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In this paper, new weighted Hermite-Hadamard type inequalities for differentiable h-convex and quasi h-convex functions are
proved. These results generalize many results proved in earlier works for these classes of functions. Applications of some of our

results to s-divergence and to statistics are given.

1. Introduction

The theory of convex functions is based on convex functions
stated as follows.

A function p: @+ K CR — R is said to be convex on
a convex set K if the inequality given as follows:

pe& +(1-e),)<ep(&)+(1-e)p(&,) (1)

holds for all ;, &, € & and e € [0, 1]. If (1) holds in reverse
direction, then p is said to be concave.

The inequality which can be considered as the necessary
and sufficient condition of a function p: F#K <R — R
to be convex on [n,n,] is given by [1]

p<”1+”2>S L J"zp(fl)dflgp(nl)w(nz), )

2 n,—n; Jn 2

‘P(%) “n i ", J: p(&)dE,

where n,, n, € & with n, <n,.

Inequality (2) is known as Hermite-Hadamard in-
equality, and it holds in reversed direction if the function p is
concave on [ny,n,].

Over the past three decades, the definition of convex
functions and inequality (2) has been subjected to immense
research. The definition of convex functions has been
modified in various forms, and hence a number of different
weighted and nonweighted forms of inequality (2) have been
obtained by many researchers.

Kirmachi [2] obtained the following estimate for

|p(n, +ny/2) = (1/n, —ny) jjjp(fl)dm

Theorem 1 (see [2]). Let p: KSR — R be a differentiable
mapping on K’ let n,n, € & with n,<n, and
p € L([n,m,)). If |p'| is convex on [n;,n,], then

< (”2_”1)(|P, (”1)|+|pl (HZ)D (3)
- 8 :
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Pearce and Pecaric [3] improved this estimate by proving
the following result.

(&)

I <n1+n2> 1 J”z
p 2 n, —m ”1p

The weighted version of the results in Theorems 1 and 2
was obtained in [4].

Theorem 3 (see [4]). Let p: KSR — R be a differentiable
mapping on K°, let n;,n, € K with n <n,, and let
g: [n,n,] — [0,00) be a continuous positive mapping
symmetric with respect to (n; + n,/2). If pg € L([n,,n,]) and
Ip'| is convex on [n,,n,], then

’P(%) J g(&)dé, - J: p(&)g(é)dé,

< (n, - ”1)(|P’ (”1)|

B 2

+[p' (m)]) Jl

M (g;ny,ny,e)de,
0
(5)

where M(g;ny,ny,e) = _[ e and

g(&)dé,
n (@)= ((1+e)/2)n + (1~ e‘)/z)n2

Theorem 4 (see [4]). Let p: KSR — R be a differentiable
mapping on K°, let n;,n, € K with n,<n,, and let

|P(”1) +p(ny) 1

2 n,—n

The bound of the result of Theorem 5 in weighed form
was given by Hwang in [5].

Theorem 6 (see [5]). Let p: KCR — R be a differentiable
mapping on K°, let n;,ny, € & with n,<n,, and let
g: [n;,n,] — [0,00) be a continuous positive mapping
symmetric with respect to (n, + n,/2). If pg € L([n,,n,]) and
[p'|9 is convex on [ny,n,] for g>1, then

‘IWP("Z) J- (El)dfl J:j P(El)g (fl)dfl

_ P +]p ()T (1 (e ©
s ]

where fnl,n2 (6) = ((1 + 6)/2)}’11 + ( (1 - e)/2)n2
oy, (€) = ((1=€)/2)n; + ((1+e)/2)n,.
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Theorem 2 (see [3]). Let p: KSR — R be a differentiable
mapping on K", let n;,n, € K& with n; <n,, and let > 1. If
p € L([n,m,]) and |p'|? is convex on [ny,n,], then

(4)

< ("2;”1) [|P’ (m)|*+|p' (n2)|q] (1/q)'

[ p(ea <

2

g: [n;,n,] — [0,00) be a continuous positive mapping
symmetric with respect to (n, + n,/2). If pg € L([n,,n,]) and
|p'|9 is convex on [ny,n,] for g=1, then

p(25™) [ ateae, - [ peo )t

_ nl)[lpl (nl)lq ;|P, (”2)|q] e J: M (g;ny,ny, e)de,

(6)

, (e) are as defined in Theorem

< (n,

where M (g;ny,ny,e) and §,, ,
3.

