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Let G be a graph with vertex set V(G) and edge set E(G). Let du denote the degree of vertex u ∈ V(G). $e geometric-arithmetic
index ofG is defined as GA(G) � 􏽐uv∈E(G)(2

����
dudv

􏽰
/(du + dv)). In this paper, we obtain some new lower and upper bounds for the

geometric-arithmetic index and improve some known bounds. Moreover, we investigate the relationships between geometric-
arithmetic index and several other topological indices.

1. Introduction

Let G be a simple graph (i.e., graph without loops and
multiple edges) with vertex set V(G) and edge set E(G). $e
integers n � |V(G)| and m � |E(G)| are the order and the
size of the graph G, respectively. For u ∈ V(G), we denote by
du the degree of vertex u in G. $e minimum and maximum
degrees of a graph are denoted by δ and Δ, respectively.

Graph theory has provided chemists with a variety of
useful tools, such as topological indices. A topological index
Top(G) of a graph G is a number with the property that, for
every graph H isomorphic to G, Top(H) � Top(G).

Molecular descriptors play a significant role in mathe-
matical chemistry, especially in QSPR/QSAR investigations.
Among them, special place is reserved for so-called topo-
logical descriptors. A topological index is a numeric quantity
from the structural graph of a molecule.

Usage of topological indices in chemistry began in 1947
when Wiener [1] developed the most widely known topo-
logical descriptor, namely, the Wiener index, and used it to
determine physical properties of types of alkanes known as
paraffin (see, for instance, [2, 3]). $e interest of topological
indices lies in the fact that they synthesize some of the

properties of a molecule into a single number. With this in
mind, hundreds of topological indices have been introduced
and studied. Topological indices based on the vertex degree
play a vital role in mathematical chemistry, and some of
them are recognized as tools in chemical research.

Authors are studying various topological descriptors,
such as Zagreb indices [4–6], general sum-connectivity
index [7, 8], hyper-Zagreb index [9], and harmonic index
[10, 11]. Besides the abovementioned ones, there are other
topological descriptors based on end vertex degrees of edges
of graphs that have found some applications in QSPR/QSAR
research [2, 12, 13].

$e geometric-arithmetic index of a graph is defined in
[13] as

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

. (1)

$e geometric-arithmetic index has a number of in-
teresting properties, e.g., see [13]. $e lower and upper
bounds of the geometric-arithmetic index of connected
graphs and the characterizations of graphs for which these
bounds are best possible can be found in [13–16].
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$e aim of this paper is to investigate new relationships
between the geometric-arithmetic index and other topo-
logical indices. In particular, we obtain some lower and
upper bounds for the geometric-arithmetic index.Moreover,
we improve some known bounds.

2. Preliminaries

Let us recall some remarkable lemmas which will be used in
this paper.

$e first one is a very straightforward observation.

Lemma 1 (see [17]). Let x and y be two positive numbers.
3en,

2xy

x + y
≤ ���

xy
√ ≤

((x + y)/2) +
���
xy

√

2
≤

x + y

2
≤

������

x
2

+ y
2

2

􏽳

. (2)

$e following is the well-known inequality of arithmetic
and geometric means.

Lemma 2 (inequality of arithmetic and geometric means, see
[18]). Let x1, . . . , xn be positive numbers. 3en,

n

1/x1( 􏼁 + 1/x2( 􏼁 + · · · + 1/xn( 􏼁
≤

��������������������������������������

􏽙

n

i�1
xi ≤

x1 + x2 + · · · + xn

n
≤

��������������

x
2
1 + x

2
2 + · · · + x

2
n

n

􏽳

.
n

􏽶
􏽴

(3)

Lemma 3 (see [19]). Let a � (ai)
n
i�1 and (bi)

n
i�1 be two se-

quences of positive numbers. For any r≥ 0,

􏽘

n

i�1

a
r+1
i

b
r ≥

􏽐
n
i�1 ai( 􏼁

r+1

􏽐
n
i�1 bi( 􏼁

r . (4)

Lemma 4 (see [20]). Let r≤ ai ≤R for 1≤ i≤m and r andR

be some positive constants. 3en,

􏽘

m

i�1
ai 􏽘

m

i�1

1
ai

≤m
2 1 +

1
4

1 −
1 +(− 1)

m+1

2m
2

��
R

r

􏽲

−

��
r

R

􏽲

􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(5)

Lemma 5 (see [21]). If a1, a2, . . . , an and b1, b2, . . . , bn are
positive numbers, where m1 ≤ ai ≤N1 and m2 ≤ bi ≤N2 for
each 1≤ i≤ n, then

