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*is study is the third step of a project on the null controllability of the 1D heat equation. First, we show a boundary and internal
results of controllability by a new approach using a linear, continuous, and surjective operator built from the solution of the heat
system. Second, we improve the minimum time of null controllability of the 1D heat equation by using the notion of strategic zone
actuators. So, we managed to improve the minimal time of null controllability to the 1D heat equation. In this study, the best
minimum cost of null controllability has been estimated for the 1D heat equation based on the minimum controllability time
calculated in the second step.

1. Introduction

One of the objectives of the theory of the control of partial
differential equations of evolution is to be interested in the
way of acting on dynamic systems. *e exact controllability
of distributed systems has attracted a lot of interest in recent
years. *anks to the pioneer Fattorinni-Russel [1] and Lions
[2, 3] who developed the HUMmethod (Hilbert Uniqueness
Methods). It is based essentially on the properties of
uniqueness of the homogeneous equation by a particular
choice of controls and the construction of a Hilbert space
and of a continuous linear application of this Hilbert space
in its dual which is, in fact, an isomorphism that establishes
exact internal or/and boundary controllability.

For hyperbolic problems, this method has given im-
portant results (Lions [2, 3], Niane [4], and Seck[5]).

Although when the controls have a small support (Niane
[4], Guesmia [6], Glizer [7], Anguraj [8], and Seck et al
[9–11]), it seems to be ineffective, even when for technical
reasons the multiplier method does not give results.

As for the parabolic equations, there are the results of
Russel [12] first. Later, G. Lebeau and el Robbiana [13] and
Fursikov et al. [14] have proven with different methods which
are very technical and long by using Carleman’s Inequalities,
the exact null controllability of the heat equation.

So, the harmonic method is also ineffective for this kind
of equations.

In this study, we explain how results on the cost of null
controllability of the small-time heat equation can be used to
reduce the cost of control.

Indeed, more recently, Khodja et al. [15, 16] and Lissy [17],
in particular, Tusnack-Tenebaum [18], have shown that there is
a minimal time T0 of controllability below which null con-
trollability is not achievable for a parabolic operator. From the
work of Khodja et al. [16] and Lissy and Guéye [17], a min-
imum cost of null controllability associated with the minimum
time of null controllability of Russel [12] was calculated.

Indeed, motivated by the works of Khodja [15], Tucsnak
[18], and Lissy [17, 18] on the null controllability of the heat
equation and the work of El Jai [19, 20] on the controllability
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use of strategic zone actuators, we managed, in this work, to
improve the minimum time of null controllability to the 1D
heat equation.

However, the restrictions and difficulties to establish the
inequality of coercivity of the parabolic operator require to
seek other internal control methods.

*us, a mixed method combining the moment methods
and the notion of strategic profile was used to find a better
minimal time of null controllability of the 1D heat equation.

Naturally, once this result had been obtained on the
minimum time of null controllability, we began the calcu-
lations and estimates to find aminimum control cost linked to
this minimum time. *is is how we established a best min-
imum cost of null controllability of the heat equation with an
additional assumption on the strategy profile function.

*ese results open up broad prospects in this domain.
Particularly, on semianalytical systems, the piecewise tem-
perature-time distributions in solid bodies of regular shape
were affected by a uniform surface heat flux using the line
method (MOL) and the eigenvalue method. *is method is
also used in the numerical analysis of unstable thermal
conduction in regular solid bodies including natural con-
vection towards neighboring fluids, as well as for the calcu-
lation of spatio-temporal temperatures in simple bodies with
cooling by thermal radiation using the method of digital lines.

