9)–(14) to update the position of the bird nest
Step 6: record the position of step 5 and calculate the fitness value to determine the current optimal position and optimal value
Step 7: if the termination conditions are met, continue to the next step; otherwise, go to step 3
Step 8: output the global optimal position, and the algorithm ends
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RMSE. In order to compare the results of each algorithm
more objectively, each experiment was run 20 times and
then took the mean value.

+e selection of the number of hidden nodes will have a
direct influence on the performance of the model. +erefore,
the experiment on BACS − ELM was carried out by
adjusting the number of hidden nodes, and the test results
obtained are shown in Table 4. +e results show that the
function has the best fitting effect when the number of
hidden nodes is 12, and the mean square error of training
and testing tends to be stable with the increase of nodes. To
ensure the performance of the algorithm and reduce the
complexity of the model, the architecture of the optimized
ELM network can be determined as 1-12-1.

+en, based on the selection of the above parameter
values, simulation experiments were carried out on the ELM,
BA − ELM, CS − ELM, and BACS − ELM algorithms. It can
be seen from Figure 2 that the approximation effect of the
BACS − ELM algorithm is better than that of other algo-
rithms. Moreover, the performance comparison of each
algorithm is shown in Table 5. According to the displayed
results, the test RMSE value of the BACS − ELM algorithm is
the smallest, which means that the algorithm has higher
accuracy and better stability. As can be seen from the
training time in the table, due to the randomness of hidden
layer parameters of ELM, it has a very fast learning speed,
but the fitting effect is not ideal.

+e results also show that the three optimization
methods are all effective. But there is little difference in
training and testing time between the BA − ELM, CS − ELM,
and BACS − ELM algorithms and the advantages of learning
efficiency are not embodied. Nevertheless, the ELM model

based on the BACS algorithm greatly improves the con-
vergence accuracy of function fitting, so the computational
efficiency is also within the acceptable range.

5.2. ClassificationProblems. In this section, in order to more
accurately appraise the effectiveness of the BASC − ELM
algorithm, the performance of the algorithm will be com-
pared on multiple classification problems. +e relevant in-
formation of the dataset is given in Table 6. +e initial
parameter setting of each group was consistent with the
above. +e maximum iterations number I � 100 and the
activation function was the Sigmoid function. Each group of
experiments was run 20 times to take the average value.

Figure 3 shows the comparison of the classification
accuracy of the algorithm in different datasets with the
change of the number of nodes. Figure 3(a) is based on the
variation trend of breast cancer; it can be seen from the
figure that ELM needs the most nodes to achieve relatively
high accuracy, while other algorithms all achieve the highest
accuracy when the node is 20, and further speaking, BASC −

ELM is slightly better. Figure 3(b) is based on the changing
trend of heart failure. It can be seen from the figure that the
four algorithms all show a similar curve trend when the
number of hidden nodes increases and they all have the best
accuracy when the node is 20, but at this time, BASC − ELM
has the highest value of 84.23%. Figure 3(c) is based on the
variation trend of Iris. BASC − ELM has the best accuracy
when the node is 10, which is 5 fewer nodes than other
algorithms when they get the maximum value. Figure 3(d) is
based on the changing trend of the vertebral column. It can
be seen from the graph that BASC − ELM only needs the

Table 2: Steps of the BACS − ELM learning algorithm.

Step 1: initialize the basic parameters and set the loop termination criteria
Step 2: initialize the cuckoo individual, code the input weights and thresholds of ELM into the individual, and each individual represents an
ELM network structure
Step 3: normalize the training data and random initial individual position and calculate the fitness value in line with equation (21)
Step 4: record the optimal position, obtain a group of new positions according to equation (15), calculate the fitness value, and determine
the current optimal position
Step 5: compare the random numbers r with Pa; if r>Pa, update the position randomly; otherwise, it will not change
Step 6: take the new position as the starting point of BA, and randomly generate rand1; if rand1 > ri, update the current optimal position;
otherwise, go to step 7
Step 7: randomly generate rand1; if rand1 <Ai&&f(xnew)>f(xold), replace xnew with the current position xt+1

i or do not update xnew
Step 8: calculate the fitness value of each individual, and determine the current optimal position and optimal value
Step 9: if the termination condition is met, proceed to the next step; otherwise, go to step 4
Step 10: the individual cuckoo is decoded into the input weights and thresholds of ELM; obtain the optimal ELM network structure
according to these parameters

Table 3: +e population parameter setting of three optimization methods.