􏽘

n

i�1
a
2
i 􏽘

n

i�1
b
2
i − 􏽘

n

i�1
aibi

⎛⎝ ⎞⎠

2

≤
n
2

4
N1N2 + m1m2( 􏼁. (6)

Lemma 6 (the Pólya–Szegö inequality, see p. 62 in [22]). Let
a � (ai)

n
i�1 and (bi)

n
i�1 be two sequences of positive numbers,

where 0<m1 ≤ ai ≤M1 and 0<m2 ≤ bi ≤M2, for
i � 1, 2, . . . , n. 3en,

􏽘

n

i�1
a
2
i 􏽘

n

i�1
b
2
i ≤

1
4

������
M1M2

m1m2

􏽳

+

������
m1m2

M1M2

􏽲
⎛⎝ ⎞⎠

2

􏽘

n

i�1
aibi

⎛⎝ ⎞⎠

2

. (7)

3. Upper Bounds for the Geometric-
Arithmetic Index

In this section, we investigate the relationships between
geometric-arithmetic index and some topological indices.
Moreover, we obtain some upper bounds for the geometric-
arithmetic index in terms of order, size, maximum degree,
minimum degree, domination number, girth, number of cut
edges, and number of pendent vertices.

$e first and second Zagreb indices are vertex-degree-
based graph invariants defined as

M1(G) � 􏽘
uv∈E(G)

du + dv( 􏼁,

M2(G) � 􏽘
uv∈E(G)

dudv.
(8)

$e quantity M1 was first considered in 1972 [6],
whereas M2 in 1975 [5]. $e general Randić index is defined
as follows [23]:

Rα(G) � 􏽘
uv∈E(G)

dudv( 􏼁
α
, (9)

where α is a real number.
We begin with the establishment of an upper bound for

the geometric-arithmetic index in terms of the first Zagreb
index and the general Randić index.

Theorem 1. Let G be a graph. 3en,

GA(G)≤
M1(G) + 2R1/2(G)

4
. (10)

Proof. By Lemma 1, we have

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≤ 􏽘
uv∈E(G)

2dudv

du + dv

≤ 􏽘
uv∈E(G)

du + dv( 􏼁/2( 􏼁 +
����
dudv

􏽰

2

� 􏽘
uv∈E(G)

du + dv + 2
����

dudv

􏽱

4

�
M1(G) + 2R1/2(G)

4
,

(11)

as desired.

2 Journal of Mathematics



Using Lemma 1 and an argument similar to the proof of
$eorem 1, we can obtain the next result. □

Corollary 1. Let G be a graph. 3en,

GA(G)≤R1/2(G). (12)

From Lemma 1, we get

R1/2(G) � 􏽘
uv∈E(G)

����

dudv

􏽱

≤ 􏽘
uv∈E(G)

du + dv

2
�

M1(G)

2
.

(13)

Again by Lemma 1, we have

M1(G) + 2R1/2(G)

4
� 􏽘

uv∈E(G)

du + dv + 2
����

dudv

􏽱

4

� 􏽘
uv∈E(G)

du + dv( 􏼁/2( 􏼁 +
����
dudv

􏽰

2

≤ 􏽘
uv∈E(G)

du + dv

2
�

M1(G)

2
.

(14)

Hence, we can see that the bounds in $eorem 1 and
Corollary 1 improve the bound:

GA(G)≤
M1(G)

2
, (15)

established in [15].
$e proof of the following result can be found in [23].

Lemma 7 (see [23]). Let G be a graph of size m. 3en,

Rα(G)≤m

������
8m + 1

√
− 1

2
􏼠 􏼡

2α

, (16)

for 0< α≤ 1.

Using Corollary 1 and Lemma 7, we can drive the next
result.

Corollary 2. Let G be a graph of size m. 3en,

GA(G)≤
m(

������
8m + 1

√
− 1)

2
. (17)

Lemma 8. Let x and y be two positive numbers. 3en,

2 ���
xy

√

x + y
≤ 1,

x + y
���
xy

√ ≥ 2.

(18)

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the first Zagreb index.

Theorem 2. Let G be a graph of order n≥ 2, size m, and
minimum degree δ. 3en,

GA(G)≤m − n +
M1(G)

δ2
. (19)

Proof. Notice that

􏽘
uv∈E(G)

du + dv

dudv

� 􏽘
uv∈E(G)

1
du

+
1
dv

􏼠 􏼡 � n. (20)

By Lemma 8, we have

GA(G) + n � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+
du + dv

dudv

􏼠 􏼡

≤ 􏽘
uv∈E(G)

1 +
du + dv

dudv

􏼠 􏼡

� 􏽘
uv∈E(G)

1 + 􏽘
uv∈E(G)

du + dv

dudv

≤m +
M1(G)

δ2
,

(21)

and this implies the desired bound.
A dominating set of a graph is a vertex subset whose

closed neighborhood includes all vertices of the graph. $e
domination number of a graph G is the size of a minimum
dominating set. □

Theorem 3 (see [24]). Let T be a tree of order n with
domination number c. 3en,

M1(T)≤ (n − c)(n − c + 1) + 4(c − 1). (22)

By $eorems 2 and 3, we have the following result for
trees with the given domination number.

Corollary 3. Let T be a tree of order n≥ 2 with domination
number c. 3en,

GA(T)≤ (n − c)(n − c + 1) + 4(c − 1) − 1. (23)

Since for every two real numbers x, y, and
xy≤ ((x + y)2/4), we have the next observation.

