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Vertices and edges are made from a network, with the degree of a vertex referring to the number of connected edges.*e chance of
every vertex possessing a given degree is represented by a network’s degree appropriation, which reveals important global network
characteristics. Many fields, including sociology, public health, business, medicine, engineering, computer science, and basic
sciences, use network theory. Logistical networks, gene regulatory networks, metabolic networks, social networks, and driven
networks are some of the most significant networks. In physical, theoretical, and environmental chemistry, a topological index is a
numerical value assigned to a molecular structure/network that is used for correlation analysis. Hexagonal networks of dimension
t are used to build hex-derived networks, which have a wide range of applications in computer science, medicine, and engineering.
For the third type of hex-derived networks, topological indices of reverse degree based are discussed in this study.

1. Introduction

A topological descriptor is a numerical value that represents
the complete structure of a graph. In the study of topological
descriptors, graph theory has shown to be a fruitful field of
study. *e primary elements of topological indices link the
many chemical and physical characteristics of fundamental
chemical substances. Vertex-edge-based topological indices
are employed in the research of QSAR/QSPR for the pre-
diction of bio-activity of different chemical compounds.
With the dimension p, hexagonal networks create hex-de-
rived networks, which have a wide range of implementations
in engineering, computer science, and also medicine. In [1],
researchers created a new form of graph known as a “third
type of hex-derived networks” [2, 3] and continued this work
by calculating degree-based topological descriptors for these
networks, in which they computed exact values of some
vertex-edge named topological indices for this network.

Researchers have used graph theory to develop a range of
helpful tools, including graph labeling, topological indices,
and finding numbers.*e subject of graph theory has several

applications and implementations in various fields of study,
including chemistry, medicine, and engineering. A poly-
nomial, a series of integers, a numeric value, or a matrix can
all be used to identify a graph. A chemical compound can be
represented as a graph (or a diagram) or usually denoted as a
molecular graph, nodes played a role of atoms, and the
bonding between atoms is usually labeled as edges in the
molecular graph theory. Recently, a new topic called
cheminformatics was established, which is a mix of chem-
istry, information science, and mathematics, in which the
QSPR/QSAR connection, bio-activity, and characterization
of chemical compounds are investigated and reported in [4].

*e topological descriptor is a numerical number as-
sociated with chemical compositions that maintain the re-
lationship between chemical structures and a variety of
physico-chemical characteristics, biological activity, and
chemical reactivity. To describe the topology of a chemical
network, it translated into a number, which is further used to
create topological indices. Distance-based topological in-
dices, degree-based topological indices, and counting-re-
lated topological indices are some of the most common
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forms of topological indices for graphs. Many academics
have recently discovered topological indices for studying
basic features of molecular graphs or networks. In [5–12],
these networks have extremely compelling topological
qualities that have been examined in distinct characteristics.

Let p and q represent the number of rows and number of
triangles in each row of third-type p th chain hex-derived
networks G3

p,q, respectively, shown in Figure 1. Let G be a
simple connected network, with a set of vertex and edges
denoted by V and E, respectively. |V| represents the order of
G and |E| represents the size of G. Let dθ be the degree of a
vertex θ ∈ V in G and Rθ be its reverse degree that was
introduced by Kulli [13] and defined as Rθ � 1 + Δ − dθ,
where Δ denoted the maximum degree of the given graph.
Let ERθ ,Rϑ

represent the edge partition of the given graph
based on reverse degree of end vertices of an edge θϑ ∈ E and
|ERθ ,Rϑ

| represent its cardinality.
We define general reverse degree topological invariant

T(G) as follows:

T(G) � 
θϑ∈E(G)

λ Rθ,Rϑ( , (1)

If λ Rθ,Rϑ(  � Rθ × Rϑ( 
α
, thenT(G) represents the general reverse Randi�c index RRα(G)(  for α �

1
2
, −
1
2
, 1, −1,

If α � 1, then it is known as the second reverse Zagreb index RM2(G)( ,

(2)

If λ Rθ,Rϑ(  �

�����������
Rθ + Rϑ − 2
Rθ × Rϑ



, thenT(G) represents the reverse atom − bond connectivity index (RABC(G)), (3)

If λ Rθ,Rϑ(  �
2

��������
Rθ × Rϑ



Rθ + Rϑ
, thenT(G) represents the reverse geometric − arithmetic index (RGA(G)), (4)

If λ Rθ,Rϑ(  � Rθ + Rϑ( , thenT(G) represents the first reverse Zagreb index RM1(G)( , (5)