Under the assumptions of Theorem 2, a bound of
((p () + p(n))/2) = (1 (my =) [ p(§,)d&, | was pro-

posed by Pearce and Pecaric in [3].

Theorem 5 (see [3]). Let p: KSR — R be a differentiable
mapping on K, let n;,n, € K" with n; <n,, and let > 1. If
p € L([n,n,]) and |p'|? is convex on [ny,n,], then

(7)

(n, —my) ['p/ (n1)|q +|P/ (”2)|q a
4 2 ’

The concept of quasiconvex functions generalizes the
concept of convex functions.

Definition 1 (see [6]). A function p: T+ KR — R is
said quasiconvex on & if

p(ed) + (1 =)&) <max{p(§,) p (&)}

holds for all £;,¢, € & and e € [0,1].

There are quasiconvex functions which are not convex
functions (see, for example, [6]).

Alomari et al. [7] obtained the bound of the result of
Theorem 5 by using the quasiconvexity of the differentiable
mappings.

)

Theorem 7 (see [7]). Let p: KSR — R be a differentiable
mapping on K, and let n;,n, € & with n,<n, If
p € L([n,,n,]) and |p'| is quasiconvex on [n,,n,], then
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!P(”1)+P(”2)_ : 1 Jnjp(&)dfl

2 n, —n n

S@ [sup{LD’ (m)], ‘pl (%)

A general form of the result of Theorem 7 has been
proved by Hwang in [5].

‘w an g(&1)dé, - J: p(&1)g(&1)dé,

poserflr (5%)

n

@ [sup{lP’ (”1)|’ ‘P’(%)

IN

where fnl,nz (e) and Moy, (e) are as defined in Theorem 6.
Gavrea [8] extended inequality (10) to weighted form
and generalized inequalities (5) and (6) in such a way that
the weight function g (&,) is not necessarily symmetric with
respect to the midpoint ( (1 + n,)/2).
Varosanec [9] generalized the concept of convex func-
tions by giving the concept of h-convex functions.

Definition 2. Let & and ] be intervals in R with (0,1)2]
and h: ] — R be a nonnegative function, where h#0. A
p: & — Risan h-convex function or that p belongs to the
class S (h, ) if p is nonnegative, and for all £;,¢, € K,
e € (0,1), the inequality

pe&+(1—e),)<h(e)p(&) +h(1-e)p(&,), (12)

holds. If inequality (12) is reversed, then p is said to be
h-concave or p is said to belong to the class 7 (h, K).

The class S (h, &) of h-convex functions contains all
nonnegative convex functions, s-convex functions in
the second sense [10], Godunova-Levin functions [11], s
-Godunova-Levin type, tgs-convex, and P-functions [12] as
special cases.

Inspired by the research towards this direction, the main
objectives of this paper are to introduce the notion of quasi
h-convex functions and to acquire new weighted Hermi-
te-Hadamard type inequalities for h -convex and quasi
h-convex mappings. The results of this paper generalize the
results of Gavrea [8] and in particular contain the results for
all nonnegative convex functions, s-convex functions,
Godunova-Levin functions, s-Godunova-Levin functions,
tgs-convex, quasi convex functions, and P-functions.

In Section 2, we recall some integral identities for a
differentiable mapping and a symmetric function with re-
spect to ((n; +n,)/2) defined over an interval [n;,n,]. In
Section 2, an important inequality for positive linear
functional on C([n;,n,]) and an h-convex function is
proved to obtain some very stimulating results of this
manuscript. Section 3 contains some new weighted Her-
mite-Hadamard type integral inequalities related with the

(10)

sl (*57)

Theorem 8 (see [5]). Under the assumptions of feorem 6, if
|p'| is quasiconvex on [n,,n,), then

1P )}

LTy oy (€) (1)
le el [ ] e,

Sy (8)

left and right parts of Hermite-Hadamard inequalities (2).
The results of Section 3 provide weighted generalization of a
number of results proved so far in the field of mathematical
inequalities for differentiable h-convex and quasi h-convex
functions [13-22].