Optimization algorithm Parameter setting

BA − ELM Bat population size N � 20, loudness A0 � 1, and pulse emissivity r � 0.5
Loudness attenuation coefficient α � 0.9 and pulse frequency interval [fmin, f(max)] � [0, 2]

CS − ELM Initial nest size N � 20, discovery probability Pa � 0.25, and step size control factor α � 0.5
Scaling factor c � 0.5

BACS − ELM
Bat population size N � 20, loudness A0 � 1, and pulse emissivity r � 0.5

Loudness attenuation coefficient α � 0.9 and pulse frequency interval [fmin, f(max)] � [0, 2]

Discovery probability Pa � 0.25, step size control factor α � 0.5, and scaling factor c � 0.5
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minimum number of nodes to obtain the best results, and
the accuracy value fluctuates little, which indicates that the
algorithm can achieve better stability.

Next, in order to better explain the accuracy of the
BACS − ELM algorithm in classification experiments,

Figure 4 presents the fitness curves of the BA − ELM,
CS − ELM, and BACS − ELM algorithms under four clas-
sification problems, respectively. To maintain the consis-
tency of the experimental environment, the number of
hidden nodes for each problem was set as 20, 20, 15, and 30,

Table 4: +e influence of hidden node number on BACS − ELM algorithm.

Number of hidden nodes 2 4 6 8 10 12 14 16
Training RMSE 0.1370 0.1183 0.1109 0.1094 0.1082 0.1081 0.1087 0.1081
Testing RMSE 0.0902 0.0516 0.0279 0.0098 0.0095 0.0084 0.0087 0.0085
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Figure 2: Comparison of the fitting effects of the four algorithms: (a) ELM, (b) BA − ELM, (c) CS − ELM, and (d) BACS − ELM.

Table 5: +e performance comparison of four algorithms on Sinc function.

Algorithms Training time (s) Testing time (s) Training RMSE Testing RMSE
ELM 0.0056 0.0018 0.1351 0.0453
BA − ELM 40.6553 0.0019 0.1095 0.0119
CS − ELM 35.9939 0.0022 0.1107 0.0148
BASC − ELM 42.7807 0.0026 0.1081 0.0084
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respectively, while other parameters were unchanged. As can
be seen from Figures 4(a)–4(d), for different datasets,
compared with the BA − ELM and CS − ELM algorithms,
the BACS − ELM algorithm can obtain the best fitness
function value in the case of the least number of iterations.
+is is because when the BACS algorithm optimizes the
input weights and thresholds of ELM, it has a strong local

optimization ability at the initial stage of search and makes
full use of the global optimization ability of the BA algo-
rithm. +e combination of the two greatly improves the
convergence accuracy.

Based on the above analysis, the performance results of
the four algorithms on the number of hidden nodes, training
time, training, and test accuracy are also given in the

Table 6: +e detailed description of the classification dataset.

Dataset Training samples Testing samples Attribute Classes
Breast cancer 80 36 9 2
Heart failure 209 90 12 2
Iris 105 45 4 3
Vertebral column 208 102 6 3
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Figure 3:+e graph of the classification accuracy over different datasets with the change of the number of nodes: (a) breast cancer; (b) heart
failure; (c) iris; (d) vertebral column.
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experiment. It can be clearly seen from Table 7 that the
BACS − ELM algorithm can achieve the best test accuracy
under the minimum number of hidden nodes in all the four
datasets, which indicates that the algorithm can effectively
optimize the parameters of the hidden layer of the ELM
model by using BACS algorithm and then obtain a more
appropriate and simplified network structure. At the same
time, the best generalization performance and classification
ability are obtained. In terms of computing time or effi-
ciency, hidden layer parameters of ELM do not need to be

iteratively tuned, so the learning speed is very fast, but the
success rate of its classification is very low. In Table 7, we did
not list the test time data because the values of the four
algorithms for different datasets in the experimental results
are very low, and the size is similar; that is to say, the impact
of the data on the overall experiment results cannot be
regarded as an evaluation item. Compared with the other
two optimization methods, although the BACS − ELM al-
gorithm is slightly worse in learning efficiency, it shows great
advantages in classification accuracy.
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Figure 4: Comparison of fitness function curves on different datasets: (a) breast cancer; (b) heart failure; (c) iris; (d) vertebral column.
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6. Conclusions

In this paper, we propose a hybrid Extreme Learning Ma-
chine algorithm based on the bat and cuckoo search algo-
rithm to optimize the input weight and threshold of the
traditional ELM algorithm, thus improving the disadvan-
tages of traditional ELM, such as poor sparsity of hidden
layer, low adjustment ability, and complex network struc-
ture. Meanwhile, the BACS algorithm has the characteristics
of strong searching accuracy, fast convergence speed, and
not easy to fall into the local optimal, which effectively
balances the local and global optimization problems.
+erefore, the proposed BACS-ELM algorithm can effec-
tively solve the optimization problem due to the randomness
of hidden layer parameters and improve the generalization
performance of the network.

