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Let G be a graph with vertex set V (G) and edge set E(G). Let d,, denote the degree of vertex u € V (G). The geometric-arithmetic
index of G is defined as GA (G) = },,cp(g) (2v/d,d, / (d, + d,)). In this paper, we obtain some new lower and upper bounds for the
geometric-arithmetic index and improve some known bounds. Moreover, we investigate the relationships between geometric-

arithmetic index and several other topological indices.

1. Introduction

Let G be a simple graph (i.e., graph without loops and
multiple edges) with vertex set V (G) and edge set E (G). The
integers n = |V (G)| and m = |E(G)| are the order and the
size of the graph G, respectively. For u € V (G), we denote by
d, the degree of vertex u in G. The minimum and maximum
degrees of a graph are denoted by § and A, respectively.

Graph theory has provided chemists with a variety of
useful tools, such as topological indices. A topological index
Top (G) of a graph G is a number with the property that, for
every graph H isomorphic to G, Top (H) = Top (G).

Molecular descriptors play a significant role in mathe-
matical chemistry, especially in QSPR/QSAR investigations.
Among them, special place is reserved for so-called topo-
logical descriptors. A topological index is a numeric quantity
from the structural graph of a molecule.

Usage of topological indices in chemistry began in 1947
when Wiener [1] developed the most widely known topo-
logical descriptor, namely, the Wiener index, and used it to
determine physical properties of types of alkanes known as
paraffin (see, for instance, 2, 3]). The interest of topological
indices lies in the fact that they synthesize some of the

properties of a molecule into a single number. With this in
mind, hundreds of topological indices have been introduced
and studied. Topological indices based on the vertex degree
play a vital role in mathematical chemistry, and some of
them are recognized as tools in chemical research.

Authors are studying various topological descriptors,
such as Zagreb indices [4-6], general sum-connectivity
index [7, 8], hyper-Zagreb index [9], and harmonic index
[10, 11]. Besides the abovementioned ones, there are other
topological descriptors based on end vertex degrees of edges
of graphs that have found some applications in QSPR/QSAR
research [2, 12, 13].

The geometric-arithmetic index of a graph is defined in
[13] as

2d d,

GA(G) = 1 ad (1)

uveE (G)

The geometric-arithmetic index has a number of in-
teresting properties, e.g., see [13]. The lower and upper
bounds of the geometric-arithmetic index of connected
graphs and the characterizations of graphs for which these
bounds are best possible can be found in [13-16].


mailto:m.atapour@ubonab.ac.ir
https://orcid.org/0000-0002-2800-4420
https://orcid.org/0000-0001-7561-5489
https://orcid.org/0000-0001-5795-3580
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4901484

The aim of this paper is to investigate new relationships
between the geometric-arithmetic index and other topo-
logical indices. In particular, we obtain some lower and
upper bounds for the geometric-arithmetic index. Moreover,
we improve some known bounds.

2. Preliminaries
Let us recall some remarkable lemmas which will be used in

this paper.
The first one is a very straightforward observation.
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Lemma 1 (see [17]). Let x and y be two positive numbers.
Then,

2xy<\/x_<((x+y)/2)+\/3c7<x+y< X+ 5 (2)
Xty VS 2 =5 <\

The following is the well-known inequality of arithmetic
and geometric means.

Lemma 2 (inequality of arithmetic and geometric means, see
[18]). Let x4,...,x, be positive numbers. Then,

n X+ X -+ X
Hxl_ 1 2 t n<

(Uxy) + (1/x,) + (1/x,)

Lemma 3 (see [19]). Let a = (a;)i_, and (b,);., be two se-
quences of positive numbers. For any r >0,

o (5 a)
D T @

Lemma 4 (see [20]). Let r<a; <R for 1<i<m and r and R
be some positive constants. Then,

moomoy 1 1+ (=1)"! \/ﬁ 7\
;ai;a—iSm <1+Z<1—72m2 < ?—\/%> >>
(5)

Lemma 5 (see [21]). If a;,a,,...,a, and b, b,,...,b, are
positive numbers, where m, <a; <N, and m, <b; <N, for
each 1<i<n, then

b - <Zub> %—N@Q+mm@. (6)

a;