2. Some Auxiliary Results

The following notations and results have been used in [8].
Letr: [n;,n,] — [0, 00) be a continuous function with

J% r(&)dE =1, (13)

n

and the integral IZT & r(&)d¢, is denoted by a, that is,
o= J glr(fl)dfl' (14)

In case, when r(&)): [n,,n,] — [0,00) is symmetric
with respect to ((n, +n,)/2), that is, if

r(n +ny,-&)=r(§), (15)

then the following result holds.

Lemma 1 (see [8]). If r(&)): [n,n,] — [0,00) is sym-
metric with respect to ((n, +n,)/2), then
o ny +n,

5 (16)

Now, we introduce the notion of the quasi h-convex
functions as follows.

Definition 3. Let & and J be intervals in R with (0,1)2]
and h: ] — R be a nonnegative function, where h1#0. A
p: & — Risan quasi h-convex function, or that p belongs
to the class SQ(h, &) if p is nonnegative, and for all
£,E € K, e € (0,1), the inequality

p(ed + (1 -e)§,) <supfrp (&), up(§,)} (17)



holds, where A = sup, o)/ (e) and u = sup,¢(o)h (1 —e). If
inequality (17) is reversed, then p is said to be quasi
h-concave or p is said to belong to the class SQ' (h, K).

Example 1. Consider the function p: [-2,2] — R defined
as

1> ec [_2)_1])

p(e)= { e’ ee€ (-1,2],

h, (e)=e€", n,>0,0<e<l (18)
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Then, p is quasi h, -convex but not h, -convex on
[-2,2].

Now onwards, we suppose that
Kn, n, (51) = ((”12 - 51)/ (”lz - n1)) and My ny (52) = ((1- 52)/
2)ny + ((1+&,)/2)n,.

Lemma 2. Let p: KSR — R be a differentiable mapping
on K and p' € L([n,n,]), where [n;,n,]CK". Let
r: [n,n,] — [0,00) be a continuous mapping and
h: 72 (0,1) — R be a real nonnegative function, such that
h#0. Then,

p(n) I:z h(Knl,nz (ﬁ))r(fl)”zfl +p(ny) J:z h(l = K,y (fl))”(fl)dfl

n

[ 0 (600) 11 = (60 6D (610,

(19)

= (@) [ 7 (s £)p (G + (1~ E)a)dEy

1
+(n =) [ 7 miE)p! (1= E)as Eam)des

where

(1*52)0”52/3

7 (rafi) = | (1= Ky (6))r (6,

n

h(ky  (61))7 (€1)dE,,
(20)

I\
(1*52)‘”52[;

o, f € [n,n]

Proof. 'The following identities hold:

n

p(E)-p(n)= |

n

o(& —e)p' (e)de, (21)

p@»—p@»=—j“a@—am%a@, (22)

where o(-) is the Heavyside function defined by
0, & <o,

0G0={1 £ 50 (23)

Multiplying both sides of (21) with h(xnl,nz(fl))r(fl)
and integrating over [n,,#,], we have

[ B, () @ )8 = p o) [ (0 G (1)

n

Similarly, multiplying both sides of (22) with
h(1-x, , (§))r(&) and integrating over [n;,n,], we also
have

I h(1=x, . (&) (&)p(&)dE, - p(nz)J.
- J-nz(r h(l = Knn, (El))r (€1)dfl)p' (e)de.

n m

" (24)

([ om0 e

n

2 h(l =~ Kun, (51))"(51)(151

m

(25)
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From (24) and (25), we get

P03 [ W (D) (€00, + (o) (1 =, (6)r 6,

- J [, (81)) + (1 = 1, (81)) ] 2 (817 (81)lE

- “ (1= @) )~ [ (El))r(a)dsl] P (e)de o6
) J “ (1= 0, () ()4 - ] h(, ., (fl))r(fl)nza] p'(e)de

" J"Z“e h(1 = 0, (81))r (61)dE, - JZZ h(Ky, . (fl))r(fl)]p’ (e)de.

