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Abstract. 
In this study, we define new semigroup structures using the set  which is called the source of semiprimeness for a semigroup  with zero element. idempotent semigroup, regular semigroup, reduced semigroup, and nonzero divisor semigroup which are generalizations of idempotent, regular, reduced, and nonzero divisor semigroups in semigroup theory are investigated, and their basic properties are determined. In addition, we adapt some well-known results in semigroup theory to these new semigroups.

1. Introduction
Semiprime ideals play a very important role in semigroups. Since every ring can be considered as a semigroup under multiplication, we have more generalized theorems of [1]. The aim of this study is to obtain new semigroup structures by using the definition of semiprimeness in semigroups in the sense of the study by Aydın et al. [1]. There are different equivalent definitions of semiprimeness. One of these is, if  with  implies , then  is called a semiprime semigroup. In [1], the authors have defined the set  called source of semiprimeness of ring  by using the ring version of semiprimeness definition. In addition, they have obtained new ring and field structures. In this study, new semigroup structures have been obtained by using the source set of semiprimeness of semigroups. These structures are investigated, and some results of the semigroup theory are adapted to the new semigroups.
2. Preliminaries
In semigroup theory, there are many studies on different semigroup types. Adams examined the properties of semiprime semigroups in [2]. In [3], Van Rooyen worked on the ideals of semigroups. In [4–6], the authors have worked on reduced, regular, and zero-divisor semigroups. This article will bring a different perspective to these various semigroups.
First, let us give the definitions mentioned in this article which are frequently used in semigroup theory. The studies by Clifford and Preston and Grillet [7, 8] are used for definitions.
Let  be a semigroup. A zero element of a semigroup  is an element , such that  for all . Throughout this study,  will be taken as a semigroup with zero element. The  element, such that , is called an idempotent element. The semigroup whose all elements are idempotent is called an idempotent semigroup. An element of a semigroup  is called regular element if there exist at least one , such that . The semigroup whose all elements are regular is called a regular semigroup. For , if there exist , such that  and , then  is called nilpotent. A semigroup without nilpotent elements other than zero is called a reduced semigroup. An element  of a semigroup  is called zero divisor element if there exist , such that  (left zero divisor) and  (right zero divisor). S is called the nonzero divisor semigroup, if there is no nonzero zero divisor element in .
Now, let us give the definitions of ideal and semiprime semigroup which are the basis of our article. From [2, 9], the subset  of semigroup  is called an ideal if  (right ideal) and  (left ideal). One of the equivalent definition of the semiprime semigroup, which using this study, is given as follows: if  with  implies , then  is called the semiprime semigroup.
3. Results of Different Types of Semigroups
Definition 1. Let  be a semigroup with zero and  be a nonempty subset of . The subset of ,is called the source of semiprimeness of  in . For semigroup , the notation  is used instead of . Then, the source of semiprimeness of the  semigroup is defined as follows:
Now, let us examine the basic properties of the source of semiprimeness of semigroup . In [1], the set of source of semiprimeness was investigated for the rings. The properties that can be exactly provided for semigroups are given with reference without proof in this study. First of all, let us mention some facts that can be easily seen but useful for understanding the set.(1)For every semigroup with zero, since ,  is provided for every subset  of (2)It is easy to see that  for the subsemigroup  of (3)For subsets  and ,  implies  ([1], Proposition 2.2)
Now, let us investigate the properties of idempotent, regular, nilpotent, and zero divisor elements. These properties form the basis for defining the new semigroup structures that we will define in the next section. By using the results obtained, we will obtain the definitions of the idempotent semigroup, regular semigroup, reduced semigroup, and nonzero divisor semigroup.
