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In theory, the industrial agglomeration is a double-edged sword as there are both positive and negative externalities. China’s cities,
with great disparities on degrees of the industrial agglomeration, often face different energy and carbon dioxide emission
problems, which raise the question whether the industrial agglomeration promotes or inhibits energy efficiency and carbon
dioxide emission. )is paper explored the effects of the industrial agglomeration on carbon efficiency in China. Spatial
econometric methods were implemented using panel data (2007–2016) of 285 cities above the prefecture level.)e results revealed
that industrial agglomerations have significant impacts on the urban carbon efficiency with significant spatial spillover effects. )e
agglomerations of the manufacturing and high-end productive service industries take positive effects on carbon efficiency while
the low-end productive and living service industries take negative effects. As a comparison, we found that the agglomeration
effects at the level of the megalopolis are greater than those at the national level, especially for the living services industry, in which
the higher levels of agglomerationmake the effects on carbon efficiency change from negative to positive.)e divisions of labor for
the central and common cities in the megalopolises are integrated into the industrial agglomeration. Furthermore, the fractional-
order grey forecasting model is used in this paper. By the virtue of its advantage in dealing with small sample data which lack
statistical rules, this paper makes an out-of-sample prediction of carbon efficiency and industrial agglomeration degree of Chinese
cities. By adding the predicted results to the spatial correlation test, new evidence on the spatial correlation of carbon efficiency
and spatial division of labor between cities is obtained. Based on the empirical results of the present study, we have proposed some
policy recommendations.

1. Introduction

Since its reform and opening up, China’s rapid urbanization
process has brought about a significant increase in energy
consumption and CO2 emissions. During 1980–2014,
China’s average annual growth rate of CO2 emissions was as
much as 9.2%. )e International Energy Agency (IEA) re-
ported that China has, since 2007, far exceeded the CO2
emissions of the European Union and the United States [1].
At present, according to statistics from the World Bank,
China’s CO2 emissions had reached 10.29 billion tons,

accounting for 28% of global CO2 emissions in 2014. In
comparison, in 2014, the CO2 emissions of the European
Union and the United States were only 3.24 and 5.25 billion
tons, respectively [2]. )ere is no doubt that the Chinese
government faces an increasing amount of international and
domestic pressure while keeping economic development
stable. )e Chinese government has made a list of com-
mitments for reducing carbon emissions and to curb global
climate change. In 2014, the Chinese government an-
nounced, in the “Sino US joint statement on climate
change,” that it plans to reach the peak of CO2 emissions by
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2030. At the 2015 Paris Climate Conference, the Chinese
government committed to CO2 emissions per unit of GDP
being 60–65% lower in 2030 than the level in 2005. Ac-
cordingly, China has enhanced a series of restrictions on
CO2 emissions. For instance, China has controlled the ex-
pansion of the production capacity of the manufacturing
industry because this industry produces high levels of
pollution, consumes a large amount of energy, and is re-
sponsible for high CO2 emissions. China has intentionally
reduced its reliance on the manufacturing industry to
achieve industrial upgrading. However, the implementation
of restrictions on the manufacturing industry is bound to
slow down economic growth.

In the process of economic development, cities are
regarded as carriers of economic activities and also account
for about 85% of China’s CO2 emissions [3]. )e rapid
urbanization increases not only massive CO2 emissions but
also the level of total factor productivity (TFP) with the
accumulation of the population, economic factors, and
activities in the cities [4]. An improvement of the TFP plays
an essential role in promoting economic growth and
transformation [5, 6], as well as improving efforts to reduce
energy consumption and CO2 emissions [7, 8]. )erefore,
the economies of scale and technology spillover effects will
inevitably affect the quantity and efficiency of CO2 emission.
In this sense, the effective use of urban industrial agglom-
eration effects is conducive to not only reducing CO2
emissions but also promoting economic growth.

Many scholars studied how urbanization improves
carbon efficiency from the perspective of agglomeration
economies. Most scholars identified that the driving factors
for improving carbon efficiency are the aggregation of the
population, technological progress, and industrial struc-
ture. For example, Li et al. studied the efficiency of CO2
emissions of China’s 31 manufacturing industries, from
2012 to 2016, and found that the high-tech industry ranked
at the top of the list of industries with different levels of
technology [9]. Wang et al. discovered that the energy
structure, technological level, and rate of urbanization all
have significant impacts on carbon efficiency [10]. Sun et al.
evaluated the carbon efficiency and the global value chain
(GVC) position index. )ey highlighted that, compared
with the labor-intensive and resource-intensive
manufacturing industries, the technology-intensive
manufacturing industry in the GVC is most effective in
improving carbon efficiency [11]. Zhang et al. indicated
that enterprise size is a crucial factor for improving carbon
efficiency [12]. Wang and Ma determined that the level of
urbanization, the structure of energy consumption, and the
level of industrialization are the main driving factors of
CO2 emissions [13]. Wang et al. found that the gradual
improvement of the level of technology is the main driving
force for the improvement of the efficiency of CO2 emis-
sions [14, 15]. Wang et al. found that the production
technology shows heterogeneities at the level of region [16]
and sector [17].

In general, technological progress, economies of scale,
and the aggregation of the population will significantly affect

the carbon efficiency. However, these studies did not discuss
the agglomeration of the segmented service industries. )us,
it is unknown that how the impact of the spatial agglom-
eration of economic activity on carbon efficiency is derived
from the agglomeration of services. Besides, according to the
China Megalopolises Development Report 2010, mega-
lopolises cover 21.13% of the national land area, accounting
for 48.99% of the total population, 51.41% of the urban
population, and 46.7% of the urban members. In addition,
they create 81.94% of the added value of the second industry
and 83.5% of the added value of the third industry. )e
megalopolis is an advanced form of spatial organization with
a concentration of economic actions resulting from highly
developed industrialization and urbanization [18]. )e
spatial characteristics of a megalopolis contribute to pro-
viding transportation, communication, information, and
other infrastructures, as well as market conditions, which
further stimulate the agglomeration of industries natively.
However, few scholars have studied the relationship between
industrial agglomeration and carbon efficiency in
megalopolises.