In the last identity, we set e = (1 - &,)n; + &,a for the Remark 1. If we take h(e) = e in Lemma 2, then we get the
first integral and e = (1 - &,)a + &,n, for the second integral, result for nonnegative convex functions similar to that of
and we obtain (19). O (see page 94 in Lemma 2.2. in [8]).

Corollary 1. If we take r (&)= (1/(n,—-n,)), for all
&, € [ny,n,], then (19) reduces to

g@ﬁiz@ﬁjmml-%mxanﬁl

n, —m n

1

n, —mn

J 0, 800) + 1 =, 800 ()08, =(257) ()

x .[0 F1(nm;8,) [P’(’?nl,nz (52)) - p’(’/lnl,nz (ny +m, — fz))]dfz’

where Proof. We know that
1 A=y 0y (Ez) _ 1 J”Z
F1(n,ny;8) =n2—n1 [J-n h(l—Knl,nz(fl)) a_”z_"h . §,d¢,
‘ (29)
e nptm,
dfl N Jﬂ1+nz_qn1,nz (EZ) h(K”I)nz (fl))dgl . - 2 '

(28) Hence,
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1 ny +n, 1 J"1+n27’7"1»”2 (EZ) B
F(rn,a8,) j<n2 N LT afz> n—n, I h(l Ky, (51))d£1
- : an h(Kn n (51))(151
My =1y Jnpny—n,, ., (6) v
= ! J-n2 h<Kn n (fl))dfl (30)
ny =1y Jg, ., (&) "
1 Mgy (62)
- n,—n, .[nl h(l = Kn i, (51))d£1
n +n
:_f< : 2)”2;52) :—f(ﬂ“)”z%fz)
-n 2
O
Corollary 2. Ifthe functionr (&) is symmetric with respect to
((ny, +n,)/2) on [ny,n,], then
(o) + )] [ (1= K, (6))r ()6
n, —-n
= [, (80)) + (1 = 0, () (8D (81008 =(257) 6D
! ! !
X [ .[o I (rmy,my; fz){P (rlnl,nz (fz)) - P (”1 T = My, (fz))}dfz}
where Hence, from (19), we get the required identity (31).
) Now, we will discuss some cases for Lemma 2.
Io(rmsny; &) = L h(l Ko, (& )) (§)dé, (1) If h(e)=1, then we have the result for
' P-functions. O

- J::1-nz (&) h(Km,nz (51))7’ (El)dfl

(32)

Proof. Since the function r (&;) is symmetric with respect to
((ny +n,)/2) on [n;,n,], we have

[ r)ae -1,

(33)
| arteas =13,
Moreover,
f(r>"1>“§ fz) = j(r, ”1)711 ernz; fz)
(34)

ny +I’lz

= —f( > 1) Ez) =-J(ran;).

Corollary 3. Under the assumptions of Corollary 1, if p is
P-function on [n;,n,], then

2 (™
] p

(") [ 8 (o (8)) -

plm)+plm)—

P/(”1 1y = Ny, (%))]dfz-
(35)

(2) If h(e) = €, then we obtain the following result for
s-convex functions.

Corollary 4. Suppose that the conditions of Corollary 1 are
fulfilled and if p is s-convex function on [n,n,], then
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p(nl) . p(nZ) - : an [(Knl,nz (fl))s +(1 - K”l’”z (El))s]p(fl)dfl

s+1 ny,—ny; Jn

(36)

(P25) [ ) ) ~ o a1 ED)]

(3) Ifh(e) =e %, e € (0,1), and s € [0, 1], then we obtain
the result for function of s-Godunova-Levin type.

Corollary 5. Under the assumptions of Corollary 1, if p is
function of s-Godunova-Levin type on [n,,n,], then

P("l)*?(”Z)_ 1 JHZ[(KW”Z(EI))_S+(1—Kn],nz(fl))_s]P(fl)dgl

(38)

(2 [ =) (o () = (= (6)]

where
(1 _ EZ)SJrl _ (1 + 52)S+1
»S) = X 37
#(2) 2 (s +1) (37)
1-s n, —ny Ja
where
1-s 1-s
u(&y,=s) = (1-&) -(1+5) , & €(0,1),s€[0,1).

