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In this paper, new weighted Hermite–Hadamard type inequalities for differentiable h-convex and quasi h-convex functions are
proved. )ese results generalize many results proved in earlier works for these classes of functions. Applications of some of our
results to �s-divergence and to statistics are given.

1. Introduction

)e theory of convex functions is based on convex functions
stated as follows.

A function p: ∅≠K⊆R⟶ R is said to be convex on
a convex set K if the inequality given as follows:

p eξ1 +(1 − e)ξ2( ≤ ep ξ1(  +(1 − e)p ξ2( , (1)

holds for all ξ1, ξ2 ∈ K and e ∈ [0, 1]. If (1) holds in reverse
direction, then p is said to be concave.

)e inequality which can be considered as the necessary
and sufficient condition of a function p: ∅≠K⊆R⟶ R

to be convex on [n1, n2] is given by [1]

p
n1 + n2

2
 ≤

1
n2 − n1


n2

n1

p ξ1( dξ1 ≤
p n1(  + p n2( 

2
, (2)

where n1, n2 ∈ K with n1 < n2.
Inequality (2) is known as Hermite–Hadamard in-

equality, and it holds in reversed direction if the function p is
concave on [n1, n2].

Over the past three decades, the definition of convex
functions and inequality (2) has been subjected to immense
research. )e definition of convex functions has been
modified in various forms, and hence a number of different
weighted and nonweighted forms of inequality (2) have been
obtained by many researchers.

Kirmachi [2] obtained the following estimate for
|p(n1 + n2/2) − (1/n2 − n1) 

n2

n1
p(ξ1)dξ1|.

Theorem 1 (see [2]). Let p: K⊆R⟶ R be a differentiable
mapping on K°; let n1, n2 ∈ K° with n1 < n2 and
p ∈ L([n1, n2]). If |p′| is convex on [n1, n2], then

p
n1 + n2

2
  −

1
n2 − n1


n2

n1

p ξ1( dξ1




≤

n2 − n1(  p′ n1( 


 + p′ n2( 


 

8
. (3)
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Pearce and Pecaric [3] improved this estimate by proving
the following result.

Theorem 2 (see [3]). Let p: K⊆R⟶ R be a differentiable
mapping on K°, let n1, n2 ∈ K° with n1 < n2, and let q≥ 1. If
p ∈ L([n1, n2]) and |p′|q is convex on [n1, n2], then

p
n1 + n2

2
  −

1
n2 − n1


n2

n1

p ξ1( dξ1




≤

n2 − n1( 

4
p′ n1( 



q

+ p′ n2( 



q

2
 

(1/q)

. (4)

The weighted version of the results in Theorems 1 and 2
was obtained in [4].

Theorem 3 (see [4]). Let p: K⊆R⟶ R be a differentiable
mapping on K°, let n1, n2 ∈ K° with n1 < n2, and let
g: [n1, n2]⟶ [0,∞) be a continuous positive mapping
symmetric with respect to (n1 + n2/2). If pg ∈ L([n1, n2]) and
|p′| is convex on [n1, n2], then

p
n1 + n2

2
  

n2

n1

g ξ1( dξ1 − 
n2

n1

p ξ1( g ξ1( dξ1





≤
n2 − n1(  p′ n1( 


 + p′ n2( 


 

2

1

0
M g; n1, n2, e( de,

(5)

where M(g; n1, n2, e) � 
ξn1 ,n2(e)

n1
g(ξ1)dξ1 and

ξn1 ,n2
(e) � ((1 + e)/2)n1 + ((1 − e)/2)n2.

Theorem 4 (see [4]). Let p: K⊆R⟶ R be a differentiable
mapping on K°, let n1, n2 ∈ K° with n1 < n2, and let

g: [n1, n2]⟶ [0,∞) be a continuous positive mapping
symmetric with respect to (n1 + n2/2). If pg ∈ L([n1, n2]) and
|p′|q is convex on [n1, n2] for q≥ 1, then

p
n1 + n2

2
  

n2

n1

g ξ1( dξ1 − 
n2

n1

p ξ1( g ξ1( dξ1





≤ n2 − n1( 
p′ n1( 



q

+ p′ n2( 



q

2
 

(1/q)


1

0
M g; n1, n2, e( de,

(6)

where M(g; n1, n2, e) and ξn1 ,n2
(e) are as defined in 2eorem

3.
Under the assumptions of Theorem 2, a bound of

|((p(n1) + p(n2))/2) − (1/(n2 − n1)) 
n2

n1
p(ξ1)dξ1| was pro-

posed by Pearce and Pecaric in [3].

Theorem 5 (see [3]). Let p: K⊆R⟶ R be a differentiable
mapping on K°, let n1, n2 ∈ K° with n1 < n2, and let q≥ 1. If
p ∈ L([n1, n2]) and |p′|q is convex on [n1, n2], then

p n1(  + p n2( 

2
−

1
n2 − n1


n2

n1

p ξ1( dξ1




≤

n2 − n1( 

4
p′ n1( 



q

+ p′ n2( 



q

2
 

(1/q)

. (7)

The bound of the result of Theorem 5 in weighed form
was given by Hwang in [5].