If λ Rθ,Rϑ(  � Rθ + Rϑ( 
2
, thenT(G) represents the reverse hyper Zagreb index (RHM(G)), (6)

If λ Rθ,Rϑ(  � Rθ( 
2

+ Rϑ( 
2

 , thenT(G) represents the reverse forgotten index (RF(G)), (7)

If λ Rθ,Rϑ(  � Rθ + Rϑ( 
α
Rθ × Rϑ( 

β
, thenT(G) represents

the first reverse redefined index RRZ1(G)( for α � 1, β � −1,

the second reverse redefined index RRZ2(G)( for α � −1, β � 1,

the third reverse redefined index RRZ3(G)( for α � 1, β � 1.

(8)

For latest results on topological descriptors for different
chemical and computer networks and for general graphs, we
refer to see [14–25]. In this current research work, we de-
termine the exact values of all the above reverse indices.
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Figure 1: *ird-type chain hex-derived network G3
p,q.
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2. Structure of Third-Type Hex-
Derived Networks

With the help of complete graphs of order 3 (K3), Chen et al.
[26] assembled a hexagonal mesh. In terms of chemistry,
these K3 graphs are also called oxide graphs. Figure 1 is
obtained by joining these K3 graphs. Two-dimensional mesh
graph HX(2) (see Figure 2(a)) is obtained by joining six K3
graphs and three-dimensional mesh graph HX(3) (see
Figure 2(b)) is obtained by putting K3 graphs around all
sides of HX(2) [27]. Furthermore, repeating the same
process by putting the tK3 graph around each hexagon, we
obtained the tth hexagonal mesh. We have to note that the
one-dimensional hexagonal mesh graph does not exist.

*e novel network, labeled the third category of hex-
derived networks, was developed in [1]. In [2, 3], they de-
fined the graphically construction algorithm for the third
type of hexagonal hex-derived network HHDN3(t). Huo el
at. [28] explained the graphical construction algorithm for
mth chain hex-derived network of third type. In this paper,
we denote it by G3

p,q, and different priorities of p and q the
chain hex-derived networks are shown in Figure 3. In
[29–33], you may find related research that utilizes this idea
and that may benefit from the new research’s visions.

3. Main Results

In this section, we study the third-type p th chain hex-de-
rived networks G3

p,q in the following three cases.

(i) Case 1: for p � q, (p, q)≥ 1.
(ii) Case 2: for p< q, p is odd and q is a natural number.

For p> q, p is odd and q is a natural number. For
p< q, p and q both are even. For p> q, p and q both
are even.

(iii) Case 3: for p< q, p is even and q is odd. For p> q, p

is even and q is odd.

3.1. Results for Case 1. We provide a formula that would be
used to calculate any reverse degree topological descriptors
of Case 1 for G3

p,q.

Lemma 1. Let G3
p,q be a third-type p th chain hex-derived

networks. :en,

T1 G
3
p,q  � 3pq(λ(1, 1) + 2λ(1, 5) + λ(5, 5))

+ 3(p + q)(λ(5, 5) − λ(1, 1)) + 2(λ(1, 1)

− 2λ(1, 5) + λ(5, 5)).

(9)

Proof. *e graph G3
p,q contains 12pq edges and maximum

degree in G3
p,q graph is 8. *ere are two types of reverse

degree vertices in G3
p,q that are 1 and 5. Let us partition the

edges of G3
p,q according to its reverse degrees according to

Case 1 as

E1,1 � θϑ ∈ E G
3
p,q : Rθ � 1,Rϑ � 1 ,

E1,5 � θϑ ∈ E G
3
p,q : Rθ � 1,Rϑ � 5 ,

E5,5 � θϑ ∈ E G
3
p,q : Rθ � 5,Rϑ � 5 .

(10)

Note that E(G3
p,q) � E1,1 ∪E1,5 ∪E5,5 and

|E1,1| � 3pq − 3p − 3q + 2, |E1,5| � 6pq − 4, and
|E5,5| � 3pq + 3p + 3q + 2. Hence,

T1 G
3
p,q  � 

θϑ∈E G3
p,q( 

λ Rθ,Rϑ( 

� 
θϑ∈E1,1

λ(1, 1) + 
θϑ∈E1,5

λ(1, 5) + 
θϑ∈E5,5

λ(5, 5)

� (3pq − 3p − 3q + 2)λ(1, 1) +(6pq − 4)λ(1, 5)

+(3pq + 3p + 3q + 2)λ(5, 5).