,M:
Mx

I
—

2
i

i=1

Lemma 6 (the Polya-Szeg6 inequality, see p. 62 in [22]). Let
a = (a;), and (b;)", be two sequences of positive numbers,

where 0<m;<a;<M; and 0<m,<b;<M,, for
i=1,2,...,n Then,

ia ibf MM2 Zab (7)
i1 =1 mm, \/M Mz oy

3. Upper Bounds for the Geometric-
Arithmetic Index

In this section, we investigate the relationships between
geometric-arithmetic index and some topological indices.
Moreover, we obtain some upper bounds for the geometric-
arithmetic index in terms of order, size, maximum degree,
minimum degree, domination number, girth, number of cut
edges, and number of pendent vertices.

x%+x§+"'+x (3)

The first and second Zagreb indices are vertex-degree-
based graph invariants defined as

M (G = ) (d,+d,)

uveE (G) (8)
MG = ) dd,

uveE(G)

The quantity M, was first considered in 1972 [6],
whereas M, in 1975 [5]. The general Randi¢ index is defined
as follows [23]:

ch (G) = Z (dudv)a’ (9)

uveE (G)
where « is a real number.
We begin with the establishment of an upper bound for
the geometric-arithmetic index in terms of the first Zagreb
index and the general Randi¢ index.

Theorem 1. Let G be a graph. Then,
M, (G) +2R,;,(G)

2 (10)

GA(G)<

Proof. By Lemma 1, we have

ZZW

uveE (G) d“ + d"

2d,d,
<
- d, +d

uveE(G) U v

Z ((du+dv)/2)+ m

; ()

GA(G) =

uveE (G)

Z d,+d,+2+d,d,
uveE (G) 4
_M,(G)+2R,,(G)

4

>

as desired.
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Using Lemma 1 and an argument similar to the proof of
Theorem 1, we can obtain the next result. O

Corollary 1. Let G be a graph. Then,
GA(G) <R, (G). (12)

From Lemma 1, we get

d,+d, _M,(G)
Z V - 12 '

uveE (G) quE(G)

R1/2 G) =
(13)
Again by Lemma 1, we have

M, (G) +2R,;,(G) 3
4 - Z

d,+d,+2d,d,
4

uveE (G)

uveE (G)

((dy+d,)02) +Vdd, (14
2

< Z d,+d, =M1(G).
uveE (G) 2 2

Hence, we can see that the bounds in Theorem 1 and
Corollary 1 improve the bound:
M, (G
GA(G) < % (15)

established in [15].
The proof of the following result can be found in [23].

Lemma 7 (see [23]). Let G be a graph of size m. Then,

NCTEa . 1)2"‘

5 (16)

Ra(G)Sm<

for 0<a<l.

Using Corollary 1 and Lemma 7, we can drive the next
result.

Corollary 2. Let G be a graph of size m. Then,

(v8m+1-1)
—

GA(G) < (17)

Lemma 8. Let x and y be two positive numbers. Then,

2%y

xX+y

<1,

(18)
w>2

o

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the first Zagreb index.

Theorem 2. Let G be a graph of order n>2, size m, and
minimum degree 6. Then,

(G)

GAG) <m-n+ (19)

Proof. Notice that

d,+d, (1 1)
— = —+—|=n (20)
Z d WEZE(G) d, d

uveE(G) ”dV v

By Lemma 8, we have

GAG) +n= )

2a,d, d,+d,
d,+d,  dd,

uveE (G)
d,+d

< 1+-2—

uveEZ(G)( d“d" )

(21)

B Z L4 d,+d,

uveE (G) uveE (G) d“d"

M, (G)

—_ + 62 bl

and this implies the desired bound.

A dominating set of a graph is a vertex subset whose
closed neighborhood includes all vertices of the graph. The
domination number of a graph G is the size of a minimum
dominating set. O

Theorem 3 (see [24]). Let T be a tree of order n with
domination number y. Then,

M (T)sn-y)(n-y+1)+4(y-1). (22)

By Theorems 2 and 3, we have the following result for
trees with the given domination number.

Corollary 3. Let T be a tree of order n>2 with domination
number y. Then,

GA(M<mn-ypmn-y+1)+4(y-1) -1 (23)

Since for every two real numbers x,y, and
xy< ((x+ y)2/4), we have the next observation.

Lemma 9. Let x and y be two real numbers, where x + y #0.
Then, (xy/(x + y)*) < (1/4).

Next, we establish an upper bound for the geometric-
arithmetic index in terms of the second Zagreb index.

