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Based on the core-EP decomposition, we use the WG inverse, Drazin inverse, and other inverses to give some new charac-
terizations of the WG matrix. Furthermore, we generalize the Cayley–Hamilton theorem for special matrices including the WG
matrix. Finally, we give examples to verify these results.

1. Introduction

First, we use the following notations. Let Cm,n stand for the
set of m × n complex matrices. .e symbols A∗, R(A),
rk(A), and det(A) represent the conjugate transpose, range,
rank, and determinant of A, respectively. .e smallest
positive integer k such that rk(Ak+1) � rk(Ak) is called the
index of A ∈ Cm,n and it is denoted by Ind(A). .e
Moore–Penrose inverse of A ∈ Cm,n is the unique matrix
X ∈ Cn,m satisfying the following equations:

AXA � A,

XAX � X,

(AX)
∗

� AX,

(XA)
∗

� XA,

(1)

and the unique matrix X is denoted by X � A† [1, 2].
Furthermore, we denote

EA � AA
†
,

FA � In − A
†
A.

(2)

.e Drazin inverse of A ∈ Cn,n is the unique matrix
X ∈ Cn,n such that

A
k
XA � A

k
,

XAX � X,

AX � XA,

(3)

and the unique matrix X is usually denoted by X � AD,
where k � Ind(A) [1, 2]. In particular, when k � 1, X is
called the group inverse of A and is denoted by X � A#.
.erefore, we call it a group invertible matrix with index 1.
.e symbol CCM

n stands for the set of group invertible
matrices in Cn,n:

C
CM
n � Ark A

2
􏼐 􏼑 � rk(A), A ∈ Cn,n. (4)

Baksalary and Trenkler [3] defined the core inverse of a
complex matrix with index 1. Let A ∈ CCM

n ; the core inverse
of A is the unique matrix which satisfies the following
equations:

AX � AA
○†
,

R(X)⊆R(A),
(5)

and it is denoted by X � A○#. Subsequently, a variety of new
generalized inverses have been established successively. Let
A ∈ Cn,n with Ind(A) � k. .e core-EP inverse of A is the
unique matrix X ∈ Cn,n satisfying XAk+1 � Ak, XAX � X,
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and (AX)∗ � AX, and the core-EP inverse of A is denoted by
A○† [4]; the B-T inverse of A is the unique matrix X ∈ Cn,n

satisfyingX � (AEA)†, and the B-T inverse ofA is denoted by
A◇ [5]; the DMP inverse of A is the unique matrix X ∈ Cn,n

satisfying XAX � X, XA � ADA, and AkX � AkA○†, and the
DMP inverse of A is denoted by X � AD,† [6]; the dual DMP
inverse of A is the unique matrix X ∈ Cn,n satisfying
XAX � X, AX � AAD, and XAk � A○†Ak, and the dual DMP
inverse of A is denoted by A†,D [6]; the CMP inverse of
A ∈ Cn,n is the unique matrix X ∈ Cn,n satisfying XAX � X,
AX � AADAA○†, and XA � A○†AADA, and the CMP inverse
ofA ∈ Cn,n is denoted byAC,† [7]. It is easy to see that core-EP
inverse and DMP inverse are both generalized core inverses,
which are extensions of core inverse on square matrices
without index constraint, and when A ∈ CCM

n , A○# � AD,†

� A○†.
Furthermore, Wang and Chen [8] proposed a general-

ized group inverse. Let A ∈ CCM
n , if X satisfies the following

equations:

AX
2

� X,

AX � A
○†
A,

(6)

where X is called the WG inverse of A, and X is unique. It is
usually denoted by X � AⓌ. By applying the definition, we
can obtain AⓌAAⓌ � AⓌ and R(AⓌ)⊆R(Ak). It is
noteworthy that AⓌ � A# and A# ≠A#, when A ∈ CCM

n .
.en, Ferryra et al. [9] extended the definition ofWG inverse
to the general matrix, defined the weighted WG inverse, and
gave its expression, properties, and characterizations; Mosić
and Zhang [10] established the weighted WG inverse of
Hilbert space operator; Zhou et al. [11] generalized WG
inverse to a proper ∗ -ring and gave a new characterization
ofWG inverse; Zhou et al. [12] generalized m-WG inverse to
a unitary ring with involution and gave some properties of
m-WG inverse; Mosić and Stanimirović [13] gave new
characterizations, limit representations, integral represen-
tations, and perturbation formulae of the WG inverse.

By applying the WG inverse, Wang and Liu [14] in-
troduced the definition of WG matrix based on the prop-
erties and characterizations ofWG inverse. Let A ∈ Cn,n; if A

commutes with its WG inverse, A is called WG matrix. .e
symbol CWG

n stands for the set of WG matrices in Cn,n [14]:

C
WG
n � AAA

Ⓦ
� A

Ⓦ
A, A ∈ Cn,n. (7)

Subsequently, Yan et al. [15] investigated some new
characterizations of weak group inverse by projection, the
Bott–Duffin inverse, etc.

Matrix decomposition is very important, which not only
functions as a significant role in every branch of mathe-
matics but also has a wide range of applications in engi-
neering. With the development of new generalized inverses,
new research tools such as matrix decomposition and al-
gorithm are also given. Wang established the core-EP de-
composition of squarematrix over complex fields [16]. Core-
EP decomposition is one of the commonly used tools to
study core-EP inverse and several new generalized inverses.