Compared to the extant research, the present study
makes three major contributions: (1) the present study built
a spatial Durbin model to study the effects of the hetero-
geneity of the industrial agglomeration on carbon efficiency
at the national level and at the level of themegalopolis; (2) we
explored the different impacts from various service industry
agglomerations on urban carbon efficiency and identified
specific impacts in megalopolises; (3) comparisons between
the manufacturing and segmented service industries were
made, and finally, we sought the optimal development path
of cities for the dual goals of economic development and the
reduction of CO2 emissions.

2. Theoretical Frameworks and
Research Hypotheses

At present, most urban-related studies focused on the
relationship between different types of industrial ag-
glomeration and the labor productivity of a single city, but
no consistent conclusions could be drawn. First, some
studies showed that industrial agglomeration has caused
serious environmental pollution along with the expansion
of enterprise-scale and large-scale use of energy from fossil
fuels. Virkanen found that industrial agglomeration in
southern Finland caused heavy metal pollution of the local
water resources and atmosphere [19]. Verhoef and Nij-
kamp found that industrial agglomeration harms the
quality of the environment, leading to the aggravation of
environmental pollution [20]. Frank et al. showed that
industrial agglomeration worsens air quality in sampled
cities in the European Union [21]. Duc et al. surveyed
industrial companies on both sides of the Vietnamese river
and found that industrial agglomeration caused river
pollution [22]. In contrast to mentioned above, some
scholars further discovered that industrial agglomeration is
conducive to the progress and diffusion of environmental
protection technology, promoting production and energy
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efficiencies, and reducing environmental pollution [23–27].
Han et al. analyzed the impact of Marshall’s agglomeration,
such as labor concentration effects, economies of scale of
intermediate inputs, and space spillover effects, on in-
dustrial energy efficiency. )ey pointed out that the space
availability of intermediate inputs and space technology
spillover effects significantly increase industrial energy
efficiency [28]. Furthermore, Han et al. constructed a
spatial Durbin model to explore the effects of industrial
specialization and diversified agglomerations of
manufacturing on CO2 emissions. )ey provided an evi-
dence that both of them can reduce CO2 emissions locally
and in surrounding cities through the agglomeration of
economic externalities [29]. Zhang et al. analyzed data
from 18 cities in Henan Province and proposed that in-
dustrial agglomeration reduces CO2 emissions in the
surrounding areas and that there is a negative impact on the
intensity of CO2 emissions [30]. Shen et al. used a dynamic
spatial panel model and demonstrated that the agglom-
eration of the productive service industries has a significant
positive space spillover effect on energy efficiency in sur-
rounding areas [31]. Jacobs et al. found that diversified
agglomeration is available for the high-end productive
service industry in central cities, such as large and inter-
national cities. )ey found that the industries of these cities
have the characteristics of high added value within prod-
ucts, a large service radius, and a small transaction fre-
quency, thus affecting the surrounding areas with
significant spatial spillover effects of improvements in
energy efficiency [32]. However, in the existing literature,
there is an absence of research on the low-end productive
services and living services. In addition, there are no
comparative studies between the manufacturing and ser-
vice industries, or with the inter-heterogeneity in the
subdivided service industries, regarding the effects of in-
dustrial agglomeration on urban carbon efficiency.
)erefore, we propose Hypothesis 1.

Hypothesis 1. )e agglomeration effects of various indus-
tries show heterogeneity, and their impacts on urban carbon
efficiency have diversity spatially.

)e urban area provides transportation, communica-
tion, information, and other infrastructures as well as market
conditions and stimulates the agglomeration of industries.
)e development of industrial agglomeration is part of the
trend of urbanization, resulting in the industries being close
to the source of innovation of the central city to obtain
advanced technology. When the urbanization is in different
stages, the internal industrial agglomeration pattern has
different characteristics. )e expansion of cities promotes
the diffusion and re-agglomeration of industries.)e second
industry cluster is dominant in the developing stage of
urbanization, while the third industry cluster is evident in
the developed stage. )e coordinated development of re-
gional industrial agglomeration and urbanization promotes
the overall development of the regional economy.)erefore,
cities of different scales and grades are adjacent to each other
or cities of the same scale and grade in space.)is will form a
megalopolis through strengthening the division of labor and

cooperation between cities. Huang et al. argued that the
development of a megalopolis is beneficial to the im-
provement of urban ecological efficiency and that the degree
of improvement is affected by the city level [33]. Yue et al.
found that the impact of an industrial structural adjustment
on the energy intensity of cities in the Pearl River Delta is not
apparent [34]. Chen et al. found that the transfer of high
energy-consuming industries, which are led by capital-in-
tensive industries, from the developed region to the de-
veloping region, can effectively reduce CO2 emissions in the
developed regions [35]. Li et al. indicated that industrial
transfer between any two cities within a megalopolis would
bring about a decline in energy intensity [36]. Xiao et al.
revealed that the performance of the total-factor CO2
emissions of the tertiary industry is better than that of the
secondary industry. However, prospects for the low-carbon
development of the tertiary industry, in the Yangtze River
Delta, are not optimistic [37]. )erefore, we propose Hy-
pothesis 2.

Hypothesis 2. )e diversified characteristics of the industrial
agglomeration of a megalopolis in space result in its effects
on carbon efficiency being different.