Lemma 9. Let x and y be two real numbers, where x + y≠ 0.
3en, (xy/(x + y)2)≤ (1/4).

Next, we establish an upper bound for the geometric-
arithmetic index in terms of the second Zagreb index.

Theorem 4. Let G be a graph of size m with maximum degree
Δ. 3en,

GA(G)≤
5m

4
−

M2(G)

4Δ2
. (24)
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Proof. By Lemmas 8 and 9, we have

GA(G) +
M2(G)

4Δ2
≤ 􏽘

uv∈E(G)

2
����
dudv

􏽰

du + dv

+
dudv

du + dv( 􏼁
2

⎛⎝ ⎞⎠

≤ 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+
1
4

􏼠 􏼡

≤ 􏽘
uv∈E(G)

1 +
1
4

􏼒 􏼓

�
5m

4
,

(25)

and this implies the desired bound. □

In [25], it is proved that, for any tree T of order n,
M2(T)≥ 4n − 8. Using this and $eorem 4, we obtain the
next result.

Corollary 4. Let T be a tree of order n with maximum degree
Δ. 3en,

GA(T)≤
5(n − 1)

4
−

n − 2
Δ2

. (26)

Here, we establish an upper bound for the geometric-
arithmetic index in terms of the hyper-Zagreb index.

$e hyper-Zagreb index is defined as follows [9]:

HM(G) � 􏽘
uv∈E(G)

du + dv( 􏼁
2
. (27)

Theorem 5. Let G be a graph of order n, size m, and
minimum degree δ. 3en,

GA(G)≤m − n +
HM(G)

2δ2
. (28)

Proof. By Inequality (21), we have

GA(G) + n≤ 􏽘
uv∈E(G)

1 + 􏽘
uv∈E(G)

du + dv

dudv

≤ 􏽘
uv∈E(G)

1 + 􏽘
uv∈E(G)

du + dv

2dudv/ du + dv( 􏼁( 􏼁

� 􏽘
uv∈E(G)

1 + 􏽘
uv∈E(G)

du + dv( 􏼁
2

2dudv

≤m +
HM(G)

2δ2
.

(29)

It leads to the desired bound.
$e next result is proven in [26]. □

Theorem 6 (see [26]). Let G be a graph with n vertices and m

edges. 3en,

HM(G)≤
m

3
(n + 1)

6

16n
2
(n − 1)

2. (30)

3eorems 5 and 6 lead to the desired result.

Corollary 5. Let G be a graph of order n, size m, and
minimum degree δ. 3en,

GA(G)≤m − n +
m

3
(n + 1)

6

32δ2n2
(n − 1)

2. (31)

$e redefined third Zagreb index is defined as follows
[27]:

ReZ3(G) � 􏽘
un∈E(G)

dudv( 􏼁 du + dv( 􏼁. (32)

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the second Zagreb index, the
general Randić index, and the redefined third Zagreb index.

Theorem 7. Let G be a graph with maximum degree Δ and
minimum degree δ. 3en,

GA(G)≤M2(G) +
R1/2(G)

δ
−
ReZ3(G)

2Δ
. (33)

Proof. It is easy to obtain

M2(G) − GA(G) � 􏽘
uv∈E(G)

dudv −
2

����
dudv

􏽰

du + dv

􏼠 􏼡

� 􏽘
uv∈E(G)

du + dv( 􏼁dudv − 2
����

dudv

􏽱

du + dv

⎛⎜⎜⎝ ⎞⎟⎟⎠

� 􏽘
uv∈E(G)

du + dv( 􏼁dudv

du + dv

− 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≥
ReZ3(G)

2Δ
−

R1/2(G)

δ
.

(34)

$e desired bound follows. □

Theorem 8. Let G be a graph of order n, size m, maximum
degree Δ, and minimum degree δ. 3en,

GA(G)≤
2m

2

n
1 +

1
4

1 −
1 +(− 1)

m+1

2m
2
Δ
δ

−
δ
Δ

􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(35)

Proof. Now, putting auv � (2
����
dudv

􏽰
/du + dv) for each edge

uv ∈ E(G), R � (Δ/δ), and r � (δ/Δ) in Lemma 4, we have
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􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

􏽘
uv∈E(G)

du + dv

2
����
dudv

􏽰 ≤m
2 1 +

1
4

1 −
1 +(− 1)

m+1

2m
2
Δ
δ

−
δ
Δ

􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (36)

On the contrary, we have

n

2
� 􏽘

uv∈E(G)

du + dv

2dudv

≤ 􏽘
uv∈E(G)

du + dv

2
����
dudv

􏽰 . (37)

Finally, we get the bound by using Inequalities (36) and
(37).