21— )
(39)

6

(4) Ifh(e) =e(1 —e), e € [0, 1], then we obtain the result
for egs-convex functions.

Corollary 6. Under the assumptions of Corollary 1, if p is
result for egs-convex functions on [n,n,], then

p(m)+p(ny) . fnl rz(l = Ky (1)) (Ko, (61)) P (81)dE,

n

(40)

(") [ (& 3) 8 (o (6) ~ (1412 1, (60) 6

Lemma 3. Let A: C([n,n,]) — R be a positive linear
functional on C([n;,n,]), and let e; be monomials
e; (&) =&, & € [n;,my)], i € N. Let g be a h-convex function
on [n;,n,], then

Ag(e)) < A(h(Knl,nz (‘31)))9 (m) + A(h(l — K, (‘31)))9 (n,).
(41)

Proof. By using the h-convexity of g on [n,n,] and the
given equality

€1 = Kun, (el)nl +(1 = Knn, (61))112, (42)

we get

g(e) = g((Knl,nz (61))”1 +(1 ~ Kn n, (61))”2)
Sh(xnl,nz (‘31))9(”1) + h<1 — Ky, (‘31))9(”2)~

(43)

Since A is a positive linear functional, we get inequality

(41) by applying A on both sides of (43). O
3. Main Results

The following theorem generalizes the result given by Gavrea
in [8].

Theorem 9. Let p: KSR — R be a differentiable mapping
on K and p' eL([n,n)), where [n,m]cK". If
r: [n;,n,] — [0,00) is a continuous mapping and |p'| is
h-convex on [n,n,], then the following inequality holds:



J:Z pE)r(§)mé - pla)

where

Z (n, am,) = J( ”51)”251) nlnz(e))

I

[ r@om s, @)de,
I,
(

G (ny,amy) = J ( r f1)”2£1> nl,n2(e))de

()7 r€om -, @)

(45)

Proof. We can write
p(&)-pla) = J [0(8 —e) ~o(a=e)]p'(e)de.  (46)

From (46), we obtain

J 2 r(&)dé, —a(a—e)

J~n2 n
nlJe
ja n,
n|Je

J r(§)dé, - J

r(§;)dE;

ny

Journal of Mathematics

<Z(n,a ”z)lpl (”‘1)' +9(ny,a ”Z)IP, (”2)|a (44)

| prea - pw = ([ r(ea - ota-e))p' e

n

(47)

Taking absolute value on both sides of (47) and applying
Lemma 3, we have

J.:Z p(&)r(§)dE - pla)
< [*|[" reae -o@-o

o [
+[p (ny)] J:l '

|p' (e)|de

r(¢)dé, —a(a—e)

h(xnl,nz (e))de

J. : r(¢,)dé, —o(a—e)

h( ”1 ”2( ))de
(48)

We notice that

h(xnl’nz (e))de

( ”1 L) ))de

(49)

+ I:2<jzz r(f1)dfl> ( Kn, i, (e))de = J: (Ll r(€1)d51)h(1<n1,,,2 (e))de
([ 0 il @0)de = 7 (1),

In a similar way,

an J r(£,)dE, — o (a—e)h(1-x, , (e))de

_ J (J r(El)dfl)h(l ~ ke (€))de

! J(I F(EAE (1=, (0))de =

We get the result from (49) and (50). O

G (ny, a,my).

(50)

Corollary 7. Suppose that the assumptions of Theorem 9 are
satisfied and that r (&) is symmetric with respect to ((n; +
n,)/2) on [n;,n,], then

J: p(&)r(§)dE, —P<¥) < [|P, (”1)' +|P, (”2)|]Zl (ny,my),

(51)

where

( (nl+n2)/2) e
TS e ot )

an <J (fl)dfl) ( K, n, (fl))de.