Lemma 1 (see [16], core-EP decomposition). Let A ∈ Cn,n

with Ind(A) � k. *en, there exist A1 and A2, such that A �

A1 + A2, where A1 ∈ CCM
n , Ak

2 � 0, and A∗1A2 � A2A1 � 0.
Furthermore,

A1 � U
T S

0 0
􏼢 􏼣U

∗
,

A2 � U
0 0

0 N
􏼢 􏼣U

∗
,

(8)

where U is a unitary matrix, T ∈ Crk(Ak),rk(Ak) is nonsingular,
and N is nilpotent.

By applying the above decomposition, it is easy to verify

A
k

A
k

􏼐 􏼑
○†

� U
Irk Ak( ) 0

0 0
􏼢 􏼣U

∗
. (9)

Lemma 2 (see [14]). Let A ∈ Cn,n with Ind(A) � k, then
rk(AⓌ) � rk(AD) � rk(Ak) and

A
Ⓦ

� A
#
1 � U

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗
,

� AA
○†
A􏼐 􏼑

#
� A
○†

􏼐 􏼑
2
A � A

2
􏼐 􏼑
○†
A

� A
k

A
k+2

􏼐 􏼑
○#
A � A

2
EAk􏼐 􏼑
○†
A.

(10)

Lemma 3 (see [8, 14]). Let A ∈ Cn,n be as in the form (8).
Among A ∈ CWG

n , (A2)Ⓦ � (AⓌ)2, SN � 0, and AAⓌ � AⓌ

A, any two of them are equivalent. If A ∈ CWG
n , then

A
Ⓦ

� A
D

� A
k+1

􏼐 􏼑
Ⓦ

A
k

� A
t+1

􏼐 􏼑
○†
A

t
, (11)

where t is a positive integer and k is the index of A.

Lemma 4 (see [16–20]). Let A ∈ Cn,n be as in the form [21],
then

(1) A○† � U
T
∗Δ − T

∗ΔSN
○†

FNS
∗Δ N

○†
− FNS

∗ΔSN
○†􏼢 􏼣U∗;

(2) AD � U
T

− 1
T

− (k+1) 􏽥T

0 0
􏼢 􏼣U∗;

(3) A○† � U
T

− 1 0
0 0

􏼢 􏼣U∗;

(4) A◇ � U
T
∗△1 − T

∗△1SN
◇

(EN− EN◇ )S
∗△1N
◇

− (EN− EN◇)S
∗△1SN

◇􏼢 􏼣

U∗;

(5) AD,† � U
T

− 1
T

− (k+1) 􏽥TNN
○†

0 0
􏼢 􏼣U∗;

(6) A†,D � U
T
∗△ T

∗△T
− k 􏽥T

FNS
∗△ FNS

∗△T
− k 􏽥T

􏼢 􏼣U∗;

(7) AC,† � U
T
∗△ T

∗△T
− k 􏽥TNN

○†

FNS
∗△ FNS

∗△T
− k 􏽥TNN

○†􏼢 􏼣U∗,
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where △1 � (TT∗ + S(EN − EN◇S
∗))− 1, k � Ind(A),

􏽥T � 􏽐
k− 1
i�0 TiSNk− 1− i, and △ � (TT∗ + SFNS∗)− 1.

.e classical Cayley–Hamilton theorem is one of the
most important theorems in matrix theory. On the basis of
the classical Cayley–Hamilton theorem, mathematicians
established the rectangular matrix, block matrix, pair of
block matrix, and other matrices as well as more generalized
Cayley–Hamilton theorem for generalized inverse matrices.
.ey also gave application of generalized Cayley–Hamilton
theorem in several control systems [22–25]. In [26], Wang,
Chen, and Yan gave the generalized Cayley–Hamilton
theorem of core-EP inverse matrix and DMP inverse matrix
by core-EP decomposition, and the characteristic polyno-
mial equations of core-EP inverse matrix and DMP inverse
matrix were also discussed. In [2, 27], the researchers studied
the applications of generalized Cayley–Hamilton theorems
in generalized inverses such as Drazin inverse and Moor-
e–Penrose inverse. Based on the above researches, this paper
will focus on the WG matrix, the equivalent characteriza-
tions of WG matrix, and the generalized Cayley–Hamilton
theorem for special matrices including WG matrix.

2. Some Characterizations of WG Matrix

In [14], the definition and characterizations of WG matrix
are given through the commutativity of matrix and WG
inverse. In [15], Yan et al. investigated some new charac-
terizations of WG matrix.

Theorem 1 (see [15]). Let A ∈ Cn,n with Ind(A) � k, then
the following conditions are equivalent:

(1) A ∈ CWG
n ;

(2) AkA○† � AkA○†;
(3) AkA○† � AkAD,†;
(4) A○†Ak � AkAⓌ;
(5) AAD � A○†A;
(6) AAD � AAⓌ;
(7) A○†A � AD,†A.

It is pointed out that the set of group invertiblematrices is a
subset ofWGmatrices set. Specialmatrices such asWGmatrix,
group matrix, EP, i-EP, and k-EP matrix have rich intersection
[14]. In this section, we will mainly apply core-EP decom-
position to study the characterization of WG matrix.