$e sigma index of G is defined in [28] as

σ(G) � 􏽘
uv∈E(G)

du − dv( 􏼁
2
. (38)

Here, we obtain an upper bound for the geometric-
arithmetic index in terms of the first Zagreb index and the
sigma index. □

Theorem 9. Let G be a nontrivial graph with maximum
degree Δ. 3en,

GA(G)≤
M1(G)

2
−
σ(G)

4Δ
. (39)

Proof. For two real numbers x and y, we have that

xy �
1
4

(x + y)
2

− (x − y)
2

􏼐 􏼑. (40)

By (40), we obtain

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≤ 􏽘
uv∈E(G)

2dudv

du + dv

� 􏽘
uv∈E(G)

du + dv( 􏼁
2

− du − dv( 􏼁
2

2 du + dv( 􏼁

�
1
2

􏽘
uv∈E(G)

du + dv( 􏼁 − 􏽘
uv∈E(G)

du − dv( 􏼁
2

2 du + dv( 􏼁

≤
1
2

􏽘
uv∈E(G)

du + dv( 􏼁 − 􏽘
uv∈E(G)

du − dv( 􏼁
2

4Δ

�
M1(G)

2
−
σ(G)

4Δ
,

(41)

and this implies the desired bound.
$e general first F-index of a graphG is defined in [29] as

F
a
1(G) � 􏽘

uv∈E(G)

d
2
u + d

2
v􏼐 􏼑

a
, (42)

where a is a real number. In particular, F1
1(G) � F(G).

Since for every two real numbers x and y, (x − y)2 ≥ 0,
and we deduce that, for any graph G,

F(G)≥ 2M2(G),

σ(G) � F(G) − 2M2(G).
(43)

Using these and $eorem 9, we obtain the next
result. □

Corollary 6. Let G be a nontrivial graph with maximum
degree Δ. 3en,

GA(G)≤
M1(G)

2
−

F(G) − 2M2(G)

4Δ
. (44)

From F(G)≥ 2M2(G), we would like to indicate that the
above new bound improves the known bound:

GA(G)≤
M1(G)

2
, (45)

which was established in [15].
Now, by using the following result, we want to obtain an

upper bound for trees.

Theorem 10 (see [30]). Let T be a tree of order n with
independence number α. 3en,

M1(T)≤ α2 − 3α + 4n − 4. (46)

Here, by $eorems 9 and 10, we obtain the next result.

Corollary 7. Let T be a tree of order n with independence
number α and maximum degree Δ. 3en,

GA(T)≤
α2 − 3α + 4n − 4

2
−
σ(G)

4Δ
. (47)

4. Lower Bounds for the Geometric-
Arithmetic Index

In this section, we first investigate the relationships between the
geometric-arithmetic index and some other topological indices,
and then, we obtain some lower bounds for the geometric-
arithmetic index which improve some well-known bounds.

Theorem 11. Let G be a graph of size m with minimum
degree δ. 3en,

GA(G)≥
4δ2m2

HM(G)
. (48)

Proof. By Lemmas 1 and 2, we have
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m
2

GA(G)
�

m
2

􏽐uv∈E(G) 2
����

dudv

􏽱

/ du + dv( 􏼁􏼒 􏼓

≤ 􏽘
uv∈E(G)

du + dv

2
����
dudv

􏽰

≤ 􏽘
uv∈E(G)

du + dv

4dudv/ du + dv( 􏼁( 􏼁

� 􏽘
uv∈E(G)

du + dv( 􏼁
2

4dudv

≤
1
4δ2

􏽘
uv∈E(G)

du + dv( 􏼁
2

�
HM(G)

4δ2
.

(49)

$e result follows. □

Here, by $eorems 11 and 6, we have the next result.

Corollary 8. Let G be a graph of order n and size m, with
minimum degree δ. 3en,

GA(G)≥
64n

2δ2(n − 1)
2

m(n + 1)
6 . (50)

Since for any real numbers x and y, it holds that
((x + y)2/4)≤ ((x2 + y2)/2); hence, by this fact and In-
equality (49), we can obtain the following result.

Corollary 9. LetG be a graph of size m with minimum degree
δ. 3en,

GA(G)≥
2δ2m2

F(G)
. (51)

We start with a lower bound for the geometric-arith-
metic index in terms of the general F-index.

Theorem 12. Let G be a nontrivial graph of size m with
minimum degree δ. 3en,

GA(G)≥
�
2

√
δm

2

F
1/2
1 (G)

. (52)

Proof. Set r � 1, auv �
�����
2dudv

4
􏽰

, and buv �
������
d2

u + d2
v

􏽰
for each

uv ∈ E(G). By Lemmas 1 and 3, we have

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≥ 􏽘
uv∈E(G)

2
����
dudv

􏽰

2
����������
d
2
u + d

2
v/2􏼐 􏼑

􏽱

� 􏽘
uv∈E(G)

�����
2dudv

􏽰

������

d
2
u + d

2
v

􏽱

� 􏽘
uv∈E(G)

�����

2dudv
4

􏽱

􏼒 􏼓
2

������

d
2
u + d

2
v

􏽱

≥
􏽐uv∈E(G)

�����

2dudv
4

􏽱

􏼒 􏼓
2

􏽐uv∈E(G)

������

d
2
u + d

2
v

􏽱

≥
�
2

√
δm

2

F
1/2
1 (G)

.