( (nl+n2)/2)

Z,(n,ny) = J

(52)

Proof. Since the function r (§,) is symmetric with respect to
((n, +ny)/2) on [n;,n,] so a= ((n +n,)/2) and the
function r(£,) is symmetric with respect ((n, +n,)/2) on
[1,,n,], this fact gives

Z (ny,a,my) = Z(nl,nl ;an,n2>

= fﬁ(nl, e ; nz’ n2> (53)

=@ (n,a,n,).
Thus,
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9
.fZ’(n ny +m, " ) B ?(n ny +n, " > Corollary 8. Ifwe taker (&) = (g(&,)/ jzz g(&))dé,)in (44)
v, 22) T Loy 272 and g (&,) is symmetric with respect to ((n, +n,)/2). Then,

the following inequality holds:

J n1+n2)/2)(-[ ,(fl)dt?l) Ky, (€))de

J((nl+"2)/2)<J (gl)dfl) Ky, (e))de =Z,(n,my).

(54)
O

J: p(&)g(§)dé, - (nl ;n2> J g(&)dg,

< [1p" ()] +p' (m)]] %2 (1, 15),

((n1+n2)/2)
Zowm) = [ [ ot s, 0)ae

+J r;z(nl+n2)/2)<J g (El)dgl) (i, (e))de.

(55)

Theorem 10. Let p: KSR — R be a differentiable map-  where Z (n,, a,n,) and & (n,, a,n,) are given in Theorem 9.
ping on K and p' € L([n,,n,]), where [n;,m,]CK". If

r: [ny,my,] — [0,00) is a continuous mapping and |p'|? is p Applicati f Holder i lity in (47) vields th
h-convex on [ny, ) for q> 1, then roof. Application of Holder inequality in (47) yields that

<(2] - ora)

X(z(nl’“’ m)|p' (m)|" + % (ny, o,m,) | p’ (”z)iq)(l/q),
(56)

1-(1/q)

J:z p(&)r(§)dé, - p(a)

J:z p(&)r(§)dé, - p(a)

< j]j r(£)dE, o (a-e)
<([11f7

J r(&,)dé, —o(a—e)|de
(.

|p' (e)]"de

1-(1/g)
) (57)

(1/9)
|p' (e)|qde) .

rz r(&)dé, —a(a—e)

Applying Lemma 3, we have Ll L r(&)dé —o(a—e)|de
LT Lz r(&)dé —a(a—e)||p’ (e)|qde ) = L(Ll r(fl)dfl)de + L (L r(fl)d€1>n2e (59)
< Z (n,am)|p' ()" + € (ny, a,my)|p' ()| = ZJ ’ (& —a)r(&))d¢,.

On the other hand, we have A combination of (57)-(59) gives (56). O
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Corollary 9. If r(&,) is symmetric with respect to ((n; +
n,)/2) on [n,,n,], then from (56), we obtain

[ p(E)r (&)t - p(" ")

2

(60)
e 1-(1/g)
< zl(l/q) (”1’”2)<2 L (& - a)r(fl)dﬁ) (|P' (m)|" +|p’ (”2)|q)(1/q),

where Z,(ny,n,) is as defined in Corollary 7. Corollary 10. Ifr (&) = (g(&,)/ jzz g(&)dE,) and g(&,) is
symmetric with respect to ((n; + nz)l/z) on [ny,n,], then the

following inequality holds:

n, + 1,
Ll p(&)g(§)dE; - P(%) Ll g(§,)dg,
((m#m)2) 1 4 e (1/a) o
<z} <n1,n2)(z | (e a)r@l)dsl) (e ()l +e’ (m)]")",
where Z,(n,,n,) is as defined in Corollary 8. It is clear from (62) that
For our next results, we use the following notations.
o) = p(n) [ B0, (E))r (66
#p(m) [ B K (60)r (6106,
- J'ZZ [h(K%pnz (gl)) + h(l = K, (El))]P(El)” (§,)dé;.
(62)
( 1 ) _ p(m) I:? h(Knl,nz (51))d£1 +p(n,) IZT h(l = Ky, (51))d51
4 n, —n, n, —n (63)

e [ ) # 51 ~  (E))](E )

ny—ny Jn

The next result gives upper bound of |¢ (r, p)| when the r: [n;,n,] — [0,00) be a continuous mapping and |p'| is
function p (&) is quasi h-convex. quasi h-convex on [ny,n,], then the following inequality
holds:
Theorem 11. Let p: KCR — R be a differentiable map-
ping on & and p' € L([n,,n,]), where [n;,n,]CK". If

lo(r, p)l < (a - ”1)(SUP{A|P, (”1)|’/"|P, (“)”) ,[o|j (rony, o 52)"152
(64)