)e structural optimization effect is the driving force for
improving carbon efficiency in a megalopolis. First, the
development of megalopolises improves the proportion of
production service industries and promotes the diversifi-
cation of production in central cities. Second, the devel-
opment of megalopolises promotes their industrialization
progress and the specialization of production in common
cities. Henderson pointed out that there is an inverted U-
shaped relationship between urban scale and industrial
agglomeration. With the expansion of the urban scale, the
competition for urban public resources, the rise of factor
costs, the congestion of transportation, and other factors will
accelerate the industrial diffusion. Simultaneously, some
industries leapfrog to the same level or to a low gradient city,
namely, Friedman’s “centre-periphery” mode, which leads
to the initial formation of megalopolises [38, 39]. In recent
years, megalopolises have played an essential role in China’s
new urbanization process [40]. In the Yangtze River Delta,
the development of the service industry in Shanghai far
exceeds other industries, but the manufacturing industry
still leads and plays a decisive role in Jiangsu and Zhejiang
[41]. )e Pearl River Delta has entered the post-industri-
alization period and has developed with the promotion of
the agglomeration of the service industry andmanufacturing
diffusion [35]. In the Circum-Bohai Sea Economic Zone, the
heavy industry accounts for too large a share of the overall
economy, which restricts the division of labor between the
cities [42]. Yu et al. found that there is a negative correlation
between the size of a city and carbon emissions and further
demonstrated that a megalopolis is more efficient with
regard to carbon emissions [43]. Liu et al. deemed that the
social, land, population, and economic urbanization are all
related to urbanization and conducted an assessment of the
multiple effects of these components of urbanization on CO2
emissions in the Pearl River Delta [44–46]. Zheng et al.
predicted that the energy consumption of the Yangtze River
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Delta would continue to rise, and the main source of energy
consumption will be manufacturing. )ey also suggested
that the government should update its methods and con-
cepts related to sustainable development and limit the de-
velopment of energy-intensive industries [41]. Ouyang et al.
found that GDP per capita, environmental regulation
strength, factor input structure, foreign direct investment,
local government spending, and the degree of openness have
positive impacts on the industrial total-factor energy effi-
ciency in the Pearl River Delta [47]. Li et al. argued that
socioeconomic factors, such as the industrial structure,
economic level, carbon intensity, and other spatial factors,
play significant roles in decreasing carbon intensity in the
Yangtze River Delta [48]. )erefore, the development of
megalopolises improves the proportion of the tertiary in-
dustry in central cities and also promotes the progress of
both industrialization and specialized production in com-
mon cities. )e development of megalopolises decentralizes
the diseconomy of agglomeration of central cities and
promotes the flow of the elements of production to common
cities. However, although the aforementioned studies have
contributed to the theoretical discussion on the mechanism
by which industrial agglomeration influences economic
development of megalopolis, they still lack empirical sup-
port. On the basis of these studies, we propose the following.

Hypothesis 3. On the internal side of a megalopolis, the
division of labor between central and common cities is
coupled with industrial agglomeration for improving carbon
efficiency.

3. Data and Methodology

Limited by the availability of data, the present study selected
panel data (2007–2016) for 285 cities in China. )e original
data sources were the China City Statistical Yearbook, China
Energy Statistics Yearbook, and Beijing Shu Huitong En-
vironmental Technology Research Institute Data Service
Network (http://www.3edata.com). To ensure the consis-
tency and comparability of the statistical data, the present
study used the relatively stable statistical caliber of the city.

3.1. Measurement of CO2 Emissions at Prefecture-Level Cities.
Given the availability of data sources, we selected four forms
of energy consumption, electricity, natural gas, liquefied
petroleum gas, and transportation industries, to measure
CO2 emissions [49].

To better reflect the actual situation in China, the ref-
erence coefficient of coal for various energy conversions and
the average low calorific value were adopted from the
Chinese National Standard GB/T2589-2008. )e data of the
unit calorific value of the carbon content and the oxidation
rate used to calculate the CO2 emission coefficient were
obtained from the “2006 IPCC National Greenhouse Gas
Emission Inventory Guide.” )e formula used to calculate
the CO2 emissions is as follows:

C �  Cij �  Eij × fij, (1)

where C denotes the CO2 emissions, i is the i-th energy, j is
the j-th city (region), Cij denotes the CO2 emissions gen-
erated by the i-th energy consumption in city j, and Eij is the
consumption of the i-th energy in city j, and fij represents
the CO2 emission coefficient of the i-th energy in city j.

)e average low calorific value, carbon content per unit
calorific value, carbon oxidation rates of the principal en-
ergies, and calculated CO2 emission factors are shown in
Table 1.

Data on the electricity consumption of the whole society
were collected from the China City Statistical Yearbook.
Glaeser and Kahn argued that there is an independent CO2
emission coefficient in each regional power grid [50]. Ac-
cordingly, we divide China into six regions: North China,
Northeast China, East China, Central China, Northwest
China, and South China. )e CO2 emission coefficient for
electricity was measured according to the baseline emission
coefficient in the regional grid, which was issued by the
China Certified Emission Reduction Exchange Information
Platform.

)e data on the supplies of natural gas and liquefied
petroleum gas in a region were obtained from the data
service network of the Beijing Shu Huitong Environmental
Technology Research Institute. )e CO2 emission coefficient
of natural gas is 0.2666 kg/m3, and the CO2 emission co-
efficient of liquefied petroleum gas is 3.1013 kg/m3.

Due to differences between the regions of China and
incomplete statistical data, it was difficult to obtain data such
as mileage travelled by vehicle, the fuel used per mile for
different types of motor vehicles, etc. According to public
data, it is less accurate to use the “bottom-up” method to
calculate CO2 emissions from transportation. In the present
study, we use a “top-down” algorithm to calculate the CO2
emissions by transportation in various cities in China. )e
CO2 emissions from transportationmainly come from direct
emissions from the combustion of fossil fuels. In contrast,
the indirect emissions of CO2 from electricity and heat
consumption are less. )erefore, in the present study, the
calculations of CO2 emissions by transportation included
only the direct emissions from the consumption of fossil
fuels.

At the provincial level, the Regional Energy Balance
Sheet contains the energy consumed by transportation,
warehousing, and postal industries. )e present study ex-
cluded the energy consumption of the warehousing and
postal industries. )is was achieved by using the income
ratios of transportation, warehousing, and postal industries
in the “China Economic Census Yearbook” to estimate
energy consumption and calculate CO2 emissions for the
transportation industry only. )en, referring to Li et al. [51],
we obtained the values of the passenger and freight turn-
overs from the China Economic Network Statistics Database
and the energy intensity data in the Transportation Energy
Data Book (TEDB). )ese were used to calculate the ratio of
CO2 emissions between passenger and freight transport.
According to this ratio, we divided the CO2 emissions by the
transport activities for passenger and freight at the pro-
vincial level. At the city level, we calculated the proportion of
the volume of the passenger transport of each city and that of
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the freight transport of each city in a province. We then
divided the provincial CO2 emissions into the city level in
terms of each calculated proportion. Finally, we aggregated
the CO2 emissions data of the passenger and freight
transports as the total emissions for the transportation in-
dustry of the prefecture-level cities.