(53)

$e proof is completed. □

$e harmonic index is defined as follows [11]:

H(G) � 􏽘
uv∈E(G)

2
du + dv

. (54)

Theorem 13. Let G be a nontrivial graph of order n, size m,
and minimum degree δ. 3en,

GA(G)≥ δ(H(G) + n) − 2m. (55)

Proof. Notice that

GA(G) + 2m � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ 􏽘
u∈V(G)

du

≤ 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ 􏽘
u∈V(G)

δ

� 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ nδ

≤ δH(G) + nδ.

(56)

$e result follows.
Applying (56), we obtain the next results. □

Corollary 10. Let G be a nontrivial graph of order n, size m,
and minimum degree δ. 3en,
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GA(G)≥
R1/2(G)

Δ
+ δn − 2m. (57)

Corollary 11. Let G be a nontrivial graph of order n, size m,
and minimum degree δ. 3en,

GA(G)≥
δm

Δ
+ δn − 2m. (58)

Theorem 14 (see [31]). Let G be a connected graph of order
n≥ 3. 3en,

H(G)≥
2(n − 1)

n
. (59)

A cut edge of a graph is an edge whose removal increases
the number of connected components of the graph.

Lemma 10 (see [32]). Let G be a connected graph of order n

and k′ cut edges. 3en,

m≤
n − k′( 􏼁 n − k′ − 1( 􏼁

2
+ k′. (60)

Now, by $eorems 13 and 14, and Lemma 10, we can
obtain the next result.

Corollary 12. Let G be a connected graph of order n, k′ cut
edges, and minimum degree δ. 3en,

GA(G)≥ δ
2(n − 1)

n
+ n􏼠 􏼡 − 2

n − k′( 􏼁 n − k′ − 1( 􏼁

2
+ k′􏼠 􏼡.

(61)

Here, we will use the following particular case of Jensen’s
inequality.

Lemma 11. Let f(x) be a convex function defined in x> 0.
For x1, x2, . . . , xm > 0,

f
x1 + x2 + · · · + xm

m
􏼒 􏼓≤

1
m

f x1( 􏼁 + f x2( 􏼁 + · · · + f xm( 􏼁( 􏼁.

(62)

$e general sum-connectivity index is defined as follows
[8]:

χα(G) � 􏽘
uv∈E(G)

du + dv( 􏼁
α
. (63)

Now, we obtain a lower bound for the geometric-arith-
metic index in terms of the general sum connectivity index.

Theorem 15. Let G be a graph of size m and minimum
degree δ. 3en,

GA(G)≥
4δ2

���

m
3

􏽱

�����
χ4(G)

􏽰 . (64)

Proof. Since f(x) � (1/x2) is a convex function for x> 0,
from Lemmas 1 and 11, we have

m

GA(G)
􏼠 􏼡

2

�
m

􏽐uv∈E(G) 2
����
dudv

􏽰
/ du + dv( 􏼁( 􏼁

􏼠 􏼡

2

≤
1
m

􏽘
uv∈E(G)

du + dv

2
����
dudv

􏽰􏼠 􏼡

2

≤
1
m

􏽘
uv∈E(G)

du + dv

4dudv/ du + dv( 􏼁( 􏼁
􏼠 􏼡

2

�
1
m

􏽘
uv∈E(G)

du + dv( 􏼁
2

4dudv

􏼠 􏼡

2

≤
1

16mδ4
􏽘

uv∈E(G)

du + dv( 􏼁
4

�
χ4(G)

16mδ4
,

(65)

as desired. □

Now, we obtain an upper bound for the geometric-
arithmetic index in terms of the sigma index.

Theorem 16. Let G be a simple connected graph of size m

with maximum degree Δ, p pendent vertices, and minimum
nonpendent vertex degree δ1. 3en,

GA(G)≥
2p

��
Δ

√

1 + Δ
+

������������������������������������

4(m − p)
2

− m − p/δ21􏼐 􏼑 σ(G) − p δ1 − 1( 􏼁
2

􏼐 􏼑

􏽱

��������������

Δ + δ1/2
����

Δδ1
􏽱

􏼒 􏼓

􏽲

+

��������������

2
����
Δδ1

􏽰
/Δ + δ1( 􏼁

􏽱 .

(66)

Proof. We partition all the edges into two parts: pendent
edges and nonpendent edges, so

GA(G) � 􏽘
uv∈E(G)

du�1

2
��
dv

􏽰

1 + dv

+ 􏽘
uv∈E(G)
du,dv ≠ 1

2
����
dudv

􏽰

du + dv

.
(67)

On one hand, for the pendent edges, it is not hard to
check that (2

��
dv

􏽰
/1 + dv) decreases in 2≤dv ≤Δ; thus,

􏽘
uv∈E(G)

du�1

2
��
dv

􏽰

1 + dv

≥
2p

��
Δ

√

1 + Δ
.