+(n, - oc)(sup{[,t|p' (@) Alp’ (n2)|}) J;if (r, 0, 1y; 85)|dE,,
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where  F(r,a,f3;&,) is defined as in
A = sup,ch(e), and p = sup,o)h(1-e).

Lemma 2,

Proof. Since |p'| is quasi h-convex on [n,,1,], we have
|p" (&m + (1= &)a)| <sup{A|p’ (m)]. ulp" (@)},
|Pl (1-&)a+ fz”z)l < SuP{l/‘|P, (“)l’/llpl (”2)'}’

0, Pl < Z (n10,) sup A’ (m,

where

Z5(ny,ny) = J((nl+n2)/2)(J:1 h(l -

m

A and p are defined as in Theorem 11.

Proof. The symmetry of r(£,) with respect to ((n;, + n,)/2)
on [n;,n,] gives

o(rop) = [p(n) + p(n)] [ h(1 =, (6))r (),

[ 50 (60) # 10 = 0 (€)1
(68)

(a—n) Jolj(r: ny, &; 52)|d52 = ’ h

(%—@ﬂV@%%ﬁM&r-‘

Consider the function p: [n,n,] — R defined by
P& = | (1=, (E))r ()6, = [ (0, (6))r (61,

(70)
Then,
= [h(l = Ky (e)) + h(KM (e))]r(e) >0

€ [n,m,).

(71)

(32

—,Hganmaﬁa—jfwmwxandaﬂa
nl n2 f )) (El)dfl Je (Knl,n2 (51))7(51)(:151 de

11

for all &, € [0,1]. Hence, inequality (64) follows from
(19). O

Theorem 12. Let p: KSR — R be a differentiable map-
ping on K& and p' € L([n,,n,]), where [n;,n,]CK". If
r: [n;,n,] — [0,00) be a continuous mapping and |p'| is
quasi h-convex on [ny,n,], then

sl (*57)

e (m)l}] (66)

Kn iy (fl))r(fl)dfl - j:z h(Knl,nz (51))”(51)‘151)51‘3- (67)

We also observe that

de,

(69)

This shows that p(e) is an increasing function on [#n,,,]
and

Now, it is easy to see that
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(a—ny) Jo|f(r’ ny, &; fz)ldgz

n m

1
(n, - a) J-o|j(r’ & Ny, fz)ldfz
- J((n1+n2)/2) n

n n

Hence, inequality (66) follows from the inequality. O

Remark 2. 1f we choose h(e) = e in Theorem 9, Corollary 7
and 8, Theorem 10, Corollaries 9 and 10, and Theorems 11
and 12, we get the results for nonnegative convex func-
tions and quasi-convex functions (see Theorem 3.1,
Corollary 3.1, Theorem 3.2, Remark 3.2, Theorem 3.3 and
Theorem 3.4 in [8]). Moreover, one can obtain inequalities
for s-convex functions, Godunova-Levin functions,
s-Godunova-Levin functions, egs-convex, P-functions,
and quasiconvex functions from the result of Theorem 9,
Corollaries 7 and 8, Theorem 10, Corollaries 9 and 10, and
Theorems 11 and 12 by choosing h(e) = e, e !, e %, e(1 —
e) and 1, respectively.