Experimental results show that the BACS-ELM algo-
rithm is superior to other algorithms in function fitting and
classification. In the future, we consider extending the
BACS-ELM algorithm to practical application problems and
solving a wider class of even tougher optimization problems.
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Aguilera, and R. Garćıa-Herrera, “Feature selection in wind
speed prediction systems based on a hybrid coral reefs
optimization—extreme learning machine approach,” Energy
Conversion and Management, vol. 87, pp. 10–18, 2014.

[26] Q. L. Ling and F. Han, “Improving the conditioning of ex-
treme learning machine by using particle swarm optimiza-
tion,” International Journal of Computer Technology and
Applications, vol. 6, pp. 85–93, 2012.

[27] Y. Xu and Y. Shu, “Evolutionary extreme learning machi-
ne—based on particle swarm optimization,” Advances in
Neural Networks, vol. 3971, pp. 644–652, 2006.

[28] S. Suresh, R. Venkatesh Babu, and H. J. Kim, “No-reference
image quality assessment using modified extreme learning
machine classifier,” Applied Soft Computing, Elsevier, vol. 9,
pp. 541–552, , Amsterdam, Netherlands, 2009.

[29] X. S. Yang, Nature-Inspired Meta-Heuristic Algorithms,
Luniver Press, Stansted Mountfitchet, UK, 2010.

[30] X. S. Yang and S. Deb, “Cuckoo search via Lvy flights,” in
Proceedings of the IEEE World Congress on Nature and Bio-
logically Inspired Computing, pp. 210–214, Coimbatore, India,
2009.

[31] X. S. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” International Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[32] R. Rajabioun, “Cuckoo optimization algorithm,” Applied Soft
Computing, vol. 11, no. 8, pp. 5508–5518, 2011.

[33] P. Civicioglu and E. Besdok, “A conceptual comparison of the
cuckoo-search, particle swarm optimization, differential
evolution and artificial bee colony algorithms,” Artificial
Intelligence Review, vol. 39, no. 4, pp. 315–346, 2013.

[34] M. K. Marichelvam, “An improved hybrid cuckoo search
(IHCS) metaheuristics algorithm for permutation flow shop
scheduling problems,” International Journal of Bio-Inspired
Computation, vol. 4, no. 4, pp. 200–205, 2012.

[35] E. Valian, S. Mohanna, and S. Tavakoli, “Improved cuckoo
search algorithm for feed forward neural network training,”
International Journal of Artificial Intelligence & Applications,
vol. 2, no. 3, pp. 36–43, 2011.

[36] X. S. Yang and A. H. Gandomi, Bat Algorithm: A Novel
Approach for Global Engineering Optimization, Professional
Publications, Hyderabad, India, 2012.

[37] A. H. Gandomi and X.-S. Yang, “Chaotic bat algorithm,”
Journal of Computational Science, vol. 5, no. 2, pp. 224–232,
2014.

[38] X. S. Yang, “Cuckoo search and firefly algorithm: theory and
applications,” Studies in Computational Intelligence, p. 516,
Springer, Heidelberg, Germany, 2013.

[39] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural op-
timization problems,” Engineering with Computers, vol. 29,
no. 1, pp. 17–35, 2013.

[40] A. Gálvez and A. Iglesias, “Memetic improved cuckoo search
algorithm for automatic B-spline border approximation of
cutaneous melanoma from macroscopic medical images,”
Advanced Engineering informatics, vol. 43, 2020.

[41] X.-S. Yang and S. Deb, “Multiobjective cuckoo search for
design optimization,” Computers & Operations Research,
vol. 40, no. 6, pp. 1616–1624, 2013.

[42] A. M. Kamoona and J. C. Patra, “A novel enhanced cuckoo
search algorithm for contrast enhancement of gray scale
images,” Applied Soft Computing, vol. 85, Article ID 105749,
2019.

[43] K. Khan and A. Sahai, “A comparison of BA, GA, PSO, BP and
LM for training feed forward neural networks in e-learning
context,” International Journal of Intelligent Systems and
Applications, vol. 4, no. 7, pp. 23–29, 2012.

[44] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning
machines: a survey,” International Journal of Machine
Learning and Cybernetics, vol. 2, no. 2, pp. 107–122, 2011.

Journal of Mathematics 11