Theorem 6 (see [5]). Let p: K⊆R⟶ R be a differentiable
mapping on K°, let n1, n2 ∈ K° with n1 < n2, and let
g: [n1, n2]⟶ [0,∞) be a continuous positive mapping
symmetric with respect to (n1 + n2/2). If pg ∈ L([n1, n2]) and
|p′|q is convex on [n1, n2] for q≥ 1, then

p n1(  + p n2( 

2


n2

n1

g ξ1( dξ1 − 
n2

n1

p ξ1( g ξ1( dξ1





≤
n2 − n1( 

2
p′ n1( 



q

+ p′ n2( 



q

2
 

(1/q)


1

0

ηn1 ,n2(e)

ξn1 ,n2(e)
g ξ1( dξ1,

(8)

where ξn1 ,n2
(e) � ((1 + e)/2)n1 + ((1 − e)/2)n2 and

ηn1 ,n2
(e) � ((1 − e)/2)n1 + ((1 + e)/2)n2.

The concept of quasiconvex functions generalizes the
concept of convex functions.

Definition 1 (see [6]). A function p: ∅≠K⊆R⟶ R is
said quasiconvex on K if

p eξ1 +(1 − e)ξ2( ≤max p ξ1( , p ξ2(  , (9)

holds for all ξ1, ξ2 ∈ K and e ∈ [0, 1].
)ere are quasiconvex functions which are not convex

functions (see, for example, [6]).
Alomari et al. [7] obtained the bound of the result of

)eorem 5 by using the quasiconvexity of the differentiable
mappings.

Theorem 7 (see [7]). Let p: K⊆R⟶ R be a differentiable
mapping on K°, and let n1, n2 ∈ K° with n1 < n2. If
p ∈ L([n1, n2]) and |p′| is quasiconvex on [n1, n2], then
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p n1(  + p n2( 

2
−

1
n2 − n1


n2

n1

p ξ1( dξ1





≤
n2 − n1( 

8
sup p′ n1( 


, p′

n1 + n2

2
 



  + sup p′
n1 + n2

2
 




, p′ n2( 


  .

(10)

A general form of the result of Theorem 7 has been
proved by Hwang in [5].

Theorem 8 (see [5]). Under the assumptions of İeorem 6, if
|p′| is quasiconvex on [n1, n2], then

p n1(  + p n2( 

2


n2

n1

g ξ1( dξ1 − 
n2

n1

p ξ1( g ξ1( dξ1





≤
n2 − n1( 

4
sup p′ n1( 


, p′

n1 + n2

2
 




  + sup p′

n1 + n2

2
 




, p′ n2( 


   
1

0

ηn1 ,n2(e)

ξn1 ,n2(e)
g ξ1( dξ1,

(11)

where ξn1 ,n2
(e) and ηn1 ,n2

(e) are as defined in 2eorem 6.
Gavrea [8] extended inequality (10) to weighted form

and generalized inequalities (5) and (6) in such a way that
the weight function g(ξ1) is not necessarily symmetric with
respect to the midpoint ((n1 + n2)/2).

Varošanec [9] generalized the concept of convex func-
tions by giving the concept of h-convex functions.

Definition 2. Let K and J be intervals in R with (0, 1)⊇ J

and h: J⟶ R be a nonnegative function, where h≢ 0. A
p: K⟶ R is an h-convex function or that p belongs to the
class SX(h,K) if p is nonnegative, and for all ξ1, ξ2 ∈ K,
e ∈ (0, 1), the inequality

p eξ1 +(1 − e)ξ2( ≤ h(e)p ξ1(  + h(1 − e)p ξ2( , (12)

holds. If inequality (12) is reversed, then p is said to be
h-concave or p is said to belong to the class SV(h,K).

)e class SX(h,K) of h-convex functions contains all
nonnegative convex functions, s-convex functions in
the second sense [10], Godunova–Levin functions [11], s

-Godunova–Levin type, tgs-convex, and P-functions [12] as
special cases.

Inspired by the research towards this direction, the main
objectives of this paper are to introduce the notion of quasi
h-convex functions and to acquire new weighted Hermi-
te–Hadamard type inequalities for h -convex and quasi
h-convex mappings. )e results of this paper generalize the
results of Gavrea [8] and in particular contain the results for
all nonnegative convex functions, s-convex functions,
Godunova–Levin functions, s-Godunova–Levin functions,
tgs-convex, quasi convex functions, and P-functions.

In Section 2, we recall some integral identities for a
differentiable mapping and a symmetric function with re-
spect to ((n1 + n2)/2) defined over an interval [n1, n2]. In
Section 2, an important inequality for positive linear
functional on C([n1, n2]) and an h-convex function is
proved to obtain some very stimulating results of this
manuscript. Section 3 contains some new weighted Her-
mite–Hadamard type integral inequalities related with the

left and right parts of Hermite–Hadamard inequalities (2).
)e results of Section 3 provide weighted generalization of a
number of results proved so far in the field of mathematical
inequalities for differentiable h-convex and quasi h-convex
functions [13–22].

2. Some Auxiliary Results

)e following notations and results have been used in [8].
Let r: [n1, n2]⟶ [0,∞) be a continuous function with


n2

n1

r ξ1( dξ1 � 1, (13)

and the integral 
n2

n1
ξ1r(ξ1)dξ1 is denoted by α, that is,

α � 
n2

n1

ξ1r ξ1( dξ1. (14)

In case, when r(ξ1): [n1, n2]⟶ [0,∞) is symmetric
with respect to ((n1 + n2)/2), that is, if

r n1 + n2 − ξ1(  � r ξ1( , (15)

then the following result holds.