Lemma 1. Let  be a semigroup,  be an idempotent element, and  be a regular element, such that  for . Then, the following properties are provided.(1)(2)(3)If  is an idempotent semigroup, then (4)If  is a regular semigroup, then (5)If , then  is a nilpotent element(6)If , then  is a zero divisor element
Proof.  (1)Let . Then, since , we write . From this equation, we get This gives us . So,  is provided.(2)For regular element , such that  for , this implies that , and  is an idempotent element. From (1), it is clear that .(3)Let  be an idempotent semigroup and . Since , the equation  is satisfied for . Hence, using  as an idempotent element, we get . Then, .(4)Let  be a regular semigroup and . In this case, , and there exist , such that . Specially,  is provided. This means that .(5)If , then . Since ,  is a nilpotent element.(6)If , then . This equation can be written as  and . Since , if , then  is a zero divisor element. On the other hand, if , then  is also a zero divisor element specific with .
Using the above Lemma 1, it is easy to see that the following corollary.
Corollary 1. For semigroup , the following holds true:(1)There is no idempotent element other than zero in (2)There is no regular element other than zero in (3)Every element in  is nilpotent element(4)Every element in  is zero divisor element
Now, we will define different type of semigroups.
Definition 2. Let  be semigroup with zero and .(1) is called the idempotent semigroup if every element of  is idempotent(2) is called the regular semigroup if every element of  is regular(3) is called the reduced semigroup if  has no nilpotent element(4) is called the nonzero divisor semigroup if  has neither a left nor a right zero divisor
First, let us mention the basic characteristics properties of these newly defined semigroups. The following results can be easily seen using the definitions.(1)If , then . In this case, since , definitions would be meaningless for the zero semigroup. Similarly,  is provided in case of . So, in this case too, the definitions would be meaningless.(2)For the elements of a semigroup, “if  is an idempotent element, then  is regular element,” “if  is a nilpotent element, then  is a zero divisor element,” and “if  is a nilpotent element, then  is not an idempotent element” and conditions are always provided. Using these conditions, the following properties can be easily seen. Additional conditions for providing other directions of relations will be investigated in our study(3)It is clear that, if  is an idempotent (regular, reduced, and nonzero divisor) semigroup, then is a idempotent (regular, reduced, and nonzero divisor) semigroup
We will give examples of each of these four semigroups before proceeding with conclusions. It can also be seen from these examples that the above relations are one sided.
Example 1. Let the operation table of the semigroup  be given as follows.Using the table, we getSince , it is seen that  is idempotent and regular element of . So,  is a idempotent and regular semigroup. Also, since  is not nilpotent,  is a reduced semigroup. However,  is a zero divisor element for  and . Thus,  is not a nonzero divisor semigroup.
Example 2. Let the operation table of the semigroup  be given as follows.For the semigroup , it is easy to see thatIf we investigate elements of , we see that only  is an idempotent and regular element. So,  is not a idempotent or regular semigroup. Also, since  and ,  and  are the zero divisor elements. Then,  is not a nonzero divisor semigroup. On the other hand, it is clear that  and  are not nilpotent elements. So,  is a reduced semigroup.
Example 3. Let the operation table of the semigroup  be given as follows.Now, it turns out thatIt is seen that  and  are the idempotent and regular elements of . Then,  is a idempotent and a regular semigroup. Also,  and  are nonzero divisors. Therefore,  is a nonzero divisor semigroup. On the other hand, since  and  are not nilpotent elements,  is also a reduced semigroup.
Example 4. Let the operation table of the semigroup  be given as follows.Using the table, we getIf we investigate the elements of , we see that only  is an idempotent element. Then,  is not a idempotent semigroup. However, since  and ,  and  are the regular elements. So,  is a regular semigroup. Also,  and  are not zero divisor or nilpotent elements. Therefore,  is a nonzero divisor and a reduced semigroup.
Example 5. Consider the semigroup . Sincewe getIn the set , since only 1 is idempotent and regular,  is not a idempotent or regular semigroup. On the other hand, since there are no zero divisor elements in , S is a nonzero divisor and reduced semigroup.