Theorem 2. Let A ∈ Cn,n with Ind(A) � k, then the fol-
lowing conditions are equivalent:

(1) SN � 0, where S and N are as in the form [21];
(2) AAⓌ � AⓌA;
(3) (A2)Ⓦ � (AⓌ)2;
(4) AⓌ � AD;
(5) A○†A commutes with A○†A2;
(6) UAU∗ is a WG matrix for any unitary matrix U;
(7) A commutes with AAⓌ;

(8) A commutes with A○†A;
(9) AA○†A � AAⓌA;
(10) AⓌ commutes with AⓌA;
(11) Ak(Ak)○

†
A2 � (Ak(Ak)○

†
A)2;

(12) AA○†A2 � (AA○†A)2;
(13) AⓌA � AⓌAk(Ak)○

†
A;

(14) AⓌA � AⓌAA○†A;
(15) A(AⓌ)2A � AAⓌ;
(16) AⓌA2AⓌ � AⓌA;
(17) A(A2)Ⓦ � AⓌ;
(18) A(A2)Ⓦ � AA○†AⓌ;
(19) A(A2)Ⓦ � AAD,†AⓌ;
(20) (AAⓌ)2 � (AⓌ)2AAⓌA2;
(21) (AⓌA)2 � A2(AⓌ)2;
(22) AAⓌ commutes with AⓌA;
(23) AAⓌA � Ak(Ak)○

†
A;

(24) (AⓌ)2A � AⓌ;
(25) (AⓌ)2A � AD,†AAⓌ;
(26) (AⓌ)2A � AA†,DAⓌ;
(27) (AⓌ)2A � AAC,†AⓌ;
(28) AⓌADA � AⓌ;
(29) AⓌ commutes with AAD;
(30) AAD(I − AA○†)A � 0;
(31) Ak(I − AA○†)A � 0;
(32) AAD,†(I − AA○†)A � 0;
(33) A†,D(I − AA○†)A � 0;
(34) AC,†(I − AA○†)A � 0;
(35) A○†A2 � A2AⓌ;
(36) A2AD � AA○†A;

Proof. From [14], we know that Conditions (1)–(5) are
equivalent.

Let U be a unitary matrix, then (UAU∗)Ⓦ � UAⓌU∗ and

UAA
Ⓦ

U
∗

� UAU
∗
UA

Ⓦ
U
∗

� UAU
∗

( 􏼁 UAU
∗

( 􏼁
Ⓦ

,

UA
Ⓦ

AU
∗

� UA
Ⓦ

U
∗
UAU
∗

� UAU
∗

( 􏼁
Ⓦ

UAU
∗

( 􏼁.

⎧⎪⎨

⎪⎩
(12)

.us, Conditions (2) and (6) are equivalent.
Let the core-EP decomposition of A be as in the form

[21]. By using Lemma 3, we obtain

AA
Ⓦ

� U
T S

0 N
􏼢 􏼣

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗
� U

Irk Ak( ) T
− 1

S

0 0
⎡⎣ ⎤⎦U

∗
,

(13)

A
Ⓦ

A � U
T

− 1
T

− 2
S

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗

� U
Irk Ak( ) T

− 1
S + T

− 2
SN

0 0
􏼢 􏼣U

∗
.

(14)
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Applying [21, 27], we have

AAA
Ⓦ

� U
T S

0 N
􏼢 􏼣

Irk Ak( ) T
− 1

S

0 0
⎡⎣ ⎤⎦U

∗
� U

T S

0 0
􏼢 􏼣U

∗
, (15)

AA
Ⓦ

A � U
Irk Ak( ) T

− 1
S

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗
� U

T S + T
− 1

SNS

0 0
􏼢 􏼣U

∗
. (16)

By comparing [4, 7], we can get

SN � 0⟺AAA
Ⓦ

� AA
Ⓦ

A. (17)

.us, Conditions (1) and (7) are equivalent.
By Lemma 4, we obtain

AA
○†

� U
T S

0 N
􏼢 􏼣

T
− 1 0

0 0
⎡⎣ ⎤⎦U

∗
� U

Irk Ak( ) 0

0 0
􏼢 􏼣U

∗
,

(18)

A
○†
A � U

T
− 1 0
0 0

􏼢 􏼣
T S

0 N
􏼢 􏼣U

∗
� U

Irk Ak( ) T
− 1

S

0 0
􏼢 􏼣U

∗
.

(19)

By applying [10, 13], we have

AA
○†
A � U

Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗
� U

T S

0 0
􏼢 􏼣U

∗
, (20)

A
○†
AA � U

Irk Ak( ) T
− 1

S

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗
� U

T S + T
− 1

SN

0 0
􏼢 􏼣U

∗
. (21)

Fromwhat has been discussed above, we can surely come
to the conclusion that

SN � 0⟺AA
○†
A � A

○†
AA. (22)

.us, Conditions (1) and (8) are equivalent.
Because of [7, 16], we can get

SN � 0⟺AA
○†
A � AA

Ⓦ
A. (23)

.us, Conditions (1) and (9) are equivalent.
From [6, 23], we obtain

A
Ⓦ

A
Ⓦ

A � U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦

Irk Ak( ) T
− 1

S + T
− 2

SN

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S + T

− 3
SN

0 0
⎡⎣ ⎤⎦U

∗
,

(24)

A
Ⓦ

AA
Ⓦ

� U
Irk Ak( ) T

− 1
S + T

− 2
SN

0 0
􏼢 􏼣

T
− 1

T
− 2

S

0 0
􏼢 􏼣U

∗

� U
T

− 1
T

− 2
S

0 0
􏼢 􏼣U

∗
.