(11)

After simplification, we obtain

T1 G
3
p,q  � 3pq(λ(1, 1) + 2λ(1, 5) + λ(5, 5))

+ 3(p + q)(λ(5, 5) − λ(1, 1)) + 2(λ(1, 1)

− 2λ(1, 5) + λ(5, 5)).

(12)

□

Theorem 1. :e general reverse Randić index of G3
p,q is equal

to

RRα G
3
p,q  �

108pq + 72(p + q) + 32, for α � 1,

(18 + 6
�
5

√
)pq + 12(p + q) + 12 − 4

�
5

√
, for α �

1
2
,

18
5

+
6

�
5

√

5
 pq −

12
5

(p + q) +
12
5

−
4

�
5

√

5
, for α �

−1
2

,

108
25

pq −
72
25

(p + q) +
32
25

, for α � −1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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Proof. For RRα(G3
p,q) which is the general reverse Randić

index of G3
p,q, from equation (2), we have

λ(Rθ,Rϑ) � (Rθ × Rϑ)
α; therefore, λ(1, 1) � 1,

λ(1, 5) � (5)α, and λ(5, 5) � (25)α. *us, by Lemma 1,

RRα G
3
p,q  � 3pq 1 + 2(5)

α
+(25)

α
( 

+ 3(p + q) (25)
α

− 1(  + 2 1 − 2(5)
α

+(25)
α

( .

(14)

Put α � 1, and we have

RR1 G
3
p,q  � 108pq + 72(p + q) + 32. (15)

Put α � (1/2), and we have

RR(1/2) G
3
p,q  � (18 + 6

�
5

√
)pq + 12(p + q) + 12 − 4

�
5

√
.

(16)

Put α � (−1/2), and we have

RR(−1/2) G
3
p,q  �

18
5

+
6

�
5

√

5
 pq −

12
5

(p + q) +
12
5

−
4

�
5

√

5
.

(17)

Put α � −1, and we have

RR−1 G
3
p,q  �

108
25

pq −
72
25

(p + q) +
32
25

. (18)
□

Theorem 2. Let G3
p,q be a third-type p th chain hex-derived

networks. :en, the reverse atom-bond connectivity index is

RABC G
3
p,q  �

12
�
5

√

5
+
6

�
2

√

5
 pq −

8
�
5

√

5
+
2(3p + 3q + 2)

�
2

√

5
.

(19)

*e reverse geometric-arithmetic index is

RGA G
3
p,q  � (6 + 2

�
5

√
)pq + 4 −

4
�
5

√

3
. (20)

*e first reverse Zagreb index is

RM1 G
3
p,q  � 72pq + 24p + 24q. (21)

*e reverse hyper-Zagreb index is

RHM G
3
p,q  � 528pq + 288p + 288q + 64. (22)

*e reverse forgotten index is

RF G
3
p,q  � 312pq + 144p + 144q. (23)

Proof. For RABC(G3
p,q) which is the reverse atom-bond

connectivity index of G3
p,q, from equation (3), we have

λ(Rθ,Rϑ) �
��������������������
(Rθ + Rϑ − 2)/Rθ × Rϑ


; therefore, λ(1, 1)

(a) (b)

Figure 2: Hexagonal meshes: (a) HX (2) and (b) HX (3).

(a) (b) (c) (d) (e)

Figure 3: Chain hex-derived networks G3
p,q for different priorities of p and q.
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� 0, λ(1, 5) �
���
4/5

√
, and λ(5, 5) � (

�
8

√
/5). *us, by Lemma

1 and after simplification,

RABC G
3
p,q  �

12
�
5

√

5
+
6

�
2

√

5
 pq −

8
�
5

√

5
+
2(3p + 3q + 2)

�
2

√

5
.

(24)

For RGA(G3
p,q) which is the reverse geometric-arith-

metic index of G3
p,q, from equation (4), we have

λ(Rθ,Rϑ) � (2
��������
Rθ × Rϑ


/(Rθ + Rϑ)); therefore, λ(1, 1)

� 1, λ(1, 5) � (
�
5

√
/3), and λ(5, 5) � 1. *us, by Lemma 1

and after simplification,

RGA G
3
p,q  � (6 + 2

�
5

√
)pq + 4 −

4
�
5

√

3
. (25)

ForRM1(G3
p,q) which is the first reverse Zagreb index of

G3
p,q, from equation (5), we have λ(Rθ,Rϑ) � (Rθ + Rϑ);

therefore, λ(1, 1) � 2, λ(1, 5) � 6, and λ(5, 5) � 10. *us, by
Lemma 1 and after simplification,