2. Preliminary

2.1. Notations and Definition. Let T> 0; the sequences of
reals Λ � (λk)k≥ 1; let us define now the setting that we will
deal in the sequel and assume that



+∞

k�1

1
λk

< +∞. (1)

Definition 1. *e condensation index of sequences
Λ � (λk)k≥ 1 is defined as

I(Λ) � lim
k⟶+∞

sup
−ln E′ λk( 




λk

, (2)

where the function E is defined by

E(x) ≔ 
+∞

k�1
1 −

x
2

λ2k
 . (3)

2.2. Concept of Strategic Zone Actuators. A function
μ: I⟶ R square integrable is said strategic if it verifies for
all y0 ∈ L2(I), the solution y of the heat equation:

yt(t, x) − zxxy(t, x) � 0, inQT � [0, +∞[ × I,

cy(t, x) � 0, inΣT � [0, +∞[ × zI

y(0) � y0 in I,

⎧⎪⎪⎨

⎪⎪⎩

∀t> 0,


I
μ(x)y(t, x)dx � 0 theny0 � 0.

(4)

Let I � ]0, π[ be an interval of R; let A be the operator
defined by

D(A) � y ∈
H

1
0(I)

−zxxy
∈ L

2
(I), Ay � −zxxy, ∀y ∈ D(A).

(5)

According to the spectral theory, see Lions [3], A admits
a Hilbertian base of L2(I) of eigenfunctions (wk)k≥ 1 whose
associated eigenvalues are (λk)k≥ 1 rows in the ascending
direction, where

wk(x) �

��
2
π



sin kx,

λk � k
2
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

Proposition 1. 8ere are strategic actuators with support
contained in any interval ]a, b[ such that 0< a< b< π.

Proof. We can first notice that μ is strategic if and only if
∀k ∈ N∗, μk ≠ 0.

Let a, b ∈ ]0, π[ such that a< b and posing that μ � χ]a,b[.
*en, we have

μk � 
π

0
χ]a,b[(x)

�
2

√

��
π

√ sin(kx)dx

� −

�
2

√

k
��
π

√ [cos k(b) − cos k(a)]

� −

�
2

√

k
��
π

√ 2 sin
k(b − a)

2
 sin

k(b + a)

2
 .

(7)

We have μk � 0 if and only if

k(b − a)

2
� l, l ∈ Z,

k(b + a)

2
� r, r ∈ Z.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

*erefore, for that μk ≠ 0, it is sufficient that b − a ∉ Q
and b + a ∉ Q.

So, if we take a ∈ Q and b � a + r, where r ∉ Q, then
μ � χ]a,b[ is strategic. □

Remark 1. Obviously, other strategic actuators can be built
without great difficulty, see the work of Jai et al. [19, 20] and
Seck and Ane [11].

2.3. Reminders on theMinimal Time ofNull Controllability for
the 1D Heat Equation. Let

yt − yxx � f(x)u(t), in [0; T[ ×[0; π[,

y(0; ·) � y
0
, in [0; π[,

y(·; 0) � y(0; π) � 0, in [0; T[,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where y0 ∈ L2([0; π[), u ∈ L2([0; T[), and f ∈ H− 1([0; π[).
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We know that system (9) admits a unique solution
y ∈ (C0[0; T[; [0; π[)∩ (L2[0; T[; H1

0[0; π[), see the work of
Lions [3].

Verifying ∃C> (0/∀y0) ∈ L2[0; π[, ∀f ∈ H− 1[0; π[, and
∀v ∈ L2[0; π[, we have

‖y‖ C0[0;T[;L2[0;π[( ) +‖y‖ L2[0;T[;H1
0[0;π[( ) ≤C ‖y‖L2[0;π[ +‖f‖H−1[0;π[ · ‖v‖L2[0;T[ . (10)

Let

Ik(f) ≔ −
log(|f|)

k
2 ,

T0 ≔ lim
k⟶+∞

supIk(f) in [0, +∞[.

(11)

We know from the work of Russel and Fatorrini [12],
Lebeau and et Robbiano [13], and Fursikov et al. [14] that there
exists a minimum time of control of the 1D heat equation.

So,

(1) System (9) is null controllable at any time T>T0

(2) System (9) is not null controllable at any time T<T0

Example 1. Consider the following examples:

Example 1: if f(x) � δ(x0) ∈ H− 1[0; π[, with
x0 in [0; π[,

T0 x0(  � lim
k⟶+∞

sup
−log sin kx0( 




k
2 . (12)

∀x0 in [0; π[; T0(x0) � 0.
∀τ in [0;∞[; (x0) ∈ ([0; π[/T0(x0)) � τ  is dense in
[0; π[.