(25)

By comparing the above equations, we have

SN � 0⟺A
Ⓦ

A
Ⓦ

A � A
Ⓦ

AA
Ⓦ

. (26)

.us, Conditions (1) and (10) are equivalent.
By using [19], we can get

A
k

A
k

􏼐 􏼑
○†
A
2

� U
Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗

� U
T
2

TS + SN

0 0
⎡⎣ ⎤⎦U

∗
,

A
k

A
k

􏼐 􏼑
○†
A􏼒 􏼓

2
� U

Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣

·
Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗

� U
T
2

TS

0 0
⎡⎣ ⎤⎦U

∗
.

(27)

By applying the above equations, we obtain

SN � 0⟺A
k

A
k

􏼐 􏼑
○†
A
2

� A
k

A
k

􏼐 􏼑
○†
A􏼒 􏼓

2
. (28)

.us, Conditions (1) and (11) are equivalent.
Applying [10, 13], we have
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AA
○†
A
2

� U
Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗
� U

T
2

TS + SN

0 0
⎡⎣ ⎤⎦U

∗
,

AA
○†
A􏼐 􏼑

2
� U

T S

0 N
􏼢 􏼣

Irk Ak( ) T
− 1

S

0 0
⎡⎣ ⎤⎦

T S

0 N
􏼢 􏼣

Irk Ak( ) T
− 1

S

0 0
⎡⎣ ⎤⎦U

∗
� U

T
2

TS

0 0
⎡⎣ ⎤⎦U

∗
.

(29)

By comparing the above equations, we can get

SN � 0⟺AA
○†
A
2

� AA
○†
A􏼐 􏼑

2
. (30)

.us, Conditions (1) and (12) are equivalent.
By [19], we obtain

A
Ⓦ

A
k

A
k

􏼐 􏼑
○†
A � U

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦

Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗

� U
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦U

∗
.

(31)

From the above equation and [6], we can get

SN � 0⟺A
W

A � A
W

A
k

A
k

􏼐 􏼑
○†
A. (32)

.us, Conditions (1) and (13) are equivalent.
By applying [13, 23], we have

A
Ⓦ

AA
○†
A � U

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦

Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗

� U
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦U

∗
.

(33)

By comparing the above equation and [6], we can get

SN � 0⟺A
Ⓦ

A � A
Ⓦ

AA
○†
A. (34)

.us, Conditions (1) and (14) are equivalent.
Because of [6, 27], we obtain

A A
Ⓦ

􏼐 􏼑
2
A � U

Irk Ak( ) T
− 1

S

0 0
⎡⎣ ⎤⎦

·
Irk Ak( ) T

− 1
S + T

− 2
SN

0 0
⎡⎣ ⎤⎦U

∗

� U
Irk Ak( ) T

− 1
S + T

− 2
SN

0 0
⎡⎣ ⎤⎦U

∗
.

(35)

By the above equation and [27], we have

SN � 0⟺A A
Ⓦ

􏼐 􏼑
2
A � AA

Ⓦ
. (36)

.us, Conditions (1) and (15) are equivalent.
From [6, 27], we can get

A
Ⓦ

A
2
A
Ⓦ

� U
Irk Ak( ) T

− 1
S + T

− 2
SN

0 0
⎡⎣ ⎤⎦

·
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦U

∗

� U
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦U

∗
.

(37)

By comparing the above equation and [6], we obtain

SN � 0⟺A
Ⓦ

A
2
A
Ⓦ

� A
Ⓦ

A. (38)

Hence, Conditions (1) and (16) are equivalent.
By using Lemma 2, we have

A A
2

􏼐 􏼑
W

� U
T S

0 N
􏼢 􏼣

T
− 2

T
− 4

(TS + SN)

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S + T

− 3SN

0 0
⎡⎣ ⎤⎦U

∗
.

(39)

From the above equation and [23], we obtain

SN � 0⟺A A
2

􏼐 􏼑
W

� A
W

. (40)

.us, Conditions (1) and (17) are equivalent.
By applying Lemma 4, we can get

AA
○†

� U
T S

0 N
􏼢 􏼣

T
∗△ − T

∗△SN○†

FNS
∗△ N

○†
− FNS

∗△SN○†
⎡⎣ ⎤⎦U

∗

� U
Irk Ak( ) 0

0 NN
○†

⎡⎢⎣ ⎤⎥⎦U
∗
.

(41)

By (41), we obtain

AA
○†
A
W

� U
Irk Ak( ) 0

0 NN
○†

⎡⎢⎣ ⎤⎥⎦
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗
.

(42)

By applying the above formula and (39), we have SN � 0
if and only if A(A2)Ⓦ � AA○†AⓌ. .us, Conditions (1) and
(18) are equivalent.

By applying Lemma 4, we can get

AA
D,†

� U
T S

0 N
􏼢 􏼣

T
− 1

T
− (k+1) 􏽥TNN

○†

0 0
⎡⎣ ⎤⎦U

∗

� U
Irk Ak( ) T

− k 􏽥TNN
○†

0 0
⎡⎣ ⎤⎦U

∗
.

(43)
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Because of (43), we obtain

AA
D,†

A
Ⓦ

� U
Irk Ak( ) T

− k 􏽥TNN
○†

0 0
⎡⎣ ⎤⎦

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗
.