According to Figure 1, from 2007 to 2016, the total CO2
emissions of China’s prefecture-level cities increased from
2022.77 to 3499.70 million tons, with an average annual
growth rate of 6.31%. )e CO2 emissions of cities in
megalopolises increased from 1065.89 to 1741.97 million
tons, with an average annual growth rate of 5.63%.)e CO2
emissions of other cities increased from 956.89 to 1757.72
million tons, and the average growth rate was 7.04%. )ere
has been an annual decrease in the proportion of CO2
emissions in megalopolises. During 2007–2016, the 70
cities in three megalopolises contributed an average of
50.37% of the total CO2 emissions among 285 above
prefecture-level cities across the country. )is means that
the megalopolises are still the main sources of China’s CO2
emissions.

3.2. Spatial Distribution of CO2 Emissions. According to
Tobler’s first law, everything is related to other things, and
similar things are more closely related to each other. )is
means that spatial data can interact with each other due to
geographical location. We explored the spatial distribution
of CO2 emissions in 2007, 2011, and 2016 in above pre-
fecture-level cities. As shown in Figure 2, CO2 emissions
show distinct spatial agglomeration characteristics. CO2
emissions decreased gradually along the east, central, and
west areas. )e Pearl River Delta, Yangtze River Delta,
Beijing-Tianjin-Hebei Economic Zone, and Chengdu-
Chongqing Economic Zone, which are the largest and most
developed areas in China, showed higher levels of emissions.
Shandong and Liaoning Provinces showed significantly high

concentrations of emissions, which combined with the
Tianjin-Hebei Economic Zone form the Circum-Bohai Sea
Economic Zone.

3.3. Measurement of the Agglomeration of the Service and
Manufacturing. As for the measurement of industrial
agglomeration, a series of measurement methods are
available, such as market concentration, location en-
tropy, Herfindahl index, spatial Gini coefficient, geo-
graphic concentration index, and MS index. Each of
them has its own focus. )e location entropy measures
industrial agglomeration through industrial specializa-
tion, which is conducive to indicating the advantageous
industries in the region. )e Herfindahl index reflects the
concentration of enterprises in the industry, and the
spatial Gini coefficient reflects the regional agglomera-
tion of the industry. )e geographic concentration index
comprehensively evaluates the degree and structure of
industrial agglomeration. Accordingly, to find the
dominant industries and leading industries in different
cities, the present research concentrated on evaluating
the impacts of different industrial agglomerations, in
different regions, on the local and surrounding carbon
efficiencies. )e number of employees for each industry
was obtained from public data. )erefore, we used the
location entropy to measure the level of urban industrial
agglomeration. )e formula for calculating the industrial
agglomeration level is

LQij �
eij/ej

Ei/E
, (2)

where eij indicates the number of employees in industry i in
city j, ej indicates the total number of employees in city j, Ei

indicates the total number of employees in industry i in the
country, and E indicates the total number of employees in
the country. )e larger the value of LQij, the more obvious

Table 1: )e CO2 emission coefficients of the principal energy sources.

Energy Average low calorific value Carbon content per unit calorific value Carbon oxidation rates CO2 emission
factors

Raw coal 20908 kJ/kg 26.37 0.94 1.9002 kg/kg
Washed coal 26344 kJ/kg 25.41 0.94 2.3072 kg/kg
Other coal washing 8363 kJ/kg 25.41 0.94 0.7324 kg/kg
Briquette 1589 kJ/kg 33.56 0.9 0.1762 kg/kg
Coke 28435 kJ/kg 29.42 0.93 2.8604 kg/kg
Coke oven gas 173535 kJ/m3 12.1 0.98 7.5452 kg/m3

Blast furnace gas 3763 kJ/m3 70.8 0.99 0.9671 kg/m3

Converter gas 5227 kJ/m3 49.6 0.99 0.9411 kg/m3

Crude 41816 kJ/kg 20.08 0.98 3.0202 kg/kg
Gasoline 41070 kJ/kg 18.9 0.98 2.9251 kg/kg
Kerosene 43070 kJ/kg 19.6 0.98 3.0334 kg/kg
Diesel 42652 kJ/kg 20.2 0.98 3.0959 kg/kg
Fuel oil 41816 kJ/kg 20.1 0.98 3.1705 kg/kg
Liquefied petroleum gas 50179 kJ/m3 17.2 0.98 3.1013 kg/m3

Refinery dry gas 46055 kJ/m3 18.2 0.98 3.0119 kg/m3

Other petroleum products 40200 kJ/kg 20 0.98 2.889 kg/kg
Natural gas 4800 kJ/m3 15.32 0.99 0.2666 kg/m3

Liquified natural gas 44200 kJ/m3 17.2 0.98 2.7318 kg/m3
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the agglomeration advantage. When LQij > 1, it indicates
that the development intensity of the industry in the region
is higher than the national average for similar industries;

when LQij > 1.5, it indicates that the development intensity
of the industry in the region has a significant comparative
advantage.
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Figure 2:)e spatial distribution of CO2 emissions at the city level in China. (a) CO2 emissions in 2007. (b) CO2 emissions in 2011. (c) CO2
emissions in 2016. (d) Average of CO2 emissions from 2007 to 2016.
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Figure 1: )e CO2 emissions in megalopolises and other cities from 2007 to 2016 (unit: 10,000 ton).

6 Journal of Mathematics



In the manufacturing sector, due to the lack of complete
classification statistics for the above prefecture-level city, the
preset study analyzed it as a whole and could not discuss the
segmented manufacturing industries any further. In 2011,
China established classification standards for the 15 sub-
industries of the service sector. Complete employment
statistics were available at the city level, and the preset study
categorized them accordingly. In the classification of the
service industries, referring to Li and Li [52] and Lu [53], we
divided the service sector into three categories: (1) the
productive service industries whose service targets are the
manufacturers of industrial goods; (2) the living service
industries who serve to the final consumer; and (3) the
public service industries whose providers are governments.
)e public administrations determine the size of the public
service industry, and it was not discussed in the present
study. In terms of the intensity of knowledge accumulation
in the productive service industry, there exist high-end
productive service industries with strong knowledge accu-
mulation and low-end productive service industries with low
knowledge accumulation [54]. Accordingly, this paper fo-
cused on the specific industries within manufacturing,
productive services (high-end and low-end), and living
services (see Table 2).

Based on the original data of employees in 285 above
prefecture-level cities in China, the location entropy cal-
culation formula was used to measure the average annual
value of agglomeration level of each industry in various cities
(Figure 3). Figure 4 shows the average location entropy in
the different areas.