Example 2: if the profile f defined for any t> 0 over an
interval [0, L] by

f|[0,L](x) �

exp −
t

1 − x
2 , if |x|< 1,

0, else,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

then f is a function with strong rapid decay and by setting
CH(T), the cost of the control, at the terminal instant. Let us
pose

α+
(H) ≔ lim sup

T⟶0

T · ln CH(T, L)( 

L
2 . (14)

Also,

α−
(H) ≔ lim inf

T⟶0

T · ln CH(T, L)( 

L
2 . (15)

We show by simple calculations that α− > 0 and
α+ < +∞.

In particular, if L � π, then CH(T)≃eCπ2 with T>T0 but
small, where C is the constant defined above.

In the case T>T0, for ∀y0 in L2([0; π[), there exists a
unique optimal control uopt ∈ L2([0; T[) bringing y0 to 0,
see the work of Lissy et al. [18].

*e map L: y0↦uopt, being linear continuous.

Definition 2. *e norm of this operator L is called the
optimal null control cost at time T designated by CH(T).

So, by Definition 2, CH(T) is infinimum of the constants
C> 0 such that ∀y0 in L2[0; π[;∃u driving y0 to 0 at time T
with

‖u‖L2[0;T[ ≤C y
0����
����L2[0;π[

. (16)

What is the behavior of CH(T) when T⟶ T+
0 ?

One could expect that the cost is of the form

C T0( 

T − T0
asT⟶ T

+
0 . (17)

In the work of Seck et al. [11], we successful find a better
control time (noted T

μ
0) compared to that proposed by

Khodja et al. [16], T0, which led us to the main result of this
work.

3. Main Result on the Minimum Cost Linked to
theMinimumTimeNullControllability of 1D
Heat Equation

3.1. Fundamental Lemma

Lemma 1. If μ is a strategic actuator on [0, π], u(·) is a
control and T> 0 is strictly positive and real; for all y0 ∈ F∗T,
there exist β ∈ L2(]0, T]) and T

μ
0 <T such that if y is solution

of

yt − zxxy � β(t)μ(x)u(t) in ]0, T[ × I,

cy � 0, in ]0, T[ × zI ,

y(0) � y0, in I,

⎧⎪⎪⎨

⎪⎪⎩
(18)

then y(T) � 0.

For proof, see the work of Seck et al. in [11].
Consider the heat equation with an internal strategic

zone profile μ(·) and a, internal control u(·) defined by

yt − zxxy � β(t)μ(x)u(t) inQT � ]0, +∞[ × I,

y(0; t) � y(π; t) � 0 in ]0, T[,

y(0) � y0.

⎧⎪⎪⎨

⎪⎪⎩
(19)
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Let B � β(t)u(t) be a linear control operator; then, the
previous equation (19) becomes

yt − zxxy � Bμ(x) inQT,

y(0; t) � y(π; t) � 0,

y(0) � y0.

⎧⎪⎪⎨

⎪⎪⎩
(20)

In the sequel of this study, the minimum time null
controllability is denoted by T

μ
0.

Recall that T
μ
0 is calculated and defined in the work of

Seck et al. [11] as follows:

T
μ
0 � lim sup

k≥1

log 1/βk(  + log(1/μ(x)) + log 1/ E′ k
2

 


 

k
2 .

(21)

From theminimal time of null controllability of system (19),
then we obtain T

μ
0 � T0 + limsupk≥1(log(1/μ(x))/k2) with

T0 � limsupk≥1((log(1/βk) + log(1/|E′(k2)|))/k2), where
T>T

μ
0 and μ(x)> 1.