(44)

By comparing the above formula and (39), we obtain
SN � 0 if and only if A(A2)Ⓦ � AAD,†AⓌ..us, Conditions
(1) and (19) are equivalent.

Applying [6, 27], we have

AA
Ⓦ

􏼐 􏼑
2

� U
Irk Ak( ) T− 1S

0 0
􏼢 􏼣

2

U
∗

� U
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦U

∗
,

A
Ⓦ

􏼐 􏼑
2
AA

Ⓦ
A
2

� U
T− 1 T− 2S

0 0
􏼢 􏼣

2
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦

T S

0 N
􏼢 􏼣

2

U
∗
,

� U
Irk Ak( ) T

− 1
S + T

− 2
SN + T

− 3
SN

2

0 0
⎡⎣ ⎤⎦U

∗
.

(45)

If SN � 0, then (AAⓌ)2 � (AⓌ)2AAⓌA2. Conversely,
let (AAⓌ)2 � (AⓌ)2AAⓌA2; we get T− 1S + T− 2SN + T− 3

SN2 � T− 1S, that is, TSN + SN2 � 0.
If the index of A is equal to 1, then N � 0, that is, SN � 0.

If the index of A is equal to 2, then N2 � 0. From
TSN + SN2 � 0, we have TSN � 0. Since T is invertible, we
obtain SN � 0. Let the index of A be more than or equal to 3,
then Nk � 0 and Nk− 1 ≠ 0. If TSN + SN2 � 0 post-
multiplication by Nk− 2, then TSNk− 1 + SNk � 0. Since T is
invertible and Nk � 0, then SNk− 1 � 0. Furthermore, TSN +

SN2 � 0 postmultiplication by Nk− 3, then TSNk− 2 + SNk− 1

� 0. Since T is invertible and Nk− 1 � 0, then SNk− 2 � 0. By
repeating the process k − 1 times, we have SN � 0.

From what has been discussed above, SN � 0 if and only
if (AAⓌ)2 � (AⓌ)2AAⓌA2. .us, Conditions (1) and (20)
are equivalent.

By [6, 21, 23], we obtain

A
Ⓦ

A􏼐 􏼑
2

� U
Irk Ak( ) T− 1S + T− 2SN

0 0
􏼢 􏼣

2

U
∗

� U
Irk Ak( ) T

− 1
S + T

− 2
SN

0 0
⎡⎣ ⎤⎦U

∗
,

A
2

A
Ⓦ

􏼐 􏼑
2

� U
T S

0 N
􏼢 􏼣

2
T− 1 T− 2S

0 0
􏼢 􏼣

2

U
∗

� U
Irk Ak( ) T

− 1
S

0 0
⎡⎣ ⎤⎦U

∗
.

(46)

By comparing the above equations, we can get

SN � 0⟺ A
Ⓦ

A􏼐 􏼑
2

� A
2

A
Ⓦ

􏼐 􏼑
2
. (47)

.us, Conditions (1) and (21) are equivalent.

By applying (35) and (37), we have SN � 0 if and only if
(AAW)(AWA) � (AWA)(AAW). .us, Conditions (1) and
(22) are equivalent.

Because of [19], we have

A
k

A
k

􏼐 􏼑
○†
A � U

Irk Ak( ) 0

0 0
􏼢 􏼣

T S

0 N
􏼢 􏼣U

∗
� U

T S

0 0
􏼢 􏼣U

∗
.

(48)

By comparing the above equation and [7], we obtain
AAⓌA � Ak(Ak)○

†
A. SN � 0 is equivalent to AAⓌA � Ak

(Ak)○
†
A. Hence, Conditions (1) and (23) are equivalent.

From [2, 23], we have SN � 0 if and only if (AⓌ)2A �

AⓌ. .us, Conditions (1) and (24) are equivalent.
By using Lemma 4, we obtain

A
D,†

A � U
T

− 1
T

− (k+1) 􏽥TNN
○†

0 0
⎡⎣ ⎤⎦

T S

0 N
􏼢 􏼣U

∗

� U
Irk Ak( ) T

− 1
S + T

− (k+1) 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗
.

(49)

By using (49), we have

A
D,†

AA
Ⓦ

� U
Irk Ak( ) T

− 1
S + T

− (k+1) 􏽥TN

0 0
⎡⎣ ⎤⎦

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗
� A

Ⓦ
.

(50)

By comparing the above formula and [2], we can get
SN � 0 if and only if (AⓌ)2A � AD,†AAⓌ..us, Conditions
(1) and (25) are equivalent.

By Lemma 4, we obtain
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AA
†,D

� U
T S

0 N
􏼢 􏼣

T
∗△ T

∗△T
− k 􏽥T

FNS
∗△ FNS

∗△T
− k 􏽥T

⎡⎣ ⎤⎦U
∗

� U
Irk Ak( ) T

− k 􏽥T

0 0
⎡⎣ ⎤⎦U

∗
.

(51)

By applying (51), we have

AA
†,D

A
Ⓦ

� U
Irk Ak( ) T

− k 􏽥T

0 0
⎡⎣ ⎤⎦

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗
� A

Ⓦ
.

(52)

Applying the above formula and [2], we can get SN � 0 if
and only if (AⓌ)2A � AA†,DAⓌ. Hence, Conditions (1) and
(26) are equivalent.