Lemma 1 (see [8]). If r(ξ1): [n1, n2]⟶ [0,∞) is sym-
metric with respect to ((n1 + n2)/2), then

α �
n1 + n2

2
. (16)

Now, we introduce the notion of the quasi h-convex
functions as follows.

Definition 3. Let K and J be intervals in R with (0, 1)⊇ J

and h: J⟶ R be a nonnegative function, where h≢ 0. A
p: K⟶ R is an quasi h-convex function, or that p belongs
to the class SQ(h,K) if p is nonnegative, and for all
ξ1, ξ2 ∈ K, e ∈ (0, 1), the inequality

p eξ1 +(1 − e)ξ2( ≤ sup λp ξ1( , μp ξ2(  , (17)

Journal of Mathematics 3



holds, where λ � supe∈(0,1)h(e) and μ � supe∈(0,1)h(1 − e). If
inequality (17) is reversed, then p is said to be quasi
h-concave or p is said to belong to the class SQ′(h,K).

Example 1. Consider the function p: [− 2, 2]⟶ R defined
as

p(e) �
1, e ∈ [− 2, − 1],

e
2
, e ∈ (− 1, 2],



hn2
(e) � e

n2 , n2 > 0, 0< e< 1. (18)

)en, p is quasi hn2
-convex but not hn2

-convex on
[− 2, 2].

Now onwards, we suppose that
κn1 ,n2

(ξ1) � ((n2 − ξ1)/(n2 − n1)) and ηn1 ,n2
(ξ2) � ((1− ξ2)/

2)n1 + ((1 + ξ2)/2)n2.

Lemma 2. Let p: K⊆R⟶ R be a differentiable mapping
on K° and p′ ∈ L([n1, n2]), where [n1, n2]⊆K°. Let
r: [n1, n2]⟶ [0,∞) be a continuous mapping and
h: J⊇ (0, 1)⟶ R be a real nonnegative function, such that
h≢ 0. 2en,

p n1(  
n2

n1

h κn1 ,n2
ξ1(  r ξ1( n2ξ1 + p n2(  

n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

− 
n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1 ,n2

ξ1(   p ξ1( r ξ1( dξ1

� α − n1(  
1

0
J r, n1, α; ξ2( p′ ξ2n1 + 1 − ξ2( α( dξ2

+ n2 − α(  
1

0
J r, α, n2; ξ2( p′ 1 − ξ2( α + ξ2n2( dξ2,

(19)

where

J r, α, β; ξ2(  � 
1− ξ2( )α+ξ2β

n1

h 1 − κn1,n2
ξ1(  r ξ1( dξ1

− 
n2

1− ξ2( )α+ξ2β
h κn1 ,n2

ξ1(  r ξ1( dξ1,

(20)

α, β ∈ [n1, n2].

Proof. )e following identities hold:

p ξ1(  − p n1(  � 
n2

n1

σ ξ1 − e( p′(e)de, (21)

p ξ1(  − p n2(  � − 
n2

n1

σ e − ξ1( p′(e)de, (22)

where σ(·) is the Heavyside function defined by

σ ξ1(  �
0, ξ1 < 0,

1, ξ1 > 0.
 (23)

Multiplying both sides of (21) with h(κn1 ,n2
(ξ1))r(ξ1)

and integrating over [n1, n2], we have


n2

n1

h κn1 ,n2
ξ1(  r ξ1( p ξ1( dξ1 − p n1(  

n2

n1

h κn1 ,n2
ξ1(  r ξ1( dξ1

� 
n2

n1


n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1 p′(e)de.

(24)

Similarly, multiplying both sides of (22) with
h(1 − κn1 ,n2

(ξ1))r(ξ1) and integrating over [n1, n2], we also
have


n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( p ξ1( dξ1 − p n2(  

n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

� − 
n2

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 p′(e)de.

(25)
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From (24) and (25), we get

p n1(  
n2

n1

h κn1 ,n2
ξ1(  r ξ1( dξ1 + p n2(  

n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

− 
n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1 ,n2

ξ1(   p ξ1( r ξ1( dξ1

� 
n2

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1 p′(e)de

� 
α

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( n2ξ1 p′(e)de

+ 
n2

α


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1(  p′(e)de.

(26)

In the last identity, we set e � (1 − ξ2)n1 + ξ2α for the
first integral and e � (1 − ξ2)α + ξ2n2 for the second integral,
and we obtain (19). □

Remark 1. If we take h(e) � e in Lemma 2, then we get the
result for nonnegative convex functions similar to that of
(see page 94 in Lemma 2.2. in [8]).

Corollary 1. If we take r(ξ1) � (1/(n2 − n1)), for all
ξ1 ∈ [n1, n2], then (19) reduces to

p n1(  + p n2( 

n2 − n1


n2

n1

h 1 − κn1 ,n2
ξ1(  dξ1

−
1

n2 − n1


n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1 ,n2

ξ1(   p ξ1( dξ1 �
n2 − n1

2
 

× 
1

0
J1 n1, n2; ξ2(  p′ ηn1 ,n2

ξ2(   − p′ ηn1 ,n2
n1 + n2 − ξ2(   dξ2,

(27)

where

J1 n1, n2; ξ2(  �
1

n2 − n1


n1+n2− ηn1 ,n2 ξ2( )

n1

h 1 − κn1 ,n2
ξ1(  

dξ1 − 
n2

n1+n2− ηn1 ,n2 ξ2( )
h κn1 ,n2

ξ1(  dξ1.