Let us now give a proposition and an example about characterization of the subgroups of these new semigroups.
Proposition 1. Let  be a semigroup and  be a subsemigroup of . Then, the following conditions are satisfied.(1)If  is a idempotent (regular) semigroup, then  is a idempotent (regular) semigroup(2)If  is a reduced (nonzero divisor) semigroup, then  is a reduced (nonzero divisor) semigroup
Proof.  (1)If , then  and . Thus, we write  and . This means that . So, . Therefore, since every element in  is idempotent (regular), every element in  is an idempotent (regular) element. So,  is a idempotent (regular) semigroup.(2)We showed that  in . So, since there is no nilpotent (zero divisor) element in , there is no nilpotent (zero divisor) element in . In this case,  is a reduced (nonzero divisor) semigroup.
Example 6. Consider the set is a semigroup with zero element by multiplication operation in matrices. For this semigroup, it is not hard to see thatSince there exist , such that  for each ,  is a regular semigroup. On the other hand, the elements of the set  can only be nilpotent elements for . So,  is a reduced semigroup. Also, it is easy to see that  is a nonzero divisor semigroup because there is no zero divisor element in .
Now, let define the subsemigroup,of semigroup . From Proposition 1,  is a regular, reduced, and nonzero divisor semigroup. Indeed, it is clear thatIf we investigate  similar to the above, we see that all elements are regular elements, and there are no nilpotent or zero divisor elements.
Obviously, the set  does not have to be a subsemigroup. The following proposition shows that the  set is the subsemigroup with additional conditions for semigroup types. In the next Lemma, the characterization of the  is given for the nonzero divisor and reduced semigroups.
Proposition 2. Let  be a semigroup. Then, the following conditions are satisfied.(1)If  is a nonzero divisor semigroup, then  is a subsemigroup(2)If  is a commutative and idempotent (regular) semigroup, then  is a subsemigroup
Proof.  (1)Let  be a nonzero divisor semigroup. If , then  and  are the nonzero divisors. Then, element  is also a nonzero divisor. This gives us . So,  is a subsemigroup.(2)Note that product of idempotent elements is an idempotent element, product of regular elements is a regular element, and product of nilpotent elements is a nilpotent element in a commutative semigroup. In this case, if , then  for the idempotent (regular) semigroup . So,  is a subsemigroup.
Lemma 2. If  is a nonzero divisor or reduced semigroup, then . In addition, if  is a monoid, then  is provided for nonzero divisor or reduced semigroup .
Proof.  First, let  be a nonzero divisor semigroup and . The inclusion  is always provided. Conversely, let us take an arbitrary element  of . Assume that . Since  is a nonzero divisor semigroup,  is a nonzero divisor element. From definition of the set , we write . Using  as a nonzero divisor, we get . Similarly, from the equation , we get . However, this result leads us to the  contradiction. So the assumption is incorrect, and thus, . Then,  is provided.
Now, let  be a reduced semigroup. Similar to above,  is always provided. Conversely, if , then . This gives us  is a nilpotent element. Since  is a reduced semigroup, there is no nilpotent element in . So, we get . Hence  is provided.
In addition, if  is a monoid, then there exist , such that  for all . This means that . Also, similar to the above proof, we obtain .
In this part of our study, we will give the results about  is an semigroup. As it is known, if monoid  has , such that  for ,  is called an unit element. Since  is a monoid with inverse and unit elements, different results can be reached from other semigroups. In [1], studies on domains and reduced rings were given. In the following part, similar results are obtained by different methods for semigroups.
Lemma 3. Let  be semigroup of integers modulo . If  is  for prime number , then . In addition,  for .
Proof.  Let  for prime number . From Lemma 2, we write  for an arbitrary element  of . This means that . Since  is prime, we get , and so, we obtain . Then,  for . So, we get .
Let  be a prime number and  of . Using the same procedure as in the above paragraph, we have . Since  is a prime number, the only element that can be divided by  is itself. So, we get . This result gives us . So, we get .