Because of Lemma 4, we obtain

AA
C,†

� U
T S

0 N
􏼢 􏼣

T
∗△ T

∗△T
− k 􏽥TNN

○†

FNS
∗△ FNS

∗△T
− k 􏽥TNN

○†
⎡⎣ ⎤⎦U

∗

� U
Irk Ak( ) T

− k 􏽥TNN
○†

0 0
⎡⎣ ⎤⎦U

∗
.

(53)

From (53), we have

AA
C,†

A
Ⓦ

� U
Irk Ak( ) T

− k 􏽥TNN
○†

0 0
⎡⎣ ⎤⎦

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗
� A

Ⓦ
.

(54)

By comparing the above formula and [2], we can get
SN � 0 if and only if (AⓌ)2A � AAC,†AⓌ. Hence, Condi-
tions (1) and (27) are equivalent.

By using Lemma 1 and Lemma 4, we obtain

A
D

A � U
T

− 1
T

− (k+1) 􏽥T

0 0
⎡⎣ ⎤⎦

T S

0 N
􏼢 􏼣U

∗

� U
Irk Ak( ) T

− 1
S + T

− (k+1) 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗
.

(55)

By using the above formula, we have

A
Ⓦ

A
D

A � U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦

Irk Ak( ) T
− 1

S + T
− (k+1) 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S + T

− (k+2) 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗
.

(56)

If SN � 0, we can easily prove that AⓌADA � AⓌ.
Conversely, if the index of A is equal to 1 or 2, then obviously
SN � 0. Let the index of A be more than or equal to 3; we get
T− 2S + T− (k+2)(􏽐

k− 1
i�0 TiSNk− 1− i)N � T− 2S, that is, TSNk− 1+

· · · + Tk− 1SN � 0. Postmultiplying the above equation by
Nk− 2, then TSNk+k− 3 + · · · + Tk− 1SNk− 1 � 0, that is,
SNk− 1 � 0. .rough TSNk− 1 + · · · + Tk− 1SN � 0, we have
T2SNk− 2 + · · · + Tk− 1SN � 0. In the same way, we obtain
Tk− 1SN � 0, that is, SN � 0. From what has been discussed
above, we have SN � 0 if and only if AⓌADA � AⓌ. Hence,
Conditions (1) and (28) are equivalent.

By Lemma 1 and Lemma 4, we can get

AA
D

� U
T S

0 N
􏼢 􏼣

T
− 1

T
− (k+1) 􏽥T

0 0
⎡⎣ ⎤⎦U

∗

� U
Irk Ak( ) T

− k 􏽥T

0 0
⎡⎣ ⎤⎦U

∗
.

(57)

By applying [23] and (57), we have

AA
D

A
Ⓦ

� U
Irk Ak( ) T

− k 􏽥T

0 0
⎡⎣ ⎤⎦

T
− 1

T
− 2

S

0 0
⎡⎣ ⎤⎦U

∗

� U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗
� A

Ⓦ
.

(58)

Since the above formula, AⓌAAD � AⓌADA and AⓌA

AD � AⓌ are equivalent to AⓌAAD � AADAⓌ. .us,
Conditions (1) and (29) are equivalent.

Because of [13] and (57), we can get

I − AA
○†

� U
Irk Ak( ) 0

0 In− rk Ak( )

⎡⎢⎣ ⎤⎥⎦
Irk Ak( ) 0

0 0
􏼢 􏼣U

∗

� U
0 0

0 In− rk Ak( )

⎡⎢⎣ ⎤⎥⎦U
∗
,

(59)

AA
D

I − AA
○†

􏼐 􏼑A � U
T

k
T

− k 􏽥T

0 0
⎡⎣ ⎤⎦

·
0 0
0 In− rk Ak( )

⎡⎣ ⎤⎦
T S

0 N
􏼢 􏼣U

∗

� U
0 T

− k 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗
.

(60)

If SN � 0, then AAD(I − AA○†)A � 0. Conversely, let
AAD(I − AA○†)A � 0, then T− k(􏽐

k− 1
i�0 TiSNk− 1− i)N � 0, that

is, TSNk− 1 + · · · + Tk− 1SN � 0. By applying the method
which is used to verify the equivalence of Conditions (1) and
(28), we obtain SN � 0. From what has been discussed
above, SN � 0 is equivalent to AAD(I − AA○†)A � 0. Hence,
Conditions (1) and (30) are equivalent.

From (59), we have

A
k

I − AA
○†

􏼐 􏼑A � U
T

k 􏽥T

0 0
⎡⎣ ⎤⎦

0 0

0 In− rk Ak( )

⎡⎢⎣ ⎤⎥⎦
T S

0 N
􏼢 􏼣U

∗

� U
0 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗
.

(61)
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If SN � 0, then Ak(I − AA○†)A � 0. Conversely, let
Ak(I − AA○†)A � 0, then (􏽐

k− 1
i�0 TiSNk− 1− i)N � 0, that is,

TSNk− 1 + · · · + Tk− 1SN � 0. By applying the method which
is used to verify the equivalence of Conditions (1) and (28),
we obtain SN � 0. From what has been discussed above,
SN � 0 is equivalent to Ak(I − AA○†)A � 0. Hence, Condi-
tions (1) and (31) are equivalent.