(28)

Proof. We know that

α �
1

n2 − n1


n2

n1

ξ1dξ1

�
n1 + n2

2
.

(29)

Hence,
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J r, n1, α; ξ2(  � J
1

n2 − n1
, n1,

n1 + n2

2
; ξ2  �

1
n2 − n1


n1+n2− ηn1 ,n2 ξ2( )

n1

h 1 − κn1 ,n2
ξ1(  dξ1

−
1

n2 − n1


n2

n1+n2− ηn1 ,n2 ξ2( )
h κn1 ,n2

ξ1(  dξ1

�
1

n2 − n1


n2

ηn1 ,n2 ξ2( )
h κn1 ,n2

ξ1(  dξ1

−
1

n2 − n1

ηn1 ,n2 ξ2( )

n1

h 1 − κn1 ,n2
ξ1(  dξ1

� − J
1

n2 − n1
,
n1 + n2

2
, n2; ξ2  � − J r, α, n2; ξ2( .

(30)

□
Corollary 2. If the function r(ξ1) is symmetric with respect to
((n1 + n2)/2) on [n1, n2], then

p n1(  + p n2(   
n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

− 
n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1 ,n2

ξ1(   p ξ1( r ξ1( dξ1 �
n2 − n1

2
 

× 
1

0
J2 r, n1, n2; ξ2(  p′ ηn1 ,n2

ξ2(   − p′ n1 + n2 − ηn1 ,n2
ξ2(   dξ2 ,

(31)

where

J2 r, n1, n2; ξ2(  � 
ηn1 ,n2 ξ2( )

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

− 
n2

ηn1 ,n2 ξ2( )
h κn1 ,n2

ξ1(  r ξ1( dξ1.

(32)

Proof. Since the function r(ξ1) is symmetric with respect to
((n1 + n2)/2) on [n1, n2], we have


n2

n1

r ξ1( dξ1 � 1,


n2

n1

ξ1r ξ1( dξ1 �
n1 + n2

2
.

(33)

Moreover,

J r, n1, α; ξ2(  � J r, n1,
n1 + n2

2
; ξ2 

� − J r,
n1 + n2

2
, n2; ξ2  � − J r, α, n2; ξ2( .

(34)

Hence, from (19), we get the required identity (31).
Now, we will discuss some cases for Lemma 2.

(1) If h(e) � 1, then we have the result for
P-functions. □

Corollary 3. Under the assumptions of Corollary 1, if p is
P-function on [n1, n2], then

p n1(  + p n2(  −
2

n2 − n1


n2

n1

p ξ1( dξ1

�
n2 − n1

2
  

1

0
p′ ηn1 ,n2

ξ2(   − p′ n1 + n2 − ηn1 ,n2
ξ2(   dξ2.

(35)

(2) If h(e) � es, then we obtain the following result for
s-convex functions.

Corollary 4. Suppose that the conditions of Corollary 1 are
fulfilled and if p is s-convex function on [n1, n2], then
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p n1(  + p n2( 

s + 1
−

1
n2 − n1


n2

n1

κn1 ,n2
ξ1(  

s
+ 1 − κn1 ,n2

ξ1(  
s

 p ξ1( dξ1

�
n2 − n1

2
  

1

0
μ ξ2, s(  p′ ηn1 ,n2

ξ2(   − p′ n1 + n2 − ηn1 ,n2
ξ2(   dξ2,

(36)

where

μ ξ2, s(  �
1 − ξ2( 

s+1
− 1 + ξ2( 

s+1

2s+1
(s + 1)

. (37)

(3) If h(e) � e− s, e ∈ (0, 1), and s ∈ [0, 1], then we obtain
the result for function of s-Godunova–Levin type.

Corollary 5. Under the assumptions of Corollary 1, if p is
function of s-Godunova–Levin type on [n1, n2], then

p n1(  + p n2( 

1 − s
−

1
n2 − n1


n2

n1

κn1 ,n2
ξ1(  

− s
+ 1 − κn1 ,n2

ξ1(  
− s

 p ξ1( dξ1

�
n2 − n1

2
  

1

0
μ ξ2, − s(  p′ ηn1 ,n2

ξ2(   − p′ n1 + n2 − ηn1 ,n2
ξ2(   dξ2,

(38)

where

μ ξ2, − s(  �
1 − ξ2( 

1− s
− 1 + ξ2( 

1− s

21− s
(1 − s)

, ξ2 ∈ (0, 1), s ∈ [0, 1).

(39)

(4) If h(e) � e(1 − e), e ∈ [0, 1], then we obtain the result
for egs-convex functions.

Corollary 6. Under the assumptions of Corollary 1, if p is
result for egs-convex functions on [n1, n2], then

p n1(  + p n2( 

6
−

2
n2 − n1


n2

n1

1 − κn1 ,n2
ξ1(   κn1 ,n2

ξ1(  p ξ1( dξ1

�
n2 − n1

24
  

1

0
ξ2 ξ22 − 3  p′ ηn1 ,n2

ξ2(   − p′ n1 + n2 − ηn1 ,n2
ξ2(   dξ2.