(68)

Now, we consider the nonpendent edges. It is easy to see
that the function x + (1/x) gets its maximum value when x

attains the maximum or minimum value. From
(Δ/δ)≥ (du/dv)≥ (δ/Δ) for all u and v ∈ V(G), we have

��
du

dv

􏽳

+

��
dv

du

􏽳

≤
��
Δ
δ

􏽲

+

��
δ
Δ

􏽲

, (69)
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which is equivalent to

2
����
Δδ1

􏽰

Δ + δ1
≤
2

����
dudv

􏽰

du + dv

≤ 1. (70)

Set auv � 1 and buv � (2
����
dudv

􏽰
/du + dv) for each edge

uv ∈ E(G), M1 � m1 � M2 � 1, and m2 � (2
����
Δδ1

􏽰
/Δ + δ1)

in Lemma 6, and we have

􏽘

uv∈E(G)du,

dv ≠ 1

12 􏽘

uv∈E(G)du,

dv ≠ 1

2
����
dudv

􏽰

du + dv

􏼠 􏼡

2

� (m − p) 􏽘

uv∈E(G)du,

dv ≠ 1

1 −
du − dv

du + dv

􏼠 􏼡

2
⎛⎝ ⎞⎠

≤
1
4

��������������
1

2
����
Δδ1

􏽰
/Δ + δ1( 􏼁

􏽳

+

������
2

����
Δδ1

􏽰

Δ + δ1

􏽳

⎛⎝ ⎞⎠

2

􏽘
uv ∈ E(G)du,

dv ≠ 1

2
����
dudv

􏽰

du + dv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

,

(71)

which implies that

􏽘
uv∈E(G)du,

dv ≠ 1

2
����
dudv

􏽰

du + dv

≥

������������������������������������
4(m − p)􏽐 uv∈E(G)du,

dv≠1
1 − du − dv/du + dv( 􏼁

2
􏼐 􏼑

􏽲

��������������

Δ + δ1/2
����

Δδ1
􏽱

􏼒 􏼓

􏽲

+

��������������

2
����
Δδ1

􏽰
/Δ + δ1( 􏼁

􏽱

≥

�������������������������������������
4(m − p)

2
− m − p/δ21􏼐 􏼑􏽐 uv∈E(G)du,

dv≠1
du − dv( 􏼁

2
􏽲

��������������

Δ + δ1/2
����

Δδ1
􏽱

􏼒 􏼓

􏽲

+

��������������

2
����
Δδ1

􏽰
/Δ + δ1( 􏼁

􏽱

�

��������������������������������������������

4(m − p)
2

− m − p/δ21􏼐 􏼑 σ(G) − 􏽐uv∈E(G)du�1 dv − 1( 􏼁
2

􏼐 􏼑

􏽱

��������������

Δ + δ1/2
����

Δδ1
􏽱

􏼒 􏼓

􏽲

+

��������������

2
����
Δδ1

􏽰
/Δ + δ1( 􏼁

􏽱

≥

������������������������������������

4(m − p)
2

− m − p/δ21􏼐 􏼑 σ(G) − p δ1 − 1( 􏼁
2

􏼐 􏼑

􏽱

��������������

Δ + δ1/2
����

Δδ1
􏽱

􏼒 􏼓

􏽲

+

��������������

2
����
Δδ1

􏽰
/Δ + δ1( 􏼁

􏽱 .

(72)

Finally, the result follows from (67), (68), and (72).
Next, results are immediate consequences of$eorem 16

with the setting p � 0. □

Corollary 13. For a graph G of size m with maximum degree
Δ and minimum degree δ ≥ 2,

GA(G)≥

���������������
4m

2
− m/δ2􏼐 􏼑σ(G)

􏽱

������������
(Δ + δ/2

���
Δδ

√
)

􏽰
+

������������
(2

���
Δδ

√
/Δ + δ)

􏽰 . (73)

Now, we obtain a lower bound for the geometric-
arithmetic index in terms of the second Zagreb index and the
general sum connectivity index.

Theorem 17. Let G be a graph of size m, maximum degree Δ,
and minimum degree δ. 3en,

GA(G)≥

������������������������

4M2(G)χ− 2(G) −
m

2

4
·
Δ2 + δ2

Δδ

􏽳

. (74)
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Proof. By Lemma 5 and putting auv � 2
����
dudv

􏽰
,

buv � (1/du + dv), m1 � 2δ, N1 � 2Δ, m2 � (1/2Δ), and
N2 � (1/2δ), we have

􏽘

n

i�1
4dudv 􏽘

n

i�1

1
du + dv( 􏼁

2 − 􏽘
n

i�1

2
����
dudv

􏽰

du + dv

⎛⎝ ⎞⎠

2

≤
m

2

4
·
Δ2 + δ2

Δδ
.