RM1 G
3
p,q  � 72pq + 24p + 24q. (26)

For RHM(G3
p,q) which is the first reverse hyper-Zagreb

index of G3
p,q, from equation (6), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
2; therefore, λ(1, 1) � 4,

λ(1, 5) � 36, and λ(5, 5) � 100. *us, by Lemma 1 and after
simplification,

RHM G
3
p,q  � 528pq + 288p + 288q + 64. (27)

For RF(G3
p,q) which is the reverse forgotten index of

G3
p,q, from equation (7), we have

λ(Rθ,Rϑ) � ((Rθ)
2 + (Rϑ)

2); therefore, λ(1, 1) � 2,
λ(1, 5) � 26, and λ(5, 5) � 50. *us, by Lemma 1 and after
simplification,

RF G
3
p,q  � 312pq + 144p + 144q. (28)

□
Theorem 3. Let G3

p,q be a third-type p th chain hex-derived
networks. :en, the first reverse redefined index is

RRZ1 G
3
p,q  �

72pq

5
−
24p

5
−
24q

5
. (29)

*e second reverse redefined index is

RRZ2 G
3
p,q  � 14pq + 6p + 6q +

8
3
. (30)

*e third reverse redefined index is

RRZ3 G
3
p,q  � 936pq + 744p + 744q + 384. (31)

Proof. For RRZ1(G3
p,q) which is the first reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
1(Rθ × Rϑ)

−1; therefore,
λ(1, 1) � 2, λ(1, 5) � (6/5), and λ(5, 5) � (2/5). *us, by
Lemma 1 and after simplification,

RRZ1 G
3
p,q  �

72pq

5
−
24p

5
−
24q

5
. (32)

For RRZ2(G3
p,q) which is the second reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
− 1(Rθ × Rϑ)

1; therefore,
λ(1, 1) � (1/2), λ(1, 5) � (5/6), and λ(5, 5) � (5/2). *us,
by Lemma 1 and after simplification,

RRZ2 G
3
p,q  � 14pq + 6p + 6q +

8
3
. (33)

For RRZ3(G3
p,q) which is the third reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)(Rθ × Rϑ); therefore, λ(1, 1) � 2,
λ(1, 5) � 30, and λ(5, 5) � 250. *us, by Lemma 1 and after
simplification,

RRZ3 G
3
p,q  � 936pq + 744p + 744q + 384. (34)

□

3.2. Results for Case 2. We provide a formula that would be
used to calculate any reverse degree topological descriptors
of Case 2 for G3

p,q.

Lemma 2. Let G3
p,q be a third-type p th chain hex-derived

networks. :en,

T2 G
3
p,q  � 3pq(λ(1, 1) + 2λ(1, 5) + λ(5, 5))

+ 2(2p + q)(λ(5, 5) − λ(1, 1)) + 2(λ(1, 1)

− 2λ(1, 5) + λ(5, 5)).

(35)

Proof. *e graph G3
p,q contains 12pq edges and maximum

degree in G3
p,q graph is 8. *ere are two types of reverse

degree vertices in G3
p,q that are 1 and 5. Let us partition the

edges of G3
p,q according to its reverse degrees according to

Case 2 as

E1,1 � θϑ ∈ E G
3
p,q : Rθ � 1,Rϑ � 1 ,

E1,5 � θϑ ∈ E G
3
p,q : Rθ � 1,Rϑ � 5 ,

E5,5 � θϑ ∈ E G
3
p,q : Rθ � 5,Rϑ � 5 .

(36)

Note that E(G3
p,q) � E1,1 ∪E1,5 ∪E5,5 and

|E1,1| � 3pq − 4p − 2q + 2, |E1,5| � 6pq − 4, and
|E5,5| � 3pq + 4p + 2q + 2. Hence,

T2 G
3
p,q  � 

θϑ∈E G3
p,q( 

λ Rθ,Rϑ( 

� 
θϑ∈E1,1

λ(1, 1) + 
θϑ∈E1,5

λ(1, 5) + 
θϑ∈E5,5

λ(5, 5)

� (3pq − 4p − 2q + 2)λ(1, 1) +(6pq − 4)λ(1, 5)

+(3pq + 4p + 2q + 2)λ(5, 5).

(37)

After simplification, we obtain
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T2 G
3
p,q  � 3pq(λ(1, 1) + 2λ(1, 5) + λ(5, 5))

+ 2(2p + q)(λ(5, 5) − λ(1, 1)) + 2(λ(1, 1)

− 2λ(1, 5) + λ(5, 5)).