Theorem 4. Let G be a graph of size m with maximum degree
A. Then,

5m M, (G)
4 ga?

GA(G)< (24)



Proof. By Lemmas 8 and 9, we have

M, (G) 2\/dudv dd,
42A2 : Z < >

GA(G) +
@ dord, "t (d, +d,)

uveE (G)

()

uveE(G) d, +d
1
< 1+-
< ¥ (1+3)
uveE(G)
_5Sm
-
(25)
and this implies the desired bound. O

In [25], it is proved that, for any tree T of order n,
M, (T) > 4n - 8. Using this and Theorem 4, we obtain the
next result.

Corollary 4. Let T be a tree of order n with maximum degree
A. Then,

GA(T)<5(n—1)_n—2

. = (26)

Here, we establish an upper bound for the geometric-
arithmetic index in terms of the hyper-Zagreb index.
The hyper-Zagreb index is defined as follows [9]:

HMG) = Y (d,+d,)" (27)
uveE (G)

Theorem 5. Let G be a graph of order n, size m, and
minimum degree 6. Then,

HM (G)

GAG) sm-n+
(G) pyS

(28)

Proof. By Inequality (21), we have

GAG) +ns Y 1+ Y Dtds

uveE (G) uveE (G) dud"

d +d
< 1+ U v
WEZE(G) Wg'(c) (2d,d,/(d,+d,)) o)

29
(d,+d,)’

2d,d,

= Z 1+ Z
uveE(G) uveE(G)
HM(G)
+ R
26

It leads to the desired bound.
The next result is proven in [26]. O

Journal of Mathematics

Theorem 6 (see [26]). Let G be a graph with n vertices and m
edges. Then,

m’ (n+ 1)6
—. 30
HM(G)S16nz(n_ % (30)

Theorems 5 and 6 lead to the desired result.

Corollary 5. Let G be a graph of order n, size m, and
minimum degree 0. Then,
m’ (n+1)°

[ 3
328%n* (n—- 1) G

GAG)<m-n+

The redefined third Zagreb index is defined as follows

[27]:
= ) (dd

un€E (G)

ReZ3 ) d +d) (32)

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the second Zagreb index, the
general Randi¢ index, and the redefined third Zagreb index.

Theorem 7. Let G be a graph with maximum degree A and
minimum degree 0. Then,

Ry (G) _ReZs(G)

é 2A (33)

GA(G) <M, (G) +

Proof. 1t is easy to obtain

2~d d
Z <dudv_ uv)
o d,+d

uveE( u TGy

(d,+d,)d,
WG%(G)( d, +d )

Z (d,+d,)d

d +d uveE (G) d

M, (G) - GA(G) =

uveE (G)

_ReZ;(G) Ry (G)
=T 2A 5

(34)
The desired bound follows. O

Theorem 8. Let G be a graph of order n, size m, maximum
degree A, and minimum degree 6. Then,

2m’ 1 1+(-D™ (A 8)°

Proof. Now, putting a,,, = (2+/d,d, /d, + d,) for each edge
uv € E(G), R = (A/d), and r = (6/A) in Lemma 4, we have
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y 2ad e

uveE (G)

On the contrary, we have

2_ Z d +d Z d +d (37)
2d,d, < 2,

uveE (G) v
Finally, we get the bound by using Inequalities (36) and
(37).
The sigma index of G is defined in [28] as

(@G =) (d,-d). (38)

uveE (G)

Here, we obtain an upper bound for the geometric-
arithmetic index in terms of the first Zagreb index and the
sigma index. O

Theorem 9. Let G be a nontrivial graph with maximum
degree A. Then,

Ga(G) <@ @) (39)
2 4A
Proof. For two real numbers x and y, we have that
1
xy:Z((x+y)2—(x—y)2). (40)

By (40), we obtain

2+/d, d

uveE(G) d + d

GA(G) =
( ) uveE(Gd +d

(du + dv)2 - (du - dv)2

uveE (G) 2 (du + dv)
1 (d,-d,)
== (d,+d,) - Mu %) (41)
2 MVE;(G) uve%(G) 2 (du + dv)
2
< Y (dyrd)- Y G d)S
uveE(G) uveE (G) 4A
_M,(G)_0(G)
2 4A

and this implies the desired bound.
The general first F-index of a graph G is defined in [29] as

F@G= ) (d+d), (42)

uveE(G)

where a is a real number. In particular, F} (G) = F(G).
Since for every two real numbers x and y, (x — y)* >0,
and we deduce that, for any graph G,

d, +d, 2<
d,+d, = G)zw_dd =

_qyml A S 2
“i(“%(ﬁﬁ) )) (36)

F(G)>2M, (G),

(43)
(G) = F(G) - 2M, (G).