Theorem 1. Let  be semigroup of integers modulo . The following holds true:(1)For ,  is not a idempotent monoid(2)If  is either a prime  or , then  is a regular monoid(3) is either a prime  or  if and only if  is a nonzero divisor monoid(4)If  is a prime number, then  is a reduced monoid
Proof.  (1)Since , we get . It is obvious that  is an idempotent element. Therefore,  is a idempotent monoid. Now, we consider monoid  for . Let  be an unit element of . Then,  for all . Specially,  is provided for . This result leads us to the contradiction . This means that there is no unit element in . So, every unit element is element of . In this case, if  is an unit element in ,  is also an idempotent element. However, an unit element different from the identity cannot be an idempotent element. Therefore, we get . So, the assumption is incorrect, and thus,  is not idempotent monoid.(2)We recall that if , then  is an unit element. Let  be a prime number. Then, we get  from Lemma 3. In this case, every element in  is an unit element. Since an unit element is also a regular element,  is a regular monoid. Let  for prime number . Then, we have  from Lemma 3. This means that, if , then . So,  is an unit element. Since an unit element is also a regular element,  is a regular monoid.(3)Let  be either a prime  or . We showed that in , if , then  is an unit element. It is well-known that, an unit element cannot be a zero divisor in . Therefore, there is no zero divisor in . So,  is a nonzero divisor monoid. Conversely, let  be a nonzero divisor monoid. In this case, every element  in  is a nonzero divisor. This means that  is an unit element, and . These results provide for  any prime number. Assume that  is not prime and  for prime number  and for some . Since ,  is a nonunit element. Hence,  must be in , and so,  from Lemma 2. Therefore, we get . Since , we write . This means that , and so . Since , we obtain . So, we get .(4)Let  be a prime number. We showed that in , if , then  is an unit element. If , then . If we continue in a similar way, then we obtain  contradiction. Thus, there is no nilpotent element in . This means that  is a reduced monoid.
Example 7. Consider the monoid . For this monoid, we getFrom Theorem 1,  is not a idempotent monoid. Besides that , is not regular and nonzero divisor monoid. Indeed, if the elements of  are investigated, it is seen that  is not an idempotent element. However, since  and , these two elements are regular elements. Then,  is a regular monoid. Also, since  and  are not zero divisors or nilpotent elements,  is a nonzero divisor and reduced monoid.
Example 8. Consider the monoid . Now, it turns out thatFrom Theorem 1,  is not a idempotent monoid. Indeed, only element  is idempotent in . Also, since  is not regular element,  is not a regular monoid. On the other hand, since  is zero divisor and nilpotent,  is a not nonzero divisor or reduced monoid.
In [10], the relation between the regular semigroups and their ideals was investigated and characterization of the regular semigroups was given. We will now investigate the relation of regular semigroups with their ideals.
Lemma 4. Let  and  are the nonempty subsemigroups of semigroup . Then, the following properties are provided.(1)(2)If  is left (right, both sided) ideal, then  is right (left, both sided) ideal(3)If  is ideal, then  is ideal. Specifically,  is ideal of .(4)If  and  are ideals, then (5)If  and  are ideals, then 
Proof.  We will prove (1), (2), and (4). (3) and (5) are easily seen; similarly,(1)If , then . Since , we get . So, .(2)Let  be a left ideal and . Then, we write  and . For arbitrary , since  is a left ideal, we have . So, the equation is satisfied. This means that , and so,  is right ideal.(4)Let . Then, we get  and . Since  is an ideal, we obtain . So, we get This result means that . So,  is provided.
Theorem 2. Let  be a commutative semigroup.  is a regular semigroup if and only if  for every ideals  and .