(75)

$is implies that

GA(G)
2 ≥ 4M2(G)χ− 2(G) −

m
2

4
·
Δ2 + δ2

Δδ
. (76)

$e result follows.
Now, we obtain a lower bound for the geometric-

arithmetic index in terms of the harmonic index. □

Theorem 18. Let G be a graph without isolated edges. 3en,

GA(G)≥
�
2

√
H(G). (77)

Proof. Since for each uv ∈ E(G), dudv ≥ 2, we obtain

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≥ 􏽘
uv∈E(G)

2
�
2

√

du + dv

�
�
2

√
H(G),

(78)

as desired.
$e proof of next results can be found in [33]. □

Theorem 19 (see [33]). Let G be a triangle-free graph of
order n and the minimum degree δ ≥ k(k≤ (n/2)). 3en,

H(G)≥
2k(n − k)

n
. (79)

Theorem 20 (see [33]). Let G be a triangle-free graph of
order n and size m. 3en,

H(G)≥
2m

n
. (80)

Applying $eorems 18–20, it leads to the next results.

Corollary 14. Let G be a triangle-free graph of order n

without isolated edges, and the minimum degree
δ ≥ k(k≤ (n/2)). 3en,

GA(G)≥
2

�
2

√
k(n − k)

n
, (81)

GA(G)≥
2

�
2

√
m

n
. (82)

We can see that Inequality (82) improves the next well-
known result for triangle-free graphs [13]. Let G be a graph
of order n and size m without isolated vertex. $en,

GA(G)≥
2m

n
. (83)

$e eccentricity ε(v) of v is defined as

ε(v) � max d(v, w) : w ∈ V(G){ }, (84)

where d(v, w) is the length of a shortest path connecting v

and w. $e radius r and diameter D are defined as the
minimum and maximum values among ε(v) over all vertices
v ∈ V(G), respectively.

Xu [34] showed that, for any nontrivial connected graph
G of order n, size m, and radius r, H(G)≥ (m/n − r). Using
this and $eorem 18, we obtain the next result.

Corollary 15. Let G be a nontrivial connected graph of order
n, size m, and radius r. 3en,

GA(G)≥
�
2

√
m

n − r
. (85)

Theorem 21. Let G be a nontrivial connected graph of size m

and radius r. 3en,

GA(G)≥
R1/2(G)

n − r
. (86)

Proof. Note that, for each vertex u ∈ V(G), we have
du ≤ n − ε(u). $us, for each edge uv ∈ E(G),

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≥ 􏽘
uv∈E(G)

2
����
dudv

􏽰

2n − ε(u) − ε(v)

≥ 􏽘
uv∈E(G)

2
����
dudv

􏽰

2n − 2r
�

R1/2(G)

n − r
,

(87)

as desired. □

Theorem 22. Let G be a nontrivial graph of order n, size m,
and p pendent edges without isolated vertex. 3en,

GA(G)≥
p

�����
n − 1

√ +
m − p

n − 1 − (p/2)
. (88)

Proof. Since 0< (1/du) and (1/dv)≤ 1, therefore we deduce
that

GA(G) � 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

≥ 􏽘
uv∈E(G)

1/du( 􏼁 + 1/dv( 􏼁( 􏼁
����
dudv

􏽰

du + dv

� 􏽘
uv∈E(G)

1
����
dudv

􏽰 .

(89)
For each pendent edge e � uv, we clearly have (1/����

dudv

􏽰
)≥ (1/

�����
n − 1

√
). If e � uv is a nonpendent edge, then

du + dv ≤ 2(n − 1) − p, as any pendent vertex is adjacent to at
most one of u and v. So,

����
dudv

􏽰
≤ (du +dv/2)≤ n − 1 − (p/2);

hence,
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1
����
dudv

􏽰 ≥
1

n − 1 − (p/2)
. (90)

$us,

GA(G)≥
p

�����
n − 1

√ +
m − p

n − 1 − (p/2)
. (91)

$e desired result follows.
In [35], Kulli et al. defined the first and second gener-

alized multiplicative Zagreb indices:

MZ
a
1(G) � 􏽙

uv∈E(G)

du + dv( 􏼁
a
,

MZ
a
2(G) � 􏽙

uv∈E(G)

dudv( 􏼁
a
.

(92)

Here, we obtain a lower bound in terms of the first and
second generalized multiplicative Zagreb indices. □

Theorem 23. Let G be a nontrivial graph of size m. 3en,

GA(G)≥ 2m

���������

MZ
1/2
2 (G)

MZ
1
1(G)

m

􏽶
􏽴

. (93)

Proof. By Lemma 2, we obtain

GA(G)

2m
�

1
m

􏽘
uv∈E(G)

����
dudv

􏽰

du + dv

≥

������������

􏽙
uv∈E(G)

����
dudv

􏽰

du + dv

m

􏽶
􏽴

�

����������������������������
􏽑uv∈E(G)

����
dudv

􏽰

􏽑uv∈E(G) du + dv( 􏼁 �

���������
MZ

1/2
2 (G)