Using these and Theorem 9, we obtain the next
result. O

Corollary 6. Let G be a nontrivial graph with maximum
degree A. Then,
M,(G) F(G)-2M,(G)

1
GA(G)< S A . (44)

From F (G) > 2M, (G), we would like to indicate that the
above new bound improves the known bound:
M, (G
GA(G)< # (45)

which was established in [15].
Now, by using the following result, we want to obtain an
upper bound for trees.

Theorem 10 (see [30]). Let T be a tree of order n with
independence number «. Then,

M, (T)<&’ —3a+4n— 4. (46)

Here, by Theorems 9 and 10, we obtain the next result.

Corollary 7. Let T be a tree of order n with independence
number o and maximum degree A. Then,
3a+4n-4 o0(G)

2
GA(T)<Z = Y (47)
2 4A

4. Lower Bounds for the Geometric-
Arithmetic Index

In this section, we first investigate the relationships between the
geometric-arithmetic index and some other topological indices,
and then, we obtain some lower bounds for the geometric-
arithmetic index which improve some well-known bounds.

Theorem 11. Let G be a graph of size m with minimum
degree 6. Then,

48 m*

HM(C) (48)

GA(G) =

Proof. By Lemmas 1 and 2, we have



2 2
m m

GA(G) ZWGE(@(Z\/‘}E/(CZ“ * dV)>

d,+d,

S _
WeEZ‘ZG) 24/d,d,

d,+d,
d,(d,+d,))

< 2T

uveE (G) (49)

(d,+d,)’
4d.d,

uveE (G)

LY (@, +d)

2
46 uveE (G)

_HM(G)
48%
The result follows. O

Here, by Theorems 11 and 6, we have the next result.

Corollary 8. Let G be a graph of order n and size m, with
minimum degree 6. Then,

2.2 2
GA(G)ZM. (50)
m(n+1)

Since for any real numbers x and y, it holds that
((x+y)2/4)§ ((x* + y?)/2); hence, by this fact and In-
equality (49), we can obtain the following result.

Corollary 9. Let G be a graph of size m with minimum degree
0. Then,

28%m?
F(G)’

GA(G) = (51)

We start with a lower bound for the geometric-arith-
metic index in terms of the general F-index.

Theorem 12. Let G be a nontrivial graph of size m with
minimum degree §. Then,

\26m*

GA(G) 27— 1/2( G)

(52)

Proof. Setr =1,a,, = +/2d,d,,andb,, = \/d? + d? for each

uv € E(G). By Lemmas 1 and 3, we have
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[\S}
QU

.a
d

4

GA(G) =

QU
+

uveE(G) "4 v

uveE (G

\)
q
: )
& Q..
&.
<

M

uveE d + dz

(4zd i) (53)

QU
= N
+
&,v

uveE (G)

O b
ZuveE(G \]d +d2

, Y20m” \26m*
1/2 G)

The proof is completed. O

The harmonic index is defined as follows [11]:

2
H(G) = 54
MZ(G)d Td, (54)

Theorem 13. Let G be a nontrivial graph of order n, size m,
and minimum degree 8. Then,

GA(G)=2d6(H(G) +n) —2m. (55)

Proof. Notice that

GA(G) +2m = Z Z‘i"j"+

uveE(G) "4 v

2d,d,

<
uveE (G) d“ + dV

2

ueV (G)

> 6

ueV (G) (56)

= Z 2 d”d"+n8
- d +d

uveE(G) U v

<J8H (G) + né.

The result follows.
Applying (56), we obtain the next results. O

Corollary 10. Let G be a nontrivial graph of order n, size m,
and minimum degree 8. Then,
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GA(G) ZRI/ZT(G) + 6n —2m. (57)

Corollary 11. Let G be a nontrivial graph of order n, size m,
and minimum degree 8. Then,
0
GA(G) = Tm +0n—-2m. (58)

Theorem 14 (see [31]). Let G be a connected graph of order
n=3. Then,

2(n—1)

H(G)> (59)

A cut edge of a graph is an edge whose removal increases
the number of connected components of the graph.