By using [13], (43), and (59), we can get

AA
D,†

I − AA
○†

􏼐 􏼑A � U
Irk Ak( ) T

− k 􏽥TNN
○†

0 0
⎡⎣ ⎤⎦

·
0 0

0 In− rk Ak( )

⎡⎢⎣ ⎤⎥⎦
T S

0 N
􏼢 􏼣U

∗

� U
0 T

− k 􏽥TN

0 0
⎡⎣ ⎤⎦U

∗
.

(62)

If SN � 0, then AAD,†(I − AA○†)A � 0. Conversely, let
AAD,†(I − AA○†)A � 0, then T− k(􏽐

k− 1
i�0 Ti SNk− 1− i)N � 0,

that is, TSNk− 1 + · · · + Tk− 1SN � 0. By applying the method
which is used to verify the equivalence of Conditions (1) and
(28), we obtain SN � 0. From what has been discussed
above, SN � 0 is equivalent to AAD,†(I − AA○†)A � 0. .us,
Conditions (1) and (32) are equivalent.

Applying Lemma 4, [10], and (59), we obtain

A
†,D

I − AA
○†

􏼐 􏼑A � U
T
∗△ T

∗△T
− k 􏽥T

FNS
∗△ FNS

∗△T
− k 􏽥T

⎡⎣ ⎤⎦

·
0 0

0 In− rk Ak( )

⎡⎢⎣ ⎤⎥⎦
T S

0 N
􏼢 􏼣U

∗

� U
0 T
∗△T

− k 􏽥TN

0 FNS
∗△T

− k 􏽥TN

⎡⎣ ⎤⎦U
∗
.

(63)

If SN � 0, then A†,D(I − AA○†)A � 0. Conversely, let
A†,D(I − AA○†)A � 0, then T∗[TT∗ + SFNS∗]− 1T− k(􏽐

k− 1
i�0

TiSNk− 1− i)N � 0 and FNS∗[TT∗ + SFNS∗]− 1T− k(􏽐
k− 1
i�0

TiSNk− 1− i)N � 0. By using the method which is used to
verify the equivalence of Conditions (1) and (28), we obtain
SN � 0. From what has been discussed above, SN � 0 is
equivalent to A†,D(I − AA○†)A � 0. Hence, Conditions (1)
and (33) are equivalent.

By Lemma 4, [13], and (59), we have

A
C,†

I − AA
○†

􏼐 􏼑A � U
T
∗△ T

∗△T
− k 􏽥TNN

○†

FNS
∗△ FNS

∗△T
− k 􏽥TNN

○†
⎡⎣ ⎤⎦

·
0 0

0 In− rk Ak( )

⎡⎢⎣ ⎤⎥⎦
T S

0 N
􏼢 􏼣U

∗

� U
0 T
∗△T

− k 􏽥TN

0 FNS
∗△T

− k 􏽥TN

⎡⎣ ⎤⎦U
∗
.

(64)

If SN � 0, then AC,†(I − AA○†)A � 0. Conversely, let
AC,†(I − AA○†)A � 0, then T∗[TT∗ + SFNS∗]− 1T− k(􏽐

k− 1
i�0

TiSNk− 1− i)N � 0 and FNS∗[TT∗ + SFNS∗]− 1T− k(􏽐
k− 1
i�0

TiSNk− 1− i)N � 0. By applying the method which is used to

verify the equivalence of Conditions (1) and (28), we obtain
SN � 0. From what has been discussed above, SN � 0 is
equivalent to AC,†(I − AA○†)A � 0. Hence, Conditions (1)
and (34) are equivalent.

By applying [4, 8], we obtain SN � 0 if and only if A○†

A2 � A2AW. Hence, Conditions (1) and (35) are equivalent.
Because of [16], (57) and

AAA
D

� U
T S

0 N
􏼢 􏼣

Irk Ak( ) T
− k 􏽥T

0 0
⎡⎣ ⎤⎦U

∗

� U
T T

− (k− 1) 􏽥T

0 0
⎡⎣ ⎤⎦U

∗
.

(65)

If SN � 0, then A2AD � AA○†A. Conversely, let A2AD �

AA○†A, then T− (k− 1)(􏽐
k− 1
i�0 TiSNk− 1− i) � S, that is, T− (k− 1)S

Nk− 1 + · · · + T− 1SN � 0. By applying the method which is
used to verify the equivalence of Conditions (1) and (28), we
obtain SN � 0. From what has been discussed above, SN � 0
is equivalent to A2AD � AA○†A. Hence, Conditions (1) and
(36) are equivalent. □

3. Generalized Cayley–Hamilton Theorem

In this section, we extend the classical Cayley–Hamilton
theorem to some special matrix such as the WG matrix.

Theorem 3 (see [21]). Let A ∈ Cn,n; the characteristic
polynomial of A is

pA(s) � det sIn − A( 􏼁 � s
n

+ an− 1s
n− 1

+ · · · + a1s + a0,

(66)

then

pA(A) � A
n

+ an− 1A
n− 1

+ · · · + a1A + a0In � 0. (67)

In [21], if A is singular, then a0 � 0.

Theorem 4. Let A ∈ Cn,n be singular with Ind(A) � k. If

det sIn − A( 􏼁 � s
n

+ an− 1s
n− 1

+ · · · + a1s, (68)

then

A
Ⓦ

+ an− 1 A
Ⓦ

􏼐 􏼑
2

+ · · · + a1 A
Ⓦ

􏼐 􏼑
n

� 0,
(69)

where AⓌ ∈ Cn,n is the weak group inverse of the matrix A.