As shown in Figure 3, manufacturing showed a signif-
icant aggregation in space, especially in the eastern coastal
areas. However, there were no apparent spatial agglomer-
ations in the distributions of the service industries. In
Figure 4, the average degree of the manufacturing ag-
glomeration of each megalopolis was higher than that at the
national level. )e levels of manufacturing agglomeration
decreased in the order of the Pearl River Delta, Yangtze River
Delta, and Circum-Bohai Sea Economic Zone, respectively.
)e average concentrations of all kinds of service industries
in the Circum-Bohai Sea Economic Zone were higher than
those in the Pearl River Delta and the Yangtze River Delta.
)e concentration of the productive service industry in the
Pearl River Delta was the lowest of the three megalopolises.

3.4. Fractional-Order Grey Forecasting Model. At present,
there are two popular methods to make forecasting: (1) the
white box models, commonly used as the differential
equations, and (2) the black boxmodels, such as the machine
learning models. )e grey models take the merits of above

models. Especially, the grey models are good at modeling
time series forecasting in small sample [55]. )e grey model
is between the black model and the white model. It contains
both unknown information and known information. At the
same time, the factors in the system have uncertain relations,
and the biggest characteristic is that the accumulation
process can reflect the regularity of the data. )is model has
been applied well in many fields since its establishment [56].
)e old grey models all are integer derivative models, which
belong to ideal memory models and are not suitable for
describing some irregular phenomena. In fact, the grey
model is usually fractional. For example, the weather is the
derivative of fractional order of climate, so it is the bridge
between cause and effect in the complex system. Moreover,
when the objects with fractional characteristics are described
by fractional order, the essential characteristics and be-
haviors of the objects can be better revealed [57]. )erefore,
this method is capable to describe dynamic behavior of the
processes and systems with high accuracy and concise
models. )e economic phenomena are the activities of
multiagent social system, so fractional-order grey forecast-
ing is capable for addressing our topic.

Referring to Wu [55], this paper used the fractional-
order grey forecasting model to forecast the carbon effi-
ciency and industrial agglomeration degree of each pre-
fecture-level city from 2017 to 2021. )e modeling steps are
as follows.

Step 1. )e cumulative sequence of order (p/q) was
calculated:

X(p/q)
� x

(p/q)
(1), x

(p/q)
(2), . . . , x

(p/q)
(n) . (3)

Step 2. A non-negative sequence, X(0) � (x0(1), x0(2),

. . . , x0(n)), should be an accumulation operator of order
p/q(0< (p/q)< 1). Stipulate C0

(p/q)− 1 � 1, Ck+1
k � 0,

k � 0, 1, . . . , n − 1, Ck− i
k− i+(p/q)− 1 � (((k − i + (p/q) − 1)(k − i +

(p/q) − 2), . . . , ((p/ q) + 1)(p/q))/(k − i)!), and it is called a
cumulative sequence of order (p/q)(0< (p/q)< 1).

Step 3. Substituting xp/q(k)(k � 1, 2, . . . , n) into Step 2, the

least square method is used to estimate parameter
β2
β1

 .

Step 4. Using x(p/q)(k) � (x0(1) − (β2/(1 − β1)))β
(k− 1)

1 +

(β2/(1 − β1)) to predict x(p/q)(1), x(p/q)(2), . . . ,.

Step 5. Decrease X(p/q) � (x(p/q)(1), x(p/q)(2), . . . , x(p/q)

(n), . . . , ) by order (p/q). )at is,

α(p/q)
X

(0)
� α(1)

x
1− (p/q)

(1), α(1)
x
1− (p/q)

(2), . . . , α(1)
x
1− (p/q)

(n), α(1)
x
1− (p/q)

(n + 1), . . . , . (4)
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4. Econometric Models and Main Results

4.1. Basic Model. Referring to Griliches [58], we assumed
that the Cobb–Douglas function can manifest the produc-
tion function of city i at period t:

Yit � A L
α
it(  K

ϕ
it  E

φ
it( e

εit , α + ϕ + φ � 1, (5)

where Yit is the desirable output, Lit, Kit, and Eit are the
labor, capital, and energy consumption for urban produc-
tion, respectively, A denotes the total factor productivity,
which is related to economies of economy, technology

change, technology spillover, and institutional arrange-
ments, α, ϕ, and φ are the production elasticities, and ε is the
error term. Divide both sides of equation (5) by C (CO2
emission):

YCit � A LCα
it(  KCϕ

it  ECφ
it( e

εit , (6)

where YCit � (Yit/Cit) is the desirable output per unit of
CO2 emissions, denoting the carbon efficiency.
LCit � (Lit/Cit), KCit � (Kit/Cit), and ECit � (Eit/Cit) are
input factor-carbon ratios including labor, capital, and
energy consumption, describing the efficiencies of input

Table 2: A classification of the service industries.

Name Industry category
High-end productive
services

Information transmission, computer services, and software; finance; scientific research, technical services, and
geological prospecting

Low-end productive
services Transportation, warehousing, and postal services; leasing and business services

Living services Wholesale and retail trade; accommodation and catering; resident services and other services; culture, sports,
and entertainment; real estate
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Figure 3: )e spatial distribution of the average annual value (2007–2016) of the location entropy of each industry at city level.
(a) Manufacturing industry. (b) Low-end productive service industry. (c) High-end productive service industry. (d) Living service industry.
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factors. )erefore, the efficiencies of input factors are the
decompositions of carbon efficiency. Take the logarithm
form of equation (6) as follows:

ln YCit � a + α ln LCit + ϕ ln KCit + φ ln ECit + εit, (7)

where a � ln A. Also, we take government intervention
(GOV) [59] and foreign direct investment (FDI) [60] as
control variables in equation (7). )e controlled model is

ln YCit � a + α ln LCit + ϕ ln KCit + φ ln ECit

+ λ1 ln GOVit + λ2 ln FDIit + εit,
(8)

where λ1 and λ2 are the elasticities of the control variables.
Transform equation (8) into a matrix form:

YC � A + α(LC) + ϕ(KC) + φ(EC) + λ1GOV + λ2F DI + ε.
(9)

In equation (9), A, LC, KC, EC, GOV, and F DI are the
N × 1 vectors of the logarithms of independent variables and
ε is the N × 1 vector of error terms.