(40)

Lemma 3. Let A: C([n1, n2])⟶ R be a positive linear
functional on C([n1, n2]), and let ei be monomials
ei(ξ1) � ξi

1, ξ1 ∈ [n1, n2], i ∈ N. Let g be a h-convex function
on [n1, n2], then

A g e1( ( ≤A h κn1 ,n2
e1(   g n1(  + A h 1 − κn1 ,n2

e1(   g n2( .

(41)

Proof. By using the h-convexity of g on [n1, n2] and the
given equality

e1 � κn1 ,n2
e1( n1 + 1 − κn1 ,n2

e1(  n2, (42)

we get

g e1(  � g κn1 ,n2
e1(  n1 + 1 − κn1 ,n2

e1(  n2 

≤ h κn1 ,n2
e1(  g n1(  + h 1 − κn1 ,n2

e1(  g n2( .

(43)

Since A is a positive linear functional, we get inequality
(41) by applying A on both sides of (43). □

3. Main Results

)e following theorem generalizes the result given by Gavrea
in [8].

Theorem 9. Let p: K⊆R⟶ R be a differentiable mapping
on K° and p′ ∈ L([n1, n2]), where [n1, n2]⊆K°. If
r: [n1, n2]⟶ [0,∞) is a continuous mapping and |p′| is
h-convex on [n1, n2], then the following inequality holds:
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n2

n1

p ξ1( r ξ1( n2ξ1 − p(α)




≤Z n1, α, n2(  p′ n1( 


 + G n1, α, n2(  p′ n2( 


, (44)

where

Z n1, α, n2(  � 
α

n1


e

n1

r ξ1( n2ξ1 h κn1,n2
(e) de

+ 
n2

α


n2

e
r ξ1( n2ξ1 h κn1 ,n2

(e) de,

G n1, α, n2(  � 
α

n1


e

n1

r ξ1( n2ξ1 h 1 − κn1 ,n2
(e) de

+ 
n2

α


n2

e
r ξ1( n2ξ1 h 1 − κn1 ,n2

(e) de.

(45)

Proof. We can write

p ξ1(  − p(α) � 
n2

n1

σ ξ1 − e(  − σ(α − e) p′(e)de. (46)

From (46), we obtain


n2

n1

p ξ1( r ξ1( dξ1 − p(α) � 
n2

n1


n2

e
r ξ1( dξ1 − σ(α − e) p′(e)de.

(47)

Taking absolute value on both sides of (47) and applying
Lemma 3, we have


n2

n1

p ξ1( r ξ1( dξ1 − p(α)





≤ 
n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




p′(e)


de

≤ p′ n1( 


 
n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




h κn1 ,n2

(e) de

+ p′ n2( 


 
n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




h κn1 ,n2

(e) de.

(48)

We notice that


n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




h κn1 ,n2

(e) de

� 
α

n1


n2

e
r ξ1( dξ1 − 

n2

n1

r ξ1( dξ1




h κn1 ,n2

(e) de

+ 
n2

α


n2

e
r ξ1( dξ1 h κn1 ,n2

(e) de � 
α

n1


e

n1

r ξ1( dξ1 h κn1 ,n2
(e) de

+ 
n2

α


n2

e
r ξ1( dξ1 h κn1 ,n2

(e) de � Z n1, α, n2( .

(49)

In a similar way,


n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




h 1 − κn1 ,n2

(e) de

� 
α

n1


e

n1

r ξ1( dξ1 h 1 − κn1 ,n2
(e) de

+ 
n2

α


n2

e
r ξ1( dξ1 h 1 − κn1 ,n2

(e) de � G n1, α, n2( .

(50)

We get the result from (49) and (50). □

Corollary 7. Suppose that the assumptions of 2eorem 9 are
satisfied and that r(ξ1) is symmetric with respect to ((n1 +

n2)/2) on [n1, n2], then


n2

n1

p ξ1( r ξ1( dξ1 − p
n1 + n2

2
 




≤ p′ n1( 


 + p′ n2( 


 Z1 n1, n2( ,

(51)

where

Z1 n1, n2(  � 
n1+n2( )/2( )

n1


e

n1

r ξ1( dξ1 h κn1 ,n2
ξ1(  de

+ 
n2

n1+n2( )/2( )


n2

e
r ξ1( dξ1 h κn1 ,n2

ξ1(  de.

(52)

Proof. Since the function r(ξ1) is symmetric with respect to
((n1 + n2)/2) on [n1, n2] so α � ((n1 + n2)/2) and the
function r(ξ1) is symmetric with respect ((n1 + n2)/2) on
[n1, n2], this fact gives

Z n1, α, n2(  � Z n1,
n1 + n2

2
, n2 

� G n1,
n1 + n2

2
, n2 

� G n1, α, n2( .

(53)

)us,
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Z n1,
n1 + n2

2
, n2  � G n1,

n1 + n2

2
, n2 

� 
n1+n2( )/2( )

n1


e

n1

r ξ1( dξ1 h κn1 ,n2
(e) de

+ 
n2

n1+n2( )/2( )


n2

e
r ξ1( dξ1 h κn1 ,n2

(e) de � Z1 n1, n2( .

(54)
□

Corollary 8. If we take r(ξ1) � (g(ξ1)/ 
n2

n1
g(ξ1)dξ1) in (44)

and g(ξ1) is symmetric with respect to ((n1 + n2)/2). 2en,
the following inequality holds:


n2

n1

p ξ1( g ξ1( dξ1 − p
n1 + n2

2
  

n2

n1

g ξ1( dξ1





≤ p′ n1( 


 + p′ n2( 


 Z2 n1, n2( ,

Z2 n1, n2(  � 
n1+n2( )/2( )

n1


e

n1

g ξ1( n2ξ1 h κn1 ,n2
(e) de

+ 
n2

n1+n2( )/2( )


n2

e
g ξ1( dξ1 h κn1 ,n2

(e) de.