(38)

□

Theorem 4. :e general reverse Randić index of G3
p,q is equal

to

RRα G
3
p,q  �

108pq + 96p + 48q + 32, for α � 1,

(18 + 6
�
5

√
)pq + 16p + 8q + 12 − 4

�
5

√
, for α �

1
2
,

18
5

+
6

�
5

√

5
 pq −

16p

5
−
8
5

q +
12
5

−
4

�
5

√

5
, for α �

−1
2

,

108
25

pq −
96
25

p −
48
25

q +
32
25

, for α � −1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Proof. For RRα(G3
p,q) which is the general reverse Randić

index of G3
p,q, from equation (2), we have

λ(Rθ,Rϑ) � (Rθ × Rϑ)
α; therefore, λ(1, 1) � 1,

λ(1, 5) � (5)α, and λ(5, 5) � (25)α. *us, by Lemma 2,

RRα G
3
p,q  � 3pq 1 + 2(5)

α
+(25)

α
( 

+ 2(2p + q) (25)
α

− 1(  + 2 1 − 2(5)
α

+(25)
α

( .

(40)

Put α � 1, and we have

RR1 G
3
p,q  � 108pq + 96p + 48q + 32. (41)

Put α � (1/2), and we have

RR(1/2) G
3
p,q  � (18 + 6

�
5

√
)pq + 16p + 8q + 12 − 4

�
5

√
.

(42)

Put α � (−1/2), and we have

RR(−1/2) G
3
p,q  �

18
5

+
6

�
5

√

5
 pq −

16p

5
−
8
5

q +
12
5

−
4

�
5

√

5
.

(43)

Put α � −1, and we have

RR−1 G
3
p,q  �

108
25

pq −
96
25

p −
48
25

q +
32
25

. (44)
□

Theorem 5. Let G3
p,q be a third-type p th chain hex-derived

networks. :en, the reverse atom-bond connectivity index is

RABC G
3
p,q  �

12
�
5

√

5
+
6

�
2

√

5
 pq −

8
�
5

√

5
+
2(4p + 2q + 2)

�
2

√

5
.

(45)

*e reverse geometric-arithmetic index is

RGA G
3
p,q  � (6 + 2

�
5

√
)pq + 4 −

4
�
5

√

3
. (46)

*e first reverse Zagreb index is

RM1 G
3
p,q  � 72pq + 32p + 16q. (47)

*e reverse hyper-Zagreb index is

RHM G
3
p,q  � 528pq + 384p + 192q + 64. (48)

*e reverse forgotten index is

RF G
3
p,q  � 312pq + 192p + 96q. (49)

Proof. For RABC(G3
p,q) which is the reverse atom-bond

connectivity index of G3
p,q, from equation (3), we have

λ(Rθ,Rϑ) �
��������������������
(Rθ + Rϑ − 2)/Rθ × Rϑ


; therefore, λ(1, 1)

� 0, λ(1, 5) �
���
4/5

√
, and λ(5, 5) � (

�
8

√
/5). *us, by Lemma

2 and after simplification,

RABC G
3
p,q  �

12
�
5

√

5
+
6

�
2

√

5
 pq −

8
�
5

√

5
+
2(4p + 2q + 2)

�
2

√

5
.

(50)

For RGA(G3
p,q) which is the reverse geometric-arith-

metic index of G3
p,q, from equation (4), we have

λ(Rθ,Rϑ) � (2
��������
Rθ × Rϑ


/(Rθ + Rϑ)); therefore,

λ(1, 1) � 1, λ(1, 5) � (
�
5

√
/3), and λ(5, 5) � 1. *us, by

Lemma 2 and after simplification,

RGA G
3
p,q  � (6 + 2

�
5

√
)pq + 4 −

4
�
5

√

3
. (51)

ForRM1(G3
p,q) which is the first reverse Zagreb index of

G3
p,q, from equation (5), we have λ(Rθ,Rϑ) � (Rθ + Rϑ);

therefore, λ(1, 1) � 2, λ(1, 5) � 6, and λ(5, 5) � 10. *us, by
Lemma 2 and after simplification,
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RM1 G
3
p,q  � 72pq + 32p + 16q. (52)

For RHM(G3
p,q) which is the first reverse hyper-Zagreb

index of G3
p,q, from equation (6), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
2; therefore, λ(1, 1) � 4,