Moreover, the improvement of total factor productivity
brought about by technological progress is another im-
portant way to improve carbon efficiency, other than im-
proving the efficiency of input factors. )e technology
spillover and economies of scale, based on the theory of

agglomeration economies, are two main driving forces
promoting the total factor productivity [61, 62], which also
will further strengthen carbon efficiency. Moreover, the
effects of agglomeration not only affect the carbon efficiency
in the local area but also affect surrounding cities [61, 63].
)erefore, we composed total factor productivity with the
industrial agglomerations of native and surrounding cities.
Accordingly, Ait can be set as

Ait � θ0 MAθ1
it  LPSAθ2

it  HPSAθ3
it  LSAθ4

it ,



N

j≠i
MAϑ1wij

jt  LPSAϑ2wij

jt  HPSAϑ3wij

jt  LSAϑ4wij

jt A
δwij

jt ,

(10)

where θ0 is the exogenous variable noting an advanced
technology for all cities national-wide; MAit, LPSAit,
HPSAit, and LSAit are manufacturing, low-end productive
service, high-end productive service, and living service ag-
glomerations for city i at time t, respectively; θ1,θ2, θ3, and θ4
indicate the elasticities of the four kinds of industrial ag-
glomeration; and MA

ϑ1wij

jt ,LPSA
ϑ2wij

jt ,HPSA
ϑ3wij

jt ,LSA
ϑ4wij

jt ,
and A

δwij

jt are geometrically weighted values of the ag-
glomerations of manufacturing, low-end productive service,
high-end productive service, living service, and the total
factor productivity of neighboring cities. )e degree of ef-
fects of industrial agglomeration among cities is described by
identical ϑ1, ϑ2, ϑ3, ϑ4, and δ, respectively. However, the net
effects of these effects are dominated by the connectivity
between each city, which can be described with the exog-
enous friction terms wij, where j � 1, . . . , N and j≠ i. )e
closer the connectivity exists, the higher the value wij takes.
We took the logarithm of equation (10) and transformed it
into a matrix form:

A � θ0 + θ1MA + θ2LPSA + θ3HPSA + θ4LSA

+ ϑ1WMA + ϑ2WLPSA + ϑ3WHPSA + ϑ4WLSA + δWA,

(11)

where MA, LPSA, HPSA, and LSA are the N × 1 vectors of
the logarithms of industrial agglomeration andW is the N ×

N matrix of the friction term wij. If ϑ1 ≠ 0, ϑ2 ≠ 0, ϑ3 ≠ 0,
ϑ4 ≠ 0, and δ ≠ 0 and if (1/ϑ1), (1/ϑ2), (1/ϑ3), (1/ϑ4), and
(1/δ) are not eigenvalues of W, equation (11) can be
transformed to

A � (I − δW)
− 1θ0 + θ1(I − δW)

− 1MA + θ2(I − δW)
− 1LPSA

+ θ3(I − δW)
− 1HPSA + θ4(I − δW)

− 1LSA + ϑ1(I − δW)
− 1WMA

+ ϑ2(I − δW)
− 1WLPSA + ϑ3(I − δW)

− 1WHPSA + ϑ4(I − δW)
− 1WLSA.

(12)

0
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1
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MA LPSA HPSA LSA

All cities
Circum-Bohai Sea Economic Zone
Yangtze River Delta Megalopolis
Pearl River Delta Megalopolis

Figure 4: Averages of the location entropy in different areas
(2007–2016).
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Substitute equation (12) into equation (9) and multiply
equation (9) by (I − δW) on both sides:

YC � θ0 + δWYC + θ1MA + θ2LPSA + θ3HPSA + θ4LSA + αLC + φKC

+ ϕEC + λ1GOV + λ2F DI + ϑ1WMA + ϑ2WLPSA + ϑ3WHPSA

+ ϑ4WLSA + ϑ5WLC + ϑ6WKC + ϑ7WEC + ϑ8WGOV + ϑ9WF DI + ζ,

(13)

where ϑ5 � − αδ, ϑ6 � − ϕδ, ϑ7 � − φδ, ϑ8 � − λ1δ, ϑ9 � − λ2δ,
and ξ � ε–δWε. Describe equation (13) with the subscript i
and obtain the carbon efficiency of city i:

ln YCit � ln θ0 + δ 
N

j≠ i

wijYCit + θ1 ln MAit + θ2 ln LPSAit + θ3 ln HPSAit

+ θ4 ln LSAit + α ln LC + φ ln KC + ϕ ln EC + λ1 lnGOV + λ2 ln FDI

+ ϑ1 

N

j≠ i

wij ln MAit + ϑ2 

N

j≠ i

wij ln LPSAit + ϑ3 

N

j≠ i

wij ln HPSAit

+ ϑ4 

N

j≠ i

wij ln LSAit + ϑ5 

N

j≠ i

wij ln LCit + ϑ6 

N

j≠ i

wij ln KCit

+ ϑ7 

N

j≠ i

wij ln ECit + ϑ8 

N

j≠ i

wij ln GOVit + ϑ9 

N

j≠ i

wij ln FDIit + ζ it.

(14)

Equation (14), which includes both local effects and
spatial effects, is called a spatial Durbin model. )e de-
scriptive statistics for the above variables are shown in
Table 3. )e original data sources were the China City
Statistical Yearbook, China Energy Statistics Yearbook, and
Beijing Shu Huitong Environmental Technology Research
Institute Data Service Network (http://www.3edata.com).

4.2. SpatialWeightedMatrix andSpatialCorrelationAnalysis.
Based on the availability of data sources, we constructed and
standardized the weighted spatial matrix with a geographical
distance matrix, where the sum of elements of each row is
equal to one:

Wij �
1

d
2
ij

, i≠ j, (15)

where dij is the distance between each pair of cities based on
latitudinal and longitudinal data, where i≠ j. )e geo-
graphical attenuation parameter takes the value of 2. On the
basis of Wij, the present study used Moran’s I index to
measure the autocorrelation in the geographical distribution
of the explained variables and the core explanatory variables:

I �
n


n
i�1 

n
j�1 Wij

×


n
i�1 

n
j�1 Wij Xi − X(  Xj − X 


n
i�1 Xi − X( 

2 ,

(16)

where Xi is the value of the variable for region i. Moran’s I
index takes a value within [-1, 1]. A positive value indicates
that the distribution of the spatial agglomeration of the
variable of interest is in a specific region with similar values;
otherwise, it will follow the discrete distribution. If Moran’s I
value is close to zero, observed values are randomly dis-
tributed and have no relationship in space. As shown in
Table 4, Moran’s I values of carbon efficiency, manufacturing
agglomeration, and high-end productive service agglomer-
ation all meet the significance test at the 1% level, indicating
that these variables have significant spatial dependencies.
)e low-end productive service passed the significance test
for most years, but a small part of the living service industrial
agglomeration degree passed the significance test. )erefore,
the results showed that it is necessary to consider the spatial
effects of industrial agglomeration on carbon efficiency.