(55)

Theorem 10. Let p: K⊆R⟶ R be a differentiable map-
ping on K° and p′ ∈ L([n1, n2]), where [n1, n2]⊆K°. If
r: [n1, n2]⟶ [0,∞) is a continuous mapping and |p′|q is
h-convex on [n1, n2] for q≥ 1, then


n2

n1

p ξ1( r ξ1( dξ1 − p(α)




≤ 2

n2

α
ξ1 − α( r ξ1( dξ1 

1− (1/q)

× Z n1, α, n2(  p′ n1( 



q

+ G n1, α, n2(  p′ n2( 



q

 
(1/q)

,

(56)

where Z(n1, α, n2) and G(n1, α, n2) are given in 2eorem 9.

Proof. Application of Hölder inequality in (47) yields that


n2

n1

p ξ1( r ξ1( dξ1 − p(α)




≤ 

n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




p′(e)



qde

≤ 
n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




de 

1− (1/q)

× 
n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




p′(e)



qde 

(1/q)

.

(57)

Applying Lemma 3, we have


n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




p′(e)



qde

≤Z n1, α, n2(  p′ n1( 



q

+ G n1, α, n2(  p′ n2( 



q
.

(58)

On the other hand, we have


n2

n1


n2

e
r ξ1( dξ1 − σ(α − e)




de

� 
α

n1


e

n1

r ξ1( dξ1 de + 
n2

α


n2

e
r ξ1( dξ1 n2e

� 2
n2

α
ξ1 − α( r ξ1( dξ1.

(59)

A combination of (57)–(59) gives (56). □
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Corollary 9. If r(ξ1) is symmetric with respect to ((n1 +

n2)/2) on [n1, n2], then from (56), we obtain


n2

n1

p ξ1( r ξ1( dξ1 − p
n1 + n2

2
 





≤Z(1/q)
1 n1, n2(  2

n2

α
ξ1 − α( r ξ1( dξ1 

1− (1/q)

p′ n1( 



q

+ p′ n2( 



q

 
(1/q)

,

(60)

where Z1(n1, n2) is as defined in Corollary 7. Corollary 10. If r(ξ1) � (g(ξ1)/ 
n2

n1
g(ξ1)dξ1) and g(ξ1) is

symmetric with respect to ((n1 + n2)/2) on [n1, n2], then the
following inequality holds:


n2

n1

p ξ1( g ξ1( dξ1 − p
n1 + n2

2
  

n2

n1

g ξ1( dξ1





≤Z(1/q)
2 n1, n2(  2

n1+n2( )/2( )

n1

n1 + n2

2
− ξ1 r ξ1( dξ1 

1− (1/q)

p′ n1( 



q

+ p′ n2( 



q

 
(1/q)

,

(61)

where Z2(n1, n2) is as defined in Corollary 8.
For our next results, we use the following notations.

φ(r, p) ≔ p n1(  
n2

n1

h κn1 ,n2
ξ1(  r ξ1( dξ1

+ p n2(  
n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

− 
n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1,n2

ξ1(   p ξ1( r ξ1( dξ1.

(62)

It is clear from (62) that

φ
1

n2 − n1
, p  ≔

p n1(  
n2

n1
h κn1 ,n2

ξ1(  dξ1 + p n2(  
n2

n1
h 1 − κn1 ,n2

ξ1(  dξ1
n2 − n1

−
1

n2 − n1


n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1 ,n2

ξ1(   p ξ1( dξ1.

(63)

The next result gives upper bound of |φ(r, p)| when the
function p(ξ1) is quasi h-convex.

Theorem 11. Let p: K⊆R⟶ R be a differentiable map-
ping on K° and p′ ∈ L([n1, n2]), where [n1, n2]⊆K°. If

r: [n1, n2]⟶ [0,∞) be a continuous mapping and |p′| is
quasi h-convex on [n1, n2], then the following inequality
holds:

|φ(r, p)|≤ α − n1(  sup λ p′ n1( 


, μ p′(α)


   
1

0
J r, n1, α; ξ2( 


dξ2

+ n2 − α(  sup μ p′(α)


, λ p′ n2( 


   
1

0
J r, α, n2; ξ2( 


dξ2,

(64)
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where J(r, α, β; ξ2) is defined as in Lemma 2,
λ � supe∈(0,1)h(e), and μ � supe∈(0,1)h(1 − e).

Proof. Since |p′| is quasi h-convex on [n1, n2], we have

p′ ξ2n1 + 1 − ξ2( α( 


≤ sup λ p′ n1( 


, μ p′(α)


 ,

p′ 1 − ξ2( α + ξ2n2( 


≤ sup μ p′(α)


, λ p′ n2( 


 ,
(65)

for all ξ2 ∈ [0, 1]. Hence, inequality (64) follows from
(19). □

Theorem 12. Let p: K⊆R⟶ R be a differentiable map-
ping on K° and p′ ∈ L([n1, n2]), where [n1, n2]⊆K°. If
r: [n1, n2]⟶ [0,∞) be a continuous mapping and |p′| is
quasi h-convex on [n1, n2], then

|φ(r, p)|≤Z3 n1, n2(  sup λ p′ n1( 


, μ p′
n1 + n2

2
 




  + sup λ p′

n1 + n2

2
 




, μ p′ n2( 


  , (66)

where

Z3 n1, n2(  � 
n1+n2( )/2( )

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1,n2

ξ1(  r ξ1( dξ1 de. (67)

λ and μ are defined as in )eorem 11.