Proof.  Let be a regular semigroup and . Thus,  and . Assume that . From Lemma 1 and Proposition 2, we get . This result contradicts with . Then,  and . This gives us  as a regular element. Therefore, there exists , such that . In this equation, since  and  are ideals, we write . Also, since  is a regular element and using Proposition 1,  is provided. Then, we get . From this expression, we obtainOn the other hand, if , then  is a regular element because  and . Also, since , we have . In this expression, using  for regular element , we obtain . Therefore,is provided. So, we get .
To prove the converse, let  for right ideal  and left ideal , and let . Let us consider the ideal  by generated . From the hypothesis, we getUsing  and , we obtain . Therefore, we have . Also, we know that  for commutative semigroup . From the hypothesis, we getThis equation gives us . This means that  is a regular element such that  for some . So,  is a regular semigroup.
Theorem 3. Let  be a commutative semigroup.  is a regular semigroup if and only if  is provided for each ideal  of .
Proof.  Let  be a regular semigroup. For ideal , using Theorem 2, we getConversely, let  for any ideal . Then, since  is an ideal, we getIn above equation, using  from Lemma 4 (5) and , we obtainSo, using , we getAlso, since ,is provided. Then, . From Theorem 2,  is a regular semigroup.
Now, let us give the relation between regular and reduced semigroups. The following example shows that the commutative property in this theorem is necessary.
Theorem 4. If is a commutative regular semigroup, then  is a reduced semigroup.
Proof.  Let  be a commutative regular semigroup, and let  be a nilpotent element. In this case, there exists , such that  and .  is also a regular element. Since  is commutative, there exists , such that . Thus, we getHowever, this result contradicts . Therefore, there is no nilpotent element in . So,  is a reduced semigroup.
Example 9. Let the operation table of the semigroup  be given as follows.Using the table, we getSince  is not an idempotent element,  is not a idempotent semigroup. On the other hand, since , , and , every element in  is regular. So,  is a regular semigroup. However,  is not a reduced semigroup because  and  are the nilpotent elements. Therefore,  is not a nonzero divisor either. As shown in this example, in a noncommutative semigroup, the above result is not valid.
Finally, we will adapt one of the well-known results in semigroup theory to regular semigroups. An element of a semigroup S is called inverse element if there exist at least one , such that  and . If there is an inverse element with uniqueness for each element of the  semigroup, the  semigroup is called the inverse semigroup. As can be seen in [8], Proposition 2.6,  is an inverse semigroup if and only if  is a regular and the idempotents of  commute with each other. We reach similar results for regular semigroups, and a relation establishes between regular semigroups and inverse semigroups.
Lemma 5. Every elements of  are inverse if and only if  is a regular semigroup.
Proof.  If every elements of  are inverse, then these elements are also regular elements. It is clear that is a regular semigroup.
Conversely, let  be a regular semigroup. Then, each element  is regular, and there exists , such that .So,  and  are inverse for each other. So, every elements in  are inverse elements.
Theorem 5. Every elements of  are inverse elements with uniqueness if and only if is a regular semigroup and the idempotents of  commute with each other.
Proof.  From Lemma 5, every elements of  are inverse if and only if  is a regular semigroup. As can be seen in [8], Proposition 2.6,  is an inverse semigroup if and only if  is a regular and the idempotents of  commute with each other. From this property, all idempotent elements of  commute with each other.
4. Conclusions
We have shown that some properties of the source of the semiprimeness defined as  for a semigroup  are given. Moreover, the relations of the source of the semiprimeness with idempotent, regular, nilpotent, and zero divisor elements, which are the basis of the new semigroup structures, are investigated. Additionally, we define the idempotent semigroup, regular semigroup,  reduced semigroup, and nonzero divisor semigroup structures. Thus, the mentioned semigroups are generalized. Also, we give examples for each semigroup. In particular, the monoid  is investigated and generalizations are obtained. Furthermore, we adapt some well-known results in semigroup theory to new semigroup structures. The source of primeness can be investigated in the sense of this article in future works.
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