In order to make up the lag of the released data in the
official statistics and also to make the division of functional
space between cities more convincing, in this part, we use the
data from 2007 to 2016 and the fractional-order grey pre-
diction model to forecast the data of the urban carbon ef-
ficiency and industrial agglomeration degree from 2017 to
2021 and measure the Moran value according to the pre-
diction results (i.e., all the predictions for Moran’s I index
were calculated again based on the predicted data). )e
results show that the spatial correlation of carbon efficiency
is expected to stabilize at a high level during 2017–2021 after
experiencing the “high-low-high-low” fluctuation. For the

10 Journal of Mathematics

http://www.3edata.com


manufacturing and high-end productive service, which are
of representative significance in the spatial division of urban
labor, their Moran’s I value continued to rise from 2007 to
2014. After reaching the maximum value in 2015, both of
them showed a decreasing trend in the following year.
According to the results of fractional-order grey prediction,
their spatial correlation decreased year by year from 2017 to
2021, which also well confirmed the changing trend. It is
worth noting that the spatial correlation of the living service
industry in each city gradually emerged, and its spatial
correlation showed a stable upward trend from 2017 to 2021.
)e results give us the following implications. (1) In terms of
the spatial correlation of carbon efficiency, except for carbon
dioxide due to its natural characteristics, the economic
correlation between cities is increasingly close. )e carbon
efficiency presents a “high-high” agglomeration trend in
space, and the spatial correlation degree expressed by
Moran’s I values remains at a high level in the predicted
years. (2))e essence of the spatial division of labor in urban
agglomerations discussed above is that cities of different
levels focus on the development of different industries.
According to the Moran value of the predicted values, it can
be found that the pattern of urban functional spatial division
of labor still exists at the national level. Especially for
manufacturing and high-end productive service, local
government should choose industries with comparative

advantages according to their development status and re-
source endowment, to form “staggered peak” development
among cities. China’s overall economic development will
continue to advance in this development direction. (3) As a
living service industry whose main function is to meet a
number of necessary needs in residents’ life, the develop-
ment of this industry is highly correlated with urban eco-
nomic conditions and residents’ wealth. )e increasing
degree of spatial correlation of this industry year by year also
proves that economic development among cities is more
closely correlated.

4.3. Determination of Spatial EconometricModel. In order to
accurately reflect the degree of spatial effects and the reasons
for the spatial dependence, it is necessary to select a suitable
spatial econometric model before doing the regression
analysis. Referring to Elhorst [64], the method of “specific to
general” was used in the preset study to identify the spatial
econometric model (Table 5). First, the Lagrange multiplier
(LM) tests were used to choose the spatial autoregressive
model (SAR) or the spatial error model (SEM). If both
LM_lag and R-LM_lag fail the significance test, we choose
the SAR. If both LM_err and R_LM_err fail the significance
test, we choose the SEM. In the present study, we rejected the
SEM because both LM_err and R_LM_err passed the

Table 3: Sample statistics of carbon efficiency and other variables of Chinese cities.

Variables Mean Std. dev. Min. Max.
YC (GDP-carbon ratio, yuan/ton, 2010 price) 23574.30 14808.54 1161.51 174833.01
MA (manufacturing agglomeration) 0.8870 0.4917 0.0219 2.9114
LPSA (low-end productive service agglomeration) 0.7066 0.3766 0.1065 2.7629
HPSA (high-end productive service agglomeration) 0.8706 0.3262 0.2452 3.0570
LSA (living service agglomeration) 0.8150 0.4335 0.1554 4.9674
LC (labor-carbon ratio, person/10,000 ton) 762.92 549.61 34.83 6558.53
KC (capital-carbon ratio, yuan/ton, 2010 price) 69842.46 55213.73 2733.59 722772.70
EC (energy-carbon ratio, kW·h/ton) 786.00 336.84 118.30 9881.44
GOV (public finance income-GDP ratio, %) 7.2893 3.8857 0.4208 120.6395
FDI (foreign direct investment, 10,000 yuan, 2010 price) 501408.20 1211010.00 106.28 20475308.20

Table 4: Moran’s I values.

Year YC MA LPSA HPSA LSA
2007 0.025∗∗∗ 0.102∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.003
2008 0.020∗∗∗ 0.104∗∗∗ 0.009∗∗ 0.013∗∗∗ 0.003
2009 0.017∗∗∗ 0.105∗∗∗ 0.005∗ 0.015∗∗∗ 0.001
2010 0.022∗∗∗ 0.109∗∗∗ 0.005∗ 0.022∗∗∗ 0.005∗
2011 0.023∗∗∗ 0.100∗∗∗ 0.008∗∗ 0.021∗∗∗ 0.002
2012 0.014∗∗∗ 0.112∗∗∗ 0.010∗∗ 0.021∗∗∗ 0.007∗∗
2013 0.009∗∗∗ 0.129∗∗∗ 0.001 0.025∗∗∗ 0.006∗
2014 0.012∗∗∗ 0.133∗∗∗ − 0.003 0.031∗∗∗ − 0.001
2015 0.016∗∗∗ 0.134∗∗∗ 0.000 0.036∗∗∗ 0.002
2016 0.014∗∗∗ 0.133∗∗∗ − 0.003 0.034∗∗∗ 0.009∗∗
2017 0.021∗∗∗ 0.128∗∗∗ − 0.001 0.033∗∗∗ 0.005∗
2018 0.020∗∗∗ 0.120∗∗∗ − 0.001 0.033∗∗∗ 0.007∗∗
2019 0.020∗∗∗ 0.111∗∗∗ 0.001 0.031∗∗∗ 0.008∗∗
2020 0.019∗∗∗ 0.100∗∗∗ 0.002 0.030∗∗∗ 0.010∗∗
2021 0.019∗∗∗ 0.089∗∗∗ 0.003 0.029∗∗∗ 0.010∗∗∗

Note. )e symbols ∗, ∗∗, and ∗∗∗ represent significance levels at 10%, 5%, and 1%, respectively.
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significance tests. However, we could not choose the SAR on
the condition that the LM_lag passed the significance test
and the R-LM_lag failed the significance test. We need to
determine whether the spatial Durbin model (SDM) could
degenerate into SAR and SEM through performing the LR
test andWald test. Because both of these results significantly
rejected the null hypothesis, we chose the SDM for the
spatial econometric regression. )en, we performed a
Hausman test to determine whether the model uses fixed or
random effects. However, when calculating the variance
inflation factor (VIF), we found that the addition of urban
fixed effects would produce multicollinearity problem
(VIF>10) among the explanatory variables (Table 6). Since
the result of the Hausman test significantly rejected the null
hypothesis, we used the time fixed spatial Durbin model.