(& W& W) g (51 )dfl

Journal of Mathematics

(73)

(r h(l = Kp o, (51))7(51)(151 - J:Z h(xnl,n2 (fl))r(fl)dfl )de

S (R ST O

4. Applications

4.1. s-Divergence Measures. Here, we provide some applica-
tions on s-divergence measure and probability density function
by using the results proved in Section 3. Let the set ¢ and the o
finite measure y be given, and let the set of all probability
densities on u to be defined on Q:={[¢,:
o — REN)> O,J & (AM)du(A) = 1}. Let s: (0,00) — R
be given mapping ::1n(qi5 consider D (&5, &) defined by

A
R R b

If § is convex, then (74) is called as the Csiszar s-di-
vergence. Consider the following Hermite-Hadamard
(Z ) divergence:

]du W, & eQ (74)

§86 €, (75)

g;t’?f (fz’fl) = J,qu 1) !

where § is convex on (0,00) with §(1) =0. Note that
Do (£5,€)>0 with the equality holds if and only if

gz 251-

Dy (62,8) - sz (A)E(

[STORRF

<J 2O

Proof. Let 9, :={le¢: & M) >E M)} 9, ={L e ¢: & (V)
<& )L and 95 ={4 € ¢: & (L) =& ()} Obviously, if
A € 9;, then equality holds in (76). Now, if A € 9;, then for

('51 (A)/Ez (A)) -1

&)+ 52 V)
25, (M)

(lé’(1)|q+

du(h),

Proposition 1. Let s: RCR — R be a differentiable
mapping on K°, where [n;,n,] € K. Ifr (&) = (1/(ny, — ny)),
&, € [ny,my), 18'|7 is h-convex on [ny,n,] forg>1withh =1|
No Image for this Article and $(1) = 0, then

)dﬂ (A)’
§r (fl ()L)>
&)

n; =1 and n, = (& (A)/&, (1)) in Theorem 10, multiplying
both sides to the obtained result by &, (1) and integrating
over 9, we have

(76)

q\ (1/q)
) du(A).
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(&, WEW)
&) s(&;)d¢
|, U : l>dm>—j (MG Y Jauw
5 EWEM) -1 5 250
(77)
ED-EW (10| (ED ‘f)”q)
feo(tga ) (ForpEa)) wo
Similarly, if Ae€9, then for n,=1 and
ny, = (&, (1)/& (1)) in Theorem 9, multiplying both sides to
the obtained result by &, (1) and integrating over 9,, we have
(5 & W) o
&) $(§,)d¢
|~ U ) an- [ o202 Nauen
5 (& /g W) -1 9 28, (D)
(78)

5 -§ ()
46, ()

§ (M)
&)

o.M )k (ew)

Adding inequalities (77) and (78) and utilizing triangle
inequality, we get the desired result (76). O

4.2. Applications to Statistics. Let r: [n,n,] — [0, 00) be
the probability density function of a continuous random
variable X symmetric to ((n; +n,)/2) with 0 <n, <n,. The
rth moment of X is defined as

£ 00 = [ g, (79)

which is assumed to be finite.

Theorem 13. Suppose that 0<n, <n, and r>2, then the
following inequality holds:
). (80)

E, (X) _(nl + n2>f
2
Proof. Let p(&) =& on [ny,n,] for r>2, and we have
Ip' (&))] = rffl is convex on [n;, n,]. Since the functions
r: [n,n,] — [0,00) are symmetric with respect to
((n, +m)12),

r—1 r—1
Yll + n,

2

<r

(=)

J:l r(§)dé, < J: r(&,)dg, =1,

rz r(§)dé, < rzr(ﬁl)dfl =1, (81)
o= ny + nz.
2

Therefore, from inequality (44), we obtain inequality
(80). O

q (1/9)
+|§’(1)|q) du ().

5. Conclusion

In this study, we propose new definition, namely, the def-
inition of quasi h-convex functions and provide an example
of such type of functions. We prove some new weighted
Hermite--Hadamard type inequalities for differentiable for
h-convex and quasi h-convex functions when the weight
function is not necessarily symmetric about the midpoint of
the interval. These results generalize many results proved in
earlier works for these classes of functions. Applications of
some of our results to s-divergence and to statistics are given.
We believe that the results of the current study may be a
motivation to explore more new results relevant to this field
of research for people working in the rich field of mathe-
matical inequalities.
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