Lemma 10 (see [32]). Let G be a connected graph of order n
and k' cut edges. Then,

_ ! _ ! _ 1
k)oK 1),

K. (60)

m<

Now, by Theorems 13 and 14, and Lemma 10, we can
obtain the next result.

Corollary 12. Let G be a connected graph of order n, k' cut
edges, and minimum degree §. Then,

GA(G)25($+H)—2((n_k,)(;1_k,_l)+k'>.

(61)

Here, we will use the following particular case of Jensen’s
inequality.

Lemma 11. Let f (x) be a convex function defined in x> 0.
For xi,%x5,...,%x,,>0,

S(EEEEEE) < () f () oo £ (5)
(62)

The general sum-connectivity index is defined as follows
[8]:
Xa (G) = Z (du + dv)a' (63)

uveE (G)

Now, we obtain a lower bound for the geometric-arith-
metic index in terms of the general sum connectivity index.

Theorem 15. Let G be a graph of size m and minimum
degree 8. Then,

GA(G) > M (64)
VX4 (G)

Proof. Since f(x) = (1/x?) is a convex function for x >0,
from Lemmas 1 and 11, we have

2

(ﬁG)) ) (zm@ w% /(dy+ d»))
<L D

d,+d,\
muveE(G) 2 d”dv

Y » ( d, +d, )2
m o (4d,d,/(d, +d,)) (65)
— i Z ((du + dv)2>
m Feo\ 444,
1 4
d, +d
161’}’154 wBle) ( u v)
_ X4 (G)
16ms*
as desired. O

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the sigma index.

Theorem 16. Let G be a simple connected graph of size m
with maximum degree A, p pendent vertices, and minimum
nonpendent vertex degree &,. Then,

2pVE  \40m—p)’ —(m - pis})(a(G) - p(8, - 1)})

+
L+A <A+61/2\/A61)+w/(Zx/_A81/A+61)

(66)

GA(G) >

Proof. We partition all the edges into two parts: pendent
edges and nonpendent edges, so

2\/d_vZ

GAG) = Y .
wer) 1Ty Wi dutd, (67)
d,=1 dyd,#1

On one hand, for the pendent edges, it is not hard to
check that (2+/d, /1 +d,) decreases in 2<d, <A; thus,

T1+A (68)

Now, we consider the nonpendent edges. It is easy to see
that the function x + (1/x) gets its maximum value when x
attains the maximum or minimum value. From

(A/18) = (d,/d,) = (8/A) for all uandv € V(G), we have

d, |d, A |6
\jd:v+ \]:us\g+ \/% (69)
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which is equivalent to Set a,, =1 and b, = (2+/d,d, /d, +d,) for each edge

uv € E(G), My =m; = M, =1, and m, = (24/Ad, /A + §,)
2+/A8, 2+/d,d .
< U <1, (70) in Lemma 6, and we have
A+6, d,+d,
2
uveE(G)d,,, uveE(G)d,,, d“ +d
d,#1 d,#1

=(m-p) )
uveE(G)d,,
d,+1

()
11— 2>—=
, utd, (71)

d, +d

VA+&

2\/A_81 >2 Z 2 dudv ,
uv € E(G)d,,, d, +d

1
SZ}(\/ ZM/AHS)

which implies that

d,#1

de

(m P)z quE (G)d,,, ( (d

-d,/d, +d,)’)

wreE(G)d,, d, +d

A+8/2 A8 +\/ A8 /A +8,)
d,#1 \/

\/4(m - p)’ =(m - pl8})Y wer, (d, - d,)’

d,#1

\ A+6/2 A6 \/ VAS, /A +8,)
(72)

_ \/4(m =)’ =(m=pI8})(0(G) = Toner (a1 (dy — 1)°)

J(A + 61/2\/130 +/(2+/A8, /A +6))

\/4(m P’ =(m-p18})(s(G) - p(5, —1))

\ A+6/2 A(S +1/(2+/A6, /A + 6,)

Finally, the result follows from (67), (68), and (72).
Next, results are immediate consequences of Theorem 16
with the setting p = 0. O

Corollary 13. For a graph G of size m with maximum degree
A and minimum degree §>2,

\/4m m/(‘)‘2 o(G) (73)
V(A +812VAS8) + V(2 VAS /A + 6)

GA(G) =

Now, we obtain a lower bound for the geometric-
arithmetic index in terms of the second Zagreb index and the
general sum connectivity index.