λ(1, 5) � 36, and λ(5, 5) � 100. *us, by Lemma 2 and after
simplification,

RHM G
3
p,q  � 528pq + 384p + 192q + 64. (53)

For RF(G3
p,q) which is the reverse forgotten index of

G3
p,q, from equation (7), we have

λ(Rθ,Rϑ) � ((Rθ)
2 + (Rϑ)

2); therefore, λ(1, 1) � 2,
λ(1, 5) � 26, and λ(5, 5) � 50. *us, by Lemma 2 and after
simplification,

RF G
3
p,q  � 312pq + 192p + 96q. (54)

□

Theorem 6. Let G3
p,q be a third-type p th chain hex-derived

networks. :en, the first reverse redefined index is

RRZ1 G
3
p,q  �

72pq

5
−
32p

5
−
16q

5
. (55)

*e second reverse redefined index is

RRZ2 G
3
p,q  � 14pq + 8p + 4q +

8
3
. (56)

*e third reverse redefined index is

RRZ3 G
3
p,q  � 936pq + 992p + 496q + 384. (57)

Proof. For RRZ1(G3
p,q) which is the first reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
1(Rθ × Rϑ)

− 1; therefore,
λ(1, 1) � 2, λ(1, 5) � (6/5), and λ(5, 5) � (2/5). *us, by
Lemma 2 and after simplification,

RRZ1 G
3
p,q  �

72pq

5
−
32p

5
−
16q

5
. (58)

For RRZ2(G3
p,q) which is the second reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
− 1(Rθ × Rϑ)

1; therefore,
λ(1, 1) � (1/2), λ(1, 5) � (5/6), and λ(5, 5) � (5/2). *us,
by Lemma 2 and after simplification,

RRZ2 G
3
p,q  � 14pq + 8p + 4q +

8
3
. (59)

For RRZ3(G3
p,q) which is the third reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)(Rθ × Rϑ); therefore, λ(1, 1) � 2,
λ(1, 5) � 30, and λ(5, 5) � 250. *us, by Lemma 2 and after
simplification,

RRZ3 G
3
p,q  � 936pq + 992p + 496q + 384. (60)

□

3.3. Results for Case 3. We provide a formula that would be
used to calculate any reverse degree topological descriptors
of Case 3 for G3

p,q.

Lemma 3. Let G3
p,q be a third-type p th chain hex-derived

networks. :en,

T3 G
3
p,q  � 3pq(λ(1, 1) + 2λ(1, 5) + λ(5, 5))

+ 2(λ(5, 5) − λ(1, 1))(2p + q)

+ 2(λ(1, 1) − 4λ(1, 5) + 3λ(5, 5)).

(61)

Proof. *e graph G3
p,q contains 12pq edges, and maximum

degree in G3
p,q graph is 8. *ere are two types of reverse

degree vertices in G3
p,q that are 1 and 5. Let us partition the

edges of G3
p,q according to its reverse degrees according to

Case 3 as

E1,1 � θϑ ∈ E G
3
p,q : Rθ � 1,Rϑ � 1 ,

E1,5 � θϑ ∈ E G
3
p,q : Rθ � 1,Rϑ � 5 ,

E5,5 � θϑ ∈ E G
3
p,q : Rθ � 5,Rϑ � 5 .

(62)

Note that E(G3
p,q) � E1,1 ∪E1,5 ∪E5,5 and

|E1,1| � 3pq − 4p − 2q + 2, |E1,5| � 6pq − 8, and
|E5,5| � 3pq + 4p + 2q + 6. Hence,

T1 G
3
p,q  � 

θϑ∈E G3
p,q( 

λ Rθ,Rϑ( 

� 
θϑ∈E1,1

λ(1, 1) + 
θϑ∈E1,5

λ(1, 5) + 
θϑ∈E5,5

λ(5, 5)

� (3pq − 4p − 2q + 2)λ(1, 1) +(6pq − 8)λ(1, 5)

+(3pq + 4p + 2q + 6)λ(5, 5).

(63)

After simplification, we obtain

T3 G
3
p,q  � 3pq(λ(1, 1) + 2λ(1, 5) + λ(5, 5))

+ 2(λ(5, 5) − λ(1, 1))(2p + q) + 2(λ(1, 1)

− 4λ(1, 5) + 3λ(5, 5)).