MZ
1
1(G)

m

􏽳

,

m

􏽶
􏽵
􏽴

(94)

as desired. □

Theorem 24. Let G be a graph of size m and minimum
degree δ. 3en,

GA(G)≥
4δ2m2

HM(G)
. (95)

Proof. By Lemma 1, we get

GA(G)

2m
�

1
m

􏽘
uv∈E(G)

����
dudv

􏽰

du + dv

≥
1
m

􏽘
uv∈E(G)

2dudv/ du + dv( 􏼁( 􏼁

du + dv

�
1
m

􏽘
uv∈E(G)

2dudv

du + dv( 􏼁
2

≥
m

􏽐uv∈E(G) du + dv( 􏼁
2/2dudv􏼐 􏼑

≥
m

1/2δ2􏼐 􏼑􏽐uv∈E(G) du + dv( 􏼁
2

�
2δ2m

HM(G)
,

(96)

as desired.
In the sequel, we obtain a lower bound in terms of the

first Zagreb index. □

Theorem 25. Let G be a graph of size m, maximum degree Δ,
and minimum degree δ. 3en,

GA(G)≥
δm

Δ
+ 2m −

M1(G)

δ
. (97)

Proof. By Lemma 8, we have

GA(G) +
M1(G)

δ
≥ 􏽘

uv∈E(G)

2
����
dudv

􏽰

du + dv

+
du + dv����

dudv

􏽰􏼠 􏼡

≥ 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ 2􏼠 􏼡

� 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ 􏽘
uv∈E(G)

2

≥
δm

Δ
+ 2m,

(98)

and this implies the desired bound. □

Zhou [36] proved that, for any triangle-free graph of
order n and size m, M1(G)≤mn. Together with$eorem 25,
we get the next result.

Corollary 16. Let G be a triangle-free graph of order n, size
m, maximum degree Δ, and minimum degree δ. 3en,

GA(G)≥m
δ
Δ

+ 2 −
n

δ
􏼠 􏼡. (99)

Inequality (98) leads to the following results.
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Corollary 17. Let G be a graph of size m, maximum degreeΔ,
and minimum degree δ. 3en,

GA(G)≥ δH(G) + 2m −
M1(G)

δ
,

GA(G)≥
R1/2(G)

Δ
+ 2m −

M1(G)

δ
.

(100)

Note that, for every two real numbers x and y,
((x + y)2/xy)≥ 4. Applying this, we obtain a lower bound
for the geometric-arithmetic index in terms of the hyper-
Zagreb index.

Theorem 26. Let G be a graph of size m, maximum degree Δ,
and minimum degree δ. 3en,

GA(G)≥
δm

Δ
+ 4m −

HM(G)

δ2
. (101)

Proof. From the above inequality, we have

GA(G) +
HM(G)

δ2
≥ 􏽘

uv∈E(G)

2
����
dudv

􏽰

du + dv

+
du + dv( 􏼁

2

dudv

􏼠 􏼡

≥ 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ 4􏼠 􏼡

� 􏽘
uv∈E(G)

2
����
dudv

􏽰

du + dv

+ 􏽘
uv∈E(G)

4

≥
δm

Δ
+ 4m,

(102)
and this implies the desired bound.

Here, we obtain a lower bound for the geometric-
arithmetic index in terms of the first Zagreb index. □

Theorem 27. Let G be a graph of size m and minimum
degree δ. 3en,

GA(G)≥ 2m −
M1(G)

2δ
. (103)

Proof. From the fact that x + (1/x)≥ 2 for any x> 0, we
have

GA(G) +
M1(G)

2δ
≥ 􏽘

uv∈E(G)

2
����
dudv

􏽰

du + dv

+
du + dv

2
����
dudv

􏽰􏼠 􏼡

≥ 􏽘
uv∈E(G)

2 � 2m,

(104)

and this implies the desired bound. □

Theorem 28 (see [37]). Let G be a graph of size m and
diameter D> 1. 3en,

M1(G)≤m
2

− m(D − 3) +(D − 2). (105)

Now, by $eorems 27 and 28, we have the following
result.

Corollary 18. Let G be a graph of size m, minimum degree δ,
and diameter D> 1. 3en,

GA(G)≥ 2m −
m

2
− m(D − 3) +(D − 2)

2δ
. (106)

Theorem 29 (see [38]). Let G be a graph of size m, with t

triangles and pendent vertex p. 3en,

M1(G)≤m(p + 2) + 3t. (107)

Again, by $eorems 27 and 29, we have the following
result.

Corollary 19. Let G be a graph of size m, with t triangles, leaf
number L, and minimum degree δ. 3en,

GA(G)≥ 2m −
m(p + 2) + 3t

2δ
. (108)

Theorem 30 (see [39]). Let G be a triangle- and quadrangle-
free graph with n> 1 vertices. 3en,

M1(G)≤ n(n − 1). (109)

Also, by3eorems 27 and 30, we have the following result.

Corollary 20. Let G be a triangle- and quadrangle-free graph
of order n, size m, and minimum degree δ. 3en,

GA(G)≥ 2m −
n(n − 1)

2δ
. (110)
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