Theorem 1 (main theorem). Let Ψ: R∗+⟶ R∗+ be an in-
creasing function verifying morever Ψ(x)⟶ +∞ as
x⟶ +∞ and μ(x)> 1(μ a strategic profile); ∀Tμ

0 ∈ [0;∞[;
there existsf ≔ Bμ ∈ (H− 1([0; π[))/(∀T⟶ T

μ
0):

CH,μ(T)≥
1
��
T

√ Ψ
1

T − T
μ
0

 , (22)

whereCH,μ(T) is the infinimum of the constantsC> 0 such that
∀y0 in L2[0; π[, there is a control u driving y0 to 0 at time T.

Remark 2. *is theorem means that the cost of the control
can increase arbitrarily fast as T⟶ T

μ
0.

*is can be explained by the fact that, contrary to the
usual case, the cost of the control depends not only on the
behavior of Ik(f) at infinity but also on how it differs from
its limit superior T

μ
0.

Proof. C will be a positive constant independent of T.
Let us fix T

μ
0 in [0;∞[, and we consider T>T

μ
0, and let

n ∈ N∗ be chosen later.
We define y0 in L2([0; π[) as follows: y0(x) � sin(nx).
One readily verifies that there exists some positive

constant C such that

y
0����
����L2[0;π[
≤C. (23)

We consider the optimal control u associated to this
initial condition, which verifies by definition and estimates
the control:

‖u‖L2[0;T[ ≤CH(T) y
0����
����L2[0;π[
≤CHC. (24)

By the moments’ method, we obtain ∀k ∈ N∗:

f(k) 
T

0
u(t)exp k

2
t dt � − 

π

0
sin(nx)sin(kx)dx. (25)

Applying for k � n, we have

f(n) 
T

0
u(t)exp n

2
t dt � − 

π

0
sin2(nx)dx,


π

0
sin2(nx)dx �

nx − sin(nx)cos(nx)

2n
 

π

0
.

(26)

Now,


π

0
sin2(nx)dx �

π
2
⇒

T

0
u(t)exp n

2
t dt �

−π
2f(n)

. (27)

We know that


T

0
u(t)exp n

2
t dt




�

π
2|f(n)|

. (28)

Also,


T

0
u(t)exp n

2
t dt




≤ 

T

0
u(t)dt






T

0
exp n

2
t dt





≤
exp n2t( 

n2 

T

0


T

0
u(t)dt





≤
exp n

2
T 

n
2 

T

0
|u(t)|dt

≤ exp n
2
T  

T

0
|u(t)|dt

⇒
π

2|f(n)|
≤ exp n

2
T  

T

0
|u(t)|dt.

(29)

Applying the Cauchy–Schwarz inequality, we deduce
that

π
2|f(n)|

exp −n
2
T ≤

��
T

√
‖u‖L2[0;T[. (30)

So, we have

C × CH(t)≥ ‖u‖L2[0;T[

⇒CH(T)≥
1
C

‖u‖L2[0;T[ ≥
1
C

π
2|f(n)|

exp −n
2
T 

��
T

√

CH(T)≥
C

|f(n)|

exp −n
2
T 

��
T

√ .

(31)

Now, let us consider any positive and increasing function
ψ: R∗+⟶ R∗+ such that ψ(x)⟶∞ when x⟶∞.

Such a function is necessarily bijective and we call ψ− 1 its
inverse.

Let us consider (fn)n∈N∗ defined by

f(n) ≔ exp −n
2

T
μ
0 +

1
ψ− 1

n
2

 
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ in L

2
N
∗

( , (32)

so that we have the condensation index (see the works of
Khodja [16] and Tusnack [19]) defined by
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In(f) � −
log(f(n))

n
2

·
−log exp −n

2
T
μ
0 + 1/ψ− 1

n
2

   

n
2

�
n
2

T
μ
0 + 1/ψ− 1

n
2

   

n
2

� T
μ
0 + 1/ψ− 1

n
2

  .