(64)

□

Theorem 7. :e general reverse Randić index of G3
p,q is equal

to
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RRα G
3
p,q  �

108pq + 96p + 48q + 112, for α � 1,

(18 + 6
�
5

√
)pq + 16p + 8q + 32 − 8

�
5

√
, for α �

1
2
,

18
5

+
6

�
5

√

5
 pq −

16p

5
−
8
5

q +
16
5

−
8

�
5

√

5
, for α �

−1
2

,

108pq

25
−
96p

25
−
48q

25
+
16
25

, for α � −1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

Proof. For RRα(G3
p,q) which is the general reverse Randić

index of G3
p,q, from equation (2), we have

λ(Rθ,Rϑ) � (Rθ × Rϑ)
α; therefore, λ(1, 1) � 1,

λ(1, 5) � (5)α, and λ(5, 5) � (25)α. *us, by Lemma 3,

RRα G
3
p,q  � 3pq 1 + 2(5)

α
+(25)

α
(  + 2 (25)

α
− 1( (2p + q) + 2 1 − 4(5)

α
+ 3(25)

α
( . (66)

Put α � 1, and we have

RR1 G
3
p,q  � 108pq + 96p + 48q + 112. (67)

Put α � (1/2), and we have

RR(1/2) G
3
p,q  � (18 + 6

�
5

√
)pq + 16p + 8q + 32 − 8

�
5

√
.

(68)

Put α � (−1/2), and we have

RR(−1/2) G
3
p,q  �

18
5

+
6

�
5

√

5
 pq −

16p

5
−
8
5

q +
16
5

−
8

�
5

√

5
.

(69)

Put α � −1, and we have

RR−1 G
3
p,q  �

108pq

25
−
96p

25
−
48q

25
+
16
25

. (70)
□

Theorem 8. Let G3
p,q be a third-type p th chain hex-derived

networks. :en, the reverse atom-bond connectivity index is

RABC G
3
p,q  �

12
�
5

√

5
+
6

�
2

√

5
 pq −

16
�
5

√

5
+
2(4p + 2q + 6)

�
2

√

5
. (71)

*e reverse geometric-arithmetic index is

RGA G
3
p,q  � (6 + 2

�
5

√
)pq + 8 −

8
�
5

√

3
. (72)

*e first reverse Zagreb index is

RM1 G
3
p,q  � 72pq + 32p + 16q + 16. (73)

*e reverse hyper-Zagreb index is

RHM G
3
p,q  � 528pq + 384p + 192q + 320. (74)

*e reverse forgotten index is

RF G
3
p,q  � 312pq + 192p + 96q + 96. (75)

Proof. For RABC(G3
p,q) which is the reverse atom-bond

connectivity index of G3
p,q, from equation (3), we have

λ(Rθ,Rϑ) �
������������������
Rθ + Rϑ − 2/Rθ × Rϑ


; therefore, λ(1, 1) � 0,

λ(1, 5) �
���
4/5

√
, and λ(5, 5) � (

�
8

√
/5). *us, by Lemma 3

and after simplification,

RABC G
3
p,q  �

12
�
5

√

5
+
6

�
2

√

5
 pq −

16
�
5

√

5
+
2(4p + 2q + 6)

�
2

√

5
.

(76)

For RGA(G3
p,q) which is the reverse geometric-arith-

metic index of G3
p,q, from equation (4), we have

λ(Rθ,Rϑ) � (2
��������
Rθ × Rϑ


/Rθ + Rϑ); therefore, λ(1, 1) � 1,

λ(1, 5) � (
�
5

√
/3), and λ(5, 5) � 1. *us, by Lemma 3 and

after simplification,

RGA G
3
p,q  � (6 + 2

�
5

√
)pq + 8 −

8
�
5

√

3
. (77)
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ForRM1(G3
p,q) which is the first reverse Zagreb index of

G3
p,q, from equation (5), we have λ(Rθ,Rϑ) � (Rθ + Rϑ);

therefore, λ(1, 1) � 2, λ(1, 5) � 6, and λ(5, 5) � 10. *us, by
Lemma 3 and after simplification,

RM1 G
3
p,q  � 72pq + 32p + 16q + 16. (78)

For RHM(G3
p,q) which is the first reverse hyper-Zagreb

index of G3
p,q, from equation (6), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
2; therefore, λ(1, 1) � 4,

λ(1, 5) � 36, and λ(5, 5) � 100. *us, by Lemma 3 and after
simplification,

RHM G
3
p,q  � 528pq + 384p + 192q + 320. (79)

For RF(G3
p,q) which is the reverse forgotten index of

G3
p,q, from equation (7), we have λ(Rθ,Rϑ)

� ((Rθ)
2 + (Rϑ)