Proof. Let A ∈ Cn,n be singular; we use the Cay-
ley–Hamilton theorem, then

A
n

+ an− 1A
n− 1

+ · · · + a1A � 0. (70)

Postmultiplying the above equation by (AⓌ)n+1, we get

A
n

A
Ⓦ

􏼐 􏼑
n+1

+ an− 1A
n− 1

A
Ⓦ

􏼐 􏼑
n+1

+ · · · + a1A A
Ⓦ

􏼐 􏼑
n+1

� 0.

(71)
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By using the properties of the WG matrix, that is,
A(AⓌ)2 � AⓌ, we have A(AⓌ)n+1 � A(AⓌ)2(AⓌ)n− 1 �

AⓌ (AⓌ)n− 1 � (AⓌ)n. A similar method can be used to
obtain A2(AⓌ)n+1 � (AⓌ)n− 1, · · ·, An− 1(AⓌ)n+1 � (AⓌ)2,
and An(AW)n+1 � AW. Substituting the above equations into
(71), we have (69). □

Example 1. Let

A �
1 0

− 1 0
􏼢 􏼣. (72)

It is easy to confirm that the weak group inverse
AW ∈ Cn,n is

A
Ⓦ

�
1 0

− 1 0
􏼢 􏼣. (73)

.en,

det sI2 − A( 􏼁 �
s − 1 0

1 s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� s

2
− s. (74)

From the classical Cayley–Hamilton theorem, we have

A
2

− A �
1 0

− 1 0
􏼢 􏼣

2

−
1 0

− 1 0
􏼢 􏼣 �

0 0

0 0
􏼢 􏼣. (75)

By applying .eorem 4, we obtain

A
Ⓦ

− A
Ⓦ

􏼐 􏼑
2

�
1 0

− 1 0
􏼢 􏼣 −

1 0

− 1 0
􏼢 􏼣

2

�
0 0

0 0
􏼢 􏼣.

(76)

Next, we extend the classical Cayley–Hamilton theorem
to the WG inverse matrix. Let A ∈ Cn,n with Ind(A) � k.
From Lemma 1 and Lemma 2, it can be obtained

det sIn − U
T

− 1
T

− 2
S

0 0
⎡⎣ ⎤⎦U

∗⎛⎝ ⎞⎠

� s
n− rk Ak( )rk sIrk Ak( ) − T

− 1
􏼒 􏼓.

(77)

.e characteristic polynomial of T− 1 is

pT− 1(s) � det sIrk Ak( ) − T
− 1

􏼒 􏼓

� s
rk Ak( ) + bn− 1s

rk Ak( )− 1
+ · · ·

+ bn− rk Ak( )+1s + bn− rk Ak( ).

(78)

It is given by the classical Cayley–Hamilton theorem

pT− 1 T
− 1

􏼐 􏼑 � T
− 1

􏼐 􏼑
rk Ak( )

+ bn− 1 T
− 1

􏼐 􏼑
rk Ak( )− 1

+ · · · + bn− rk Ak( )+1T
− 1

+ bn− rk Ak( )Irk Ak( ) � 0.

(79)

Postmultiplying the above equation by Trk(Ak),

Irk Ak( ) + bn− 1T + · · · + bn− rk Ak( )+1T
rk Ak( )− 1

+ bn− rk Ak( )T
rk Ak( ) � 0.

(80)

By using (77) and (78), we have .eorem 5.

Theorem 5. Let A ∈ Cn,n with Ind(A) � k, then the char-
acteristic polynomial of AⓌ is

p(s) � det sIn − A( 􏼁 � s
n

+ bn− 1s
n− 1

+ · · · + bn− rk Ak( )s
n− rk Ak( ),

· A
Ⓦ

􏼐 􏼑
n

+ bn− 1 A
Ⓦ

􏼐 􏼑
n− 1

+ · · · + bn− rk Ak( ) A
Ⓦ

􏼐 􏼑
n− rk Ak( )

� 0,

(81)

where bn− 1, . . . , bn− rk(Ak) is as in (78).

Example 2. Let

A �

1 0 1 0

0 1 0 1

0 0 0 1

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (82)

then Ind(A) � 2, rk(A2) � 2, and

T �
1 0

0 1
􏼢 􏼣,

T
− 1

�
1 0

0 1
􏼢 􏼣,

A
Ⓦ

�

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(83)

Furthermore,

pT− 1(s) � s
2

− 2s + 1, pAⓌ(s)

� s
2

s
2

− 2s + 1􏼐 􏼑 � s
4

− 2s
3

+ s
2
,

·

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

− 2

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

+

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

� 0.

(84)

4. Conclusion

In this paper, we give some new characterizations of theWG
matrix. Some relations between various well-known gen-
eralized inverses and the WG matrix are proved, and
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generalized Cayley–Hamilton theorem for special matrices
such as WG matrix is given. We are convinced that re-
searches about the WG matrix will also gain more attention
in the near future. Some perspectives for further researches
can be described as follows: (1) our further goal will be to
investigate the definition, properties, and characterizations
of tensor WG matrix; (2) further, we will study the iterative
algorithm of the tensor WG matrix and its application [28].
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no. 1, p. 2, 2020.
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