Proof. )e symmetry of r(ξ1) with respect to ((n1 + n2)/2)

on [n1, n2] gives

φ(r, p) � p n1(  + p n2(   
n2

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1

− 
n2

n1

h κn1 ,n2
ξ1(   + h 1 − κn1,n2

ξ1(   p ξ1( r ξ1( dξ1.

(68)

We also observe that

α − n1(  
1

0
J r, n1, α; ξ2( 


dξ2 � 

α

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1




de,

n2 − α(  
1

0
J r, α, n2; ξ2( 


dξ2 � 

n2

α


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1




de.

(69)

Consider the function p: [n1, n2]⟶ R defined by

p(e) � 
e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1.

(70)
)en,

p′(e) � h 1 − κn1 ,n2
(e)  + h κn1 ,n2

(e)  r(e)> 0, e ∈ n1, n2 .

(71)

)is shows that p(e) is an increasing function on [n1, n2]

and

p
n1 + n2

2
  � 0. (72)

Now, it is easy to see that
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α − n1(  
1

0
J r, n1, α; ξ2( 


dξ2

� 
n1+n2( )/2( )

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1 de,

n2 − α(  
1

0
J r, α, n2; ξ2( 


dξ2

� 
n2

n1+n2( )/2( )


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1 de

� 
n1+n2( )/2( )

n1


e

n1

h 1 − κn1 ,n2
ξ1(  r ξ1( dξ1 − 

n2

e
h κn1 ,n2

ξ1(  r ξ1( dξ1 de.

(73)

Hence, inequality (66) follows from the inequality. □

Remark 2. If we choose h(e) � e in )eorem 9, Corollary 7
and 8, )eorem 10, Corollaries 9 and 10, and)eorems 11
and 12, we get the results for nonnegative convex func-
tions and quasi-convex functions (see )eorem 3.1,
Corollary 3.1, )eorem 3.2, Remark 3.2, )eorem 3.3 and
)eorem 3.4 in [8]). Moreover, one can obtain inequalities
for s-convex functions, Godunova–Levin functions,
s-Godunova–Levin functions, egs-convex, P-functions,
and quasiconvex functions from the result of )eorem 9,
Corollaries 7 and 8, )eorem 10, Corollaries 9 and 10, and
)eorems 11 and 12 by choosing h(e) � es, e− 1, e− s, e(1 −

e) and 1, respectively.

4. Applications

4.1. �s-Divergence Measures. Here, we provide some applica-
tions on�s-divergencemeasure and probability density function
by using the results proved in Section 3. Let the set ϕ and the σ
finite measure μ be given, and let the set of all probability
densities on μ to be defined on Ω ≔ ξ2|ξ2:

ϕ⟶ R, ξ2(λ)> 0, ϕξ2(λ)dμ(λ) � 1}. Let �s: (0,∞)⟶ R

be given mapping and consider Ds(ξ2, ξ1) defined by

Ds ξ2, ξ1(  ≔ 
ϕ
ξ2(λ)�s

ξ1(λ)

ξ2(λ)
 dμ(λ), ξ2, ξ1 ∈ Ω. (74)

If �s is convex, then (74) is called as the Csisźar �s-di-
vergence. Consider the following Hermite–Hadamard
(HH) divergence:

D
�s
HH ξ2, ξ1(  ≔ 

ϕ
ξ2(λ)


ξ1(λ)/ξ2(λ)( )

1 �s ξ1( dξ1
ξ1(λ)/ξ2(λ)(  − 1

dμ(λ), ξ2, ξ1 ∈ Ω, (75)

where �s is convex on (0,∞) with �s(1) � 0. Note that
D�s

HH(ξ2, ξ1)≥ 0 with the equality holds if and only if
ξ2 � ξ1.

Proposition 1. Let �s: K⊆R⟶ R be a differentiable
mapping onK°, where [n1, n2]⊆K°. If r(ξ1) � (1/(n2 − n1)),
ξ1 ∈ [n1, n2], |�s′|q is h-convex on [n1, n2] for q≥ 1 with h � 1 |
No Image for this Article and �s(1) � 0, then

D
�s
HH ξ2, ξ1(  − 

ϕ
ξ2(λ)�s

ξ1(λ) + ξ2(λ)

2ξ2(λ)
 dμ(λ)





≤
ϕ
ξ2(λ)

ξ1(λ) − ξ2(λ)




4ξ2(λ)
�s′(1)



q

+ �s′
ξ1(λ)

ξ2(λ)
 





q

 

(1/q)

dμ(λ).