Theorem 17. Let G be a graph of size m, maximum degree A,
and minimum degree 8. Then,

m2 Az +62 (74)
1 2

GA(G) > \j4M2 (G, (G) -
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Proof. By Lemma 5 and putting a,, =2+/d,d,,
b, = /d,+d,),m =26 N, =2A,m, = (1/24), and
N, = (1/26), we have

2
: 1 1 L2+fd d, mt A*+ 8
4d,d, - <— —
; z;(dﬁdv)z ( d,+d, ) AS

(75)

This implies that

m2A+5

AS

GA(G)’ 24M, (G)y_, (G) - (76)

The result follows.
Now, we obtain a lower bound for the geometric-

arithmetic index in terms of the harmonic index. O

Theorem 18. Let G be a graph without isolated edges. Then,

GA(G)>V2H (G). (77)

Proof. Since for each uv € E(G), d,d, >2, we obtain

2+/d,d, . 22

GA(G) = > - V2H(G),
uveE(G) d“ + dv uveE (G) du + dv
(78)
as desired.
The proof of next results can be found in [33]. O

Theorem 19 (see [33]). Let G be a triangle-free graph of
order n and the minimum degree § >k (k < (n/2)). Then,

H(G)> @ (79)

Theorem 20 (see [33]). Let G be a triangle-free graph of
order n and size m. Then,

H(G)=> Z_m. (80)
n

Applying Theorems 18-20, it leads to the next results.

Corollary 14. Let G be a triangle-free graph of order n
without isolated edges, and the minimum degree
d=>k(k< (n/2)). Then,

GA(G)ZM, (81)

\2m

GA(G) 22— (82)
n

We can see that Inequality (82) improves the next well-
known result for triangle-free graphs [13]. Let G be a graph
of order »n and size m without isolated vertex. Then,

9
2
GA(G)> 7’" (83)
The eccentricity € (v) of v is defined as
e(v) = max{d(v,w): w e V(G)}, (84)

where d (v, w) is the length of a shortest path connecting v
and w. The radius r and diameter D are defined as the
minimum and maximum values among ¢ (v) over all vertices
v € V(G), respectively.

Xu [34] showed that, for any nontrivial connected graph
G of order #, size m, and radius r, H(G) > (m/n —r). Using
this and Theorem 18, we obtain the next result.

Corollary 15. Let G be a nontrivial connected graph of order
n, size m, and radius r. Then,

GA(G) > V_”:. (85)

Theorem 21. Let G be a nontrivial connected graph of size m
and radius r. Then,

GA(G) = %(rG) (86)

Proof. Note that, for each vertex u € V(G), we have
d, <n—e(u). Thus, for each edge uv € E(G),

24/d, d 24/d,d,
GAG) = ) d +d, =~ = ) 2m—e(u) —e(v)
uveE (G) uveE (G)
(87)
S z 2+/d,d, _ Ry, (G),
WeE(G) 2n—2r n—r
as desired. O

Theorem 22. Let G be a nontrivial graph of order n, size m,
and p pendent edges without isolated vertex. Then,

p N m-p
Vn-1 n-1-(p/2)

GA(G) > (88)

Proof. Since 0< (1/d,)and (1/d,) <1, therefore we deduce
that

+(1/d,))~/d,d,
d +d,

2\/W
d,+d,

y ()

uveE (G)

GA(G) =

uveE (G)

1
quEZ(G) Vd”dv.

(89)

For each pendent edge e =uv, we clearly have (1/

\Jd,d,)= (1/vn—1). If e = uv is a nonpendent edge, then
d,+d,<2(n-1) - p,asany pendent vertex is adjacent to at

most one of u and v. So, \/d, d, < (d, +d,/12) <n—1- (p/2);
hence,
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1 - 1
Jad n-1-(pi2) (°0)
Thus,
4 m-—p
GA(G)Z\/n— 1 +n— 1-(p/2)y ®D

The desired result follows.
In [35], Kulli et al. defined the first and second gener-
alized multiplicative Zagreb indices:

MZ!(G) = 1‘[ (d, +d,)",
uveE(G) (92)

MZ;(G): H (dudv)a'

uveE(G)

Here, we obtain a lower bound in terms of the first and
second generalized multiplicative Zagreb indices. O