2); therefore, λ(1, 1) � 2, λ(1, 5) � 26 and
λ(5, 5) � 50. *us, by Lemma 3 and after simplification,

RF G
3
p,q  � 312pq + 192p + 96q + 96. (80)

□

Theorem 9. Let G3
p,q be a third-type p th chain hex-derived

networks. :en, the first reverse redefined index is

RRZ1 G
3
p,q  �

72pq

5
−
32p

5
−
16q

5
−
16
5

. (81)

*e second reverse redefined index is

RRZ2 G
3
p,q  � 14pq + 8p + 4q +

28
3

. (82)

*e third reverse redefined index is

Table 1: Numerical comparison of RABC,RGA,RM1,RHM, and RF for Case 1.

[p, q] RABC RGA RM1 RHM RF

[1, 1] 8.0114 11.491 120 1168 600
[2, 2] 32.597 42.907 384 3328 1824
[3, 3] 71.309 95.269 792 6544 3672
[4, 4] 124.15 168.57 1344 10816 6144
[5, 5] 191.12 262.82 2040 16144 9240
[6, 6] 272.21 378.02 2880 22528 12960
[7, 7] 367.43 514.16 3864 29968 17304
[8, 8] 476.78 671.25 4992 38464 22272
[9, 9] 600.26 849.27 6264 48016 27864
[10, 10] 737.87 1048.2 7680 58624 34080

Table 2: Numerical comparison of RABC,RGA,RM1,RHM, and RF for Case 2.

[p, q] RABC RGA RM1 RHM RF

[5, 6] 227.56 315.19 2416 18976 10896
[5, 7] 264.01 367.55 2792 21808 12552
[5, 8] 300.47 419.91 3168 24640 14208
[4, 4] 124.15 168.57 1344 10816 6144
[6, 6] 272.21 378.02 2880 22528 12960
[8, 8] 476.78 671.25 4992 38464 22272
[9, 8] 535.55 755.02 5600 43072 24960
[9, 7] 470.85 660.77 4936 38128 22056
[10, 8] 594.32 838.80 6208 47680 27648
[12, 10] 883.66 1257.7 9184 69952 40704

Table 3: Numerical comparison of RABC,RGA,RM1,RHM, and RF for Case 3.

[p, q] RABC RGA RM1 RHM RF

[4, 5] 152.22 211.48 1664 13376 7584
[6, 7] 314.41 441.87 3344 26144 15024
[8, 9] 533.10 756.03 5600 43136 24960
[10, 11] 808.31 1154.0 8432 64352 37392
[12, 13] 1140.0 1635.7 11840 89792 52320
[4, 3] 93.448 127.70 1056 8768 4896
[6, 5] 227.38 316.20 2448 19424 11088
[8, 7] 417.83 588.47 4416 34304 19776
[10, 9] 664.78 944.53 6960 53408 30960
[12, 11] 968.24 1384.4 10080 76736 44640
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RRZ3 G
3
p,q  � 936pq + 992p + 496q + 1264. (83)

Proof. For RRZ1(G3
p,q) which is the first reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
1(Rθ × Rϑ)

−1; therefore, λ(1, 1)

� 2, λ(1, 5) � (6/5), and λ(5, 5) � (2/5). *us, by Lemma 3
and after simplification,

RRZ1 G
3
p,q  �

72pq

5
−
32p

5
−
16q

5
−
16
5

. (84)

For RRZ2(G3
p,q) which is the second reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)
− 1(Rθ × Rϑ)

1; therefore, λ(1, 1)

� (1/2), λ(1, 5) � (5/6), and λ(5, 5) � (5/2). *us, by
Lemma 3 and after simplification,

RRZ2 G
3
p,q  � 14pq + 8p + 4q +

28
3

. (85)

For RRZ3(G3
p,q) which is the third reverse redefined

index of G3
p,q, from equation (8), we have

λ(Rθ,Rϑ) � (Rθ + Rϑ)(Rθ × Rϑ); therefore, λ(1, 1) � 2,
λ(1, 5) � 30, and λ(5, 5) � 250. *us, by Lemma 3 and after
simplification,

RRZ3 G
3
p,q  � 936pq + 992p + 496q + 1264. (86)

□
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Figure 4: Graphical representation of Table 1.
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Figure 5: Graphical representation of Table 2.
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4. Numerical and Graphical Representation

In this section, we determine the numerical values of
RABC,RGA,RM1,RHM, andRF in Tables 1–3, for Case
1, Case 2, and Case 3, respectively.We represent these results
graphically in Figures 4–6.
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