(76)

Proof. Let ϑ1 ≔ λ ∈ ϕ: ξ1(λ)> ξ2(λ) , ϑ2 ≔ λ ∈ ϕ: ξ1(λ)

< ξ2(λ)}, and ϑ3 ≔ λ{ ∈ ϕ: ξ1(λ) � ξ2(λ)}. Obviously, if
λ ∈ ϑ3, then equality holds in (76). Now, if λ ∈ ϑ1, then for

n1 � 1 and n2 � (ξ1(λ)/ξ2(λ)) in )eorem 10, multiplying
both sides to the obtained result by ξ2(λ) and integrating
over ϑ1, we have
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ϑ1

ξ2(λ) 
ξ1(λ)/ξ2(λ)( )

1 �s ξ1( dξ1 

ξ1(λ)/ξ2(λ)(  − 1
dμ(λ) − 

ϑ1
ξ2(λ)�s

ξ1(λ) + ξ2(λ)

2ξ2(λ)
 dμ(λ)





≤
ϑ1
ξ2(λ)

ξ1(λ) − ξ2(λ)

4ξ2(λ)
  �s′(1)



q

+ �s′
ξ1(λ)

ξ2(λ)
 





q

 

(1/q)

dμ(λ).

(77)

Similarly, if λ ∈ ϑ2, then for n2 � 1 and
n1 � (ξ1(λ)/ξ2(λ)) in )eorem 9, multiplying both sides to
the obtained result by ξ2(λ) and integrating over ϑ2, we have


ϑ2

ξ2(λ) 
ξ1(λ)/ξ2(λ)( )

1 �s ξ1( dξ1 

ξ1(λ)/ξ2(λ)(  − 1
dμ(λ) − 

ϑ2
ξ2(λ)�s

ξ1(λ) + ξ2(λ)

2ξ2(λ)
 dμ(λ)





≤
ϑ2

ξ2(λ) − ξ1(λ)

4ξ2(λ)
  �s′

ξ1(λ)

ξ2(λ)
 





q

+ �s′(1)



q

 

(1/q)

dμ(λ).

(78)

Adding inequalities (77) and (78) and utilizing triangle
inequality, we get the desired result (76). □

4.2. Applications to Statistics. Let r: [n1, n2]⟶ [0,∞) be
the probability density function of a continuous random
variable X symmetric to ((n1 + n2)/2) with 0< n1 < n2. )e
rth moment of X is defined as

Er(X) � 
n2

n1

ξr
1r ξ1( dξ1, (79)

which is assumed to be finite.

Theorem 13. Suppose that 0< n1 < n2 and r≥ 2, then the
following inequality holds:

Er(X) −
n1 + n2

2
 

r



≤ r n2 − n1( 

n
r− 1
1 + n

r− 1
2

2
 . (80)

Proof. Let p(ξ1) � ξr
1 on [n1, n2] for r≥ 2, and we have

|p′(ξ1)| � rξr− 1
1 is convex on [n1, n2]. Since the functions

r: [n1, n2]⟶ [0,∞) are symmetric with respect to
((n1 + n2)/2),


e

n1

r ξ1( dξ1 ≤ 
n2

n1

r ξ1( dξ1 � 1,


n2

e
r ξ1( dξ1 ≤ 

n2

n1

r ξ1( dξ1 � 1,

α �
n1 + n2

2
.

(81)

)erefore, from inequality (44), we obtain inequality
(80). □

5. Conclusion

In this study, we propose new definition, namely, the def-
inition of quasi h-convex functions and provide an example
of such type of functions. We prove some new weighted
Hermite–-Hadamard type inequalities for differentiable for
h-convex and quasi h-convex functions when the weight
function is not necessarily symmetric about the midpoint of
the interval. )ese results generalize many results proved in
earlier works for these classes of functions. Applications of
some of our results to�s-divergence and to statistics are given.
We believe that the results of the current study may be a
motivation to explore more new results relevant to this field
of research for people working in the rich field of mathe-
matical inequalities.
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Journal de Mathématiques Pures et Appliquées, vol. 58,
pp. 171–215, 1893.

[2] U. S. Kirmaci, “Inequalities for differentiable mappings and
applications to special means of real numbers and to midpoint
formula,” Applied Mathematics and Computation, vol. 147,
pp. 137–146, 2004.

[3] C. E. M. Pearce and J. Pecaric, “Inequalities for differentiable
mappings with applications to quadrature formulae,” Applied
Mathematics Letters, vol. 13, pp. 51–55, 2000.

[4] D.-Y. Hwang, “Some inequalities for differentiable convex
mapping with application to weighted midpoint formula and
higher moments of random variables,” Applied Mathematics
and Computation, vol. 232, pp. 68–75, 2014.

[5] D.-Y. Hwang, “Some inequalities for differentiable convex
mapping with application to weighted trapezoidal formula
and higher moments of random variables,” Applied Mathe-
matics and Computation, vol. 217, no. 23, pp. 9598–9605,
2011.

[6] J. E. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions,
Partial Ordering and Statistical Applications, Academic Press,
Cambridge, MA, USA, 1991.

[7] M. Alomari, M. Darus, and U. S. Kirmaci, “Refinements of
Hadamard-type inequalities for quasi-convex functions with
applications to trapezoidal formula and special means,”
Computers & Mathematics with Applications, vol. 59,
pp. 225–232, 2010.

[8] B. Gavrea, “A Hermite-Hadamard type inequality with ap-
plications to the estimation of moments of continuous ran-
dom variables,” Applied Mathematics and Computation,
vol. 254, pp. 92–98, 2015.
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širokogo klassa, soderžaščego vypuklye, monotonnye i
nekotorye drugie vidy funkcii,” in Vyčislitel. Mat. i. Mat. Fiz.
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