Theorem 23. Let G be a nontrivial graph of size m. Then,

GA(G)=2m (93)
Proof. By Lemma 2, we obtain
GA(G) _ 1 d,d,
2m m . Fo d,+d,
(94)
_ HuveE(G) dudv
\ [MZ37(G)
[Tuver (du +d,) = m
as desired. O

Theorem 24. Let G be a graph of size m and minimum
degree 8. Then,

48 m*

HM(G) (95)

GA(G) =

Proof. By Lemma 1, we get

Journal of Mathematics

GA(G) _ 1 Z dd,
2m m e dutd,
1 (2d,d,/(d, +d,)) 1 2d,d,
m uveE (G) d“ + dV m uveE(G) (du + dv)2
m
2 p
ZuveE(G)( (du + dv) /Zdudv)
- m
- (1/282)21.41/6]5((;) (du + dv)2
B 28°m
" HM(G)
(96)
as desired.
In the sequel, we obtain a lower bound in terms of the
first Zagreb index. O

Theorem 25. Let G be a graph of size m, maximum degree A,
and minimum degree 8. Then,

GA(G) 22 4 2m - M1(9), (97)
A 0
Proof. By Lemma 8, we have
M,
GA(G) + —— (G) ( 4,4 dv)
uveE (G) +d \ dV
uveE (98)
2+d,d
= LaML NS 2
uveE (G) d”‘ + dV uve;(G)
> 8_m +2m
2 ,
and this implies the desired bound. O

Zhou [36] proved that, for any triangle-free graph of
order n and size m, M, (G) < mn. Together with Theorem 25,
we get the next result.

Corollary 16. Let G be a triangle-free graph of order n, size
m, maximum degree A, and minimum degree 0. Then,

é n
GA(G)Zm(K+ 2 _S) (99)

Inequality (98) leads to the following results.
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Corollary 17. Let G be a graph of size m, maximum degree A,
and minimum degree 8. Then,

GA(G)=68H (G) +2m - M 18(G),
(100)
GA(G) >~ ”2 © +2m— MIS(G).

Note that, for every two real numbers x and y,
((x + y)*/xy) = 4. Applying this, we obtain a lower bound
for the geometric-arithmetic index in terms of the hyper-
Zagreb index.

Theorem 26. Let G be a graph of size m, maximum degree A,
and minimum degree 8. Then,

HM (G)

2 (101)

GA(G)ZaTm+4m—

Proof. From the above inequality, we have

HM(G) 5 (2 dd, (du+dv)2)

GA(G) + d+d | dd

uveE (G)

35

uveE(G) d, +d
2+/d,d,
= Z 4
uveE G)d +d quE(G
>8m+4
22— m,
A

(102)

and this implies the desired bound.
Here, we obtain a lower bound for the geometric-
arithmetic index in terms of the first Zagreb index. O

Theorem 27. Let G be a graph of size m and minimum
degree 8. Then,
M, (G)

A 2m —
GA(G)=2m 5

(103)

Proof. From the fact that x + (1/x)>2 for any x>0, we
have

Ga(G) + M9 @, D <2Vd“dv

d,+d,
2+/d,d,

26 wesio\ du+d
(104)
> Y 2=2m,
uveE (G)
and this implies the desired bound. O

Theorem 28 (see [37]). Let G be a graph of size m and
diameter D > 1. Then,

11

M, (G)<m* —m(D-3)+(D-2). (105)

Now, by Theorems 27 and 28, we have the following
result.

Corollary 18. Let G be a graph of size m, minimum degree §,
and diameter D > 1. Then,

m> —m(D -3)+(D-2)
26 '

GA(G)=22m - (106)

Theorem 29 (see [38]). Let G be a graph of size m, with t
triangles and pendent vertex p. Then,

M, (G)<m(p+2)+3t. (107)

Again, by Theorems 27 and 29, we have the following
result.

Corollary 19. Let G be a graph of size m, with t triangles, leaf
number L, and minimum degree 8. Then,

m(p+2)+3t

% (108)

GA(G)=2m -

Theorem 30 (see [39]). Let G be a triangle- and quadrangle-
free graph with n> 1 vertices. Then,

M, (G)<n(n-1). (109)

Also, by Theorems 27 and 30, we have the following result.

Corollary 20. Let G be a triangle- and quadrangle-free graph
of order n, size m, and minimum degree 0. Then,

_n(n— 1)

5 (110)

GA(G) =
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