(33)

It is clear that (see the work of Seck [11])

T
μ
0 � lim sup

k≥1

log 1/βk(  + log(1/μ(x)) + log 1/ E′ k
2

 


 

k
2 ,

(34)

i.e.,

T
μ
0 � T0 + lim sup

k≥1

log(1/μ(x))

k
2 , (35)

where

T0 � lim sup
k≥1

log 1/βk(  + log 1/ E′ k
2

 


 

k
2 , (36)

where the function E is defined by

E(x) ≔ 
+∞

k�1
1 −

x
2

λ2k
 , (37)

since ψ− 1(n2)⟶ +∞.
*en, we have to thank the works of Khodja [15] and

Seck [10, 11]:

CH(T)≥
C
��
T

√ exp n
2⎛⎝ T

μ
0 − T +

1
ψ− 1

n
2

 
⎛⎝ ⎞⎠. (38)

Let us explain how to choose n, and we assume that T is
close enough to T

μ
0.

Now, we choose n in such a way that
1

2 T − T
μ
0( 
≥ψ− 1

n
2

 ≥
1

4 T − T
μ
0( 

, (39)

which is always possible (at least for T close enough to T
μ
0),

since ψ− 1 is increasing and goes to +∞ at +∞.
Indeed,

ψ ∘ψ− 1
n
2

 ≥ψ
1

4 T − T
μ
0( 

 

1
2 T − T

μ
0( 
≥ψ− 1

n
2

 ≥
1

4 T − T
μ
0( 

⇒n
2 ≥ ψ

1
4 T − T

μ
0( 

 

⇒
C
��
T

√ exp n
2

T
μ
0 − T +

1
ψ− 1

n
2

 
⎛⎝ ⎞⎠⎛⎝ ⎞⎠≥

C
��
T

√ exp ψ
1

4 T − T
μ
0( 

  T
μ
0 − T +

1
ψ− 1

n
2

 
⎛⎝ ⎞⎠⎛⎝

ψ− 1⟶ +∞ so
1

ψ− 1
n
2

 
⟶ 0.

(40)

Consequently,

CH(T)≥
C
��
T

√ exp T
μ
0 − T( ψ

1
4 T − T

μ
0( 

  . (41)

One then easily obtains the desired result by choosing ψ
in such a way that

Ψ(x) � C exp
1
x
ψ

x

4
  ⇔ψ(x) � 4x log

Ψ(4x)

C
 . (42)

Because it is clear that if Ψ is positive, increasing, and
converge to +∞ at +∞, then ψ is well defined at least for
large enough x which is sufficient for our purpose. □

Remark 3. *e assumptions on the function Ψ make it
possible to bypass the coercivity of the parabolic operators,
which is, moreover, difficult to establish for these kinds of
operators
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4. Conclusion and Perspectives

*e theory of the control of distributed systems has expe-
rienced a meteoric rise in recent years, notably with the team
of Lions and Coron [22] and, more recently, with Ammar
Khodja, Tucsnak, and Guesmia. In particular, the control-
lability of the heat equation has been established since the
mid-90s by Lebeau–Robbiano and Fursikov–Imanuvilov. In
all these works and others more recent works of Tucsnack-
Tenenbaum and Khodja et al., there is always a time T0 from
which the control is realizable (below T0, controllability is
not feasible). Our aim was to find a better minimum time T

μ
0

to carry out this control (knowing that we cannot control the
heat equation all the time). Indeed, if T

μ
0 <T0, then the cost

C
μ
H(T) is better than CH(T) (this is our main result).
*e other objective of this work was to solve an optimal

control problem. *us, our modest contribution is im-
proving the time (smaller time) and hence reducing the cost
to achieve the control of the heat equation over a small
support interval. Indeed, we knew that there is no
uniqueness of the control profile bringing the system of the
initial condition y0 to the final state (the set of strategic
profiles is a closed affine subspace: we can naturally choose a
norm control minimal as being the projection of 0 on this
convex).

*is method is no longer operative when the interval
support is large or if there is a nonlinear term in the system.

We plan, in the near future, to generalize this result to
the Schrödinger equation, to transport-type equations, and
to linear dispersive parabolic systems.

Data Availability
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