4.4. Estimated Results of Spatial Econometric Model.
According to Table 5, we chose the SDM with the time fixed
effect to estimate equation (14). To take the robustness test,
we also estimated OLS, SAR, SEM, and SLX with the time
fixed effect (Table 7). Most explanatory variables passed the
significance test, which indicated that the empirical data
support the theoretical model and variables. Also, urban
carbon efficiency is affected by both the endogenous and
exogenous spatial interaction effects.

)e spatial econometric model includes the interaction
terms between the spatial weight matrix and the explained
variables. It also includes the interaction terms between the
spatial weight matrix and the explanatory variables. Con-
sequently, the total effect includes two parts: the direct effect
of the local area and the indirect effect caused by other areas
(also known as spatial spillover effect). As the spatial
spillover effect, the change of explanatory variables will cause
the change of the carbon efficiency both in the local area and
surrounding areas. )erefore, the change of carbon effi-
ciency in surrounding areas will eventually cause the change
of carbon efficiency in the local area owing to the feedback
effect [65]. In other words, the change of the explanatory
variables of city i at time t will not only have a direct impact
on the explained variable of the city itself but also have an
indirect impact on the explained variable of other cities (i.e.,
the adjacent areas of the city) and will eventually affect the
area in turn (because for other areas, the area is also the
“other area”). )erefore, considering the global effect in the
spatial Durbin model, the coefficients of the explanatory

variables only represent the direction and significance of
their influences on the explained variable in the SDMmodel
but do not reflect their actual marginal effects, which was
raised as an issue by LeSage and Pace [66]. Accordingly, to
solve the problem of the coefficients in the spatial econo-
metric model being difficult to explain, we further separated
the direct and indirect effects (Table 8). )e direct effects
contain the pure direct effects and the feedback effects on
local carbon efficiency. )e indirect effects contain the
spatial impact of the explanatory variables from the sur-
rounding areas on the local carbon efficiency, reflecting the
spatial spillover effect.

As shown in Table 8, we found that the agglomeration
effects of various industries showed significant heteroge-
neity. )us, Hypothesis 1 is validated. )e agglomeration
of manufacturing industry and the agglomeration of high-
end productive services have significant impacts on the
urban carbon efficiency. In addition, the impact of the
high-end productive service is greater than that of the
manufacturing industry, while the low-end productive
services and living services have negative impacts on the
urban carbon efficiency. Li et al. indicated that the greater
demand for energy from fossil fuels of the manufacturing
industry results in more CO2 emissions than other in-
dustries [67]. However, in the process of manufacturing
industry agglomeration, the knowledge spillover, econo-
mies of scale of intermediate inputs, the information ex-
change among enterprises, and the multiple infrastructure
construction will further promote carbon efficiency [29,
30, 68]. )e impacts of segmented service industries
showed significant heterogeneity. In the high-end

Table 5: Tests of the spatial econometric model.

Contents Methods Statistic value P value

SAR and SEM

LM_lag test 138.865 ≤0.01
LM_err test 3274.995 ≤0.01
R-LM_lag test 0.372 0.542
R-LM_err test 3136.502 ≤0.01

Hausman test of SDM
Hausman test 5266.850 ≤0.01

Wald test 333.270 ≤0.01
173.850 ≤0.01

Simplified test of SDM LR test for SDM or SAR 307.100 ≤0.01
LR test for SDM or SEM 60.130 ≤0.01

Table 6: Test of the fixed effects.

Variables Fixed individual dummy variable Fixed time dummy
variable

VIF value VIF value
lnMA 11.68 1.60
lnLPSA 5.40 1.63
lnHPSA 5.98 1.48
lnLSA 5.53 1.40
lnLC 8.39 3.42
lnKC 4.96 3.98
lnEC 3.06 1.19
lnGOV 3.56 1.34
lnFDI 8.88 1.77
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productive service industry, the learning effect of
knowledge spillover among enterprises, with the high
added value of products, has brought significant im-
provements in efficiency. On the contrary, the agglom-
eration of the low-end productive service industries, such
as transportation, warehousing and postal industry, and
leasing and business service industry, cause an increase in
direct energy consumption and “crowding effect” as bad as
urban congestion and resource waste to worsen the urban
carbon efficiency. )erefore, in order to achieve low-
carbon development, priority should be given to the high-
end productive service industry with the characteristics of
knowledge- and capital-intensiveness.

)e impacts of industrial agglomerations on carbon
efficiency from neighboring areas, that is, the spatial spill-
over effect brought by urban industrial agglomeration,

showed that all industries will have positive impacts on
carbon efficiency. )e impact of the high-end productive
service industry is not significant, which shows that China is
still in the early stage of industrial transformation. )e high-
end productive service industry with a large service radius
and small transaction frequency has not shown significant
spatial spillover effects. )e impact of the living service
industry is not significant either, which indicated that the
living service industry has the characteristic of a native
service.

As for other explanatory variables, the direct effect co-
efficients of labor-carbon ratio, capital-carbon ratio, and
energy-carbon ratio are significantly positive, noting that the
improvement of efficiencies of input factors has significant
positive effects on the improvement of carbon efficiency.)e
direct and indirect effects of FDI are both significantly

Table 7: Estimation results of the spatial econometrics.

Variables OLS SAR SEM SLX SDM

lnMA 0.0642∗∗∗ 0.0636∗∗∗ 0.0558∗∗∗ 0.0413∗∗∗ 0.0449∗∗∗
(8.67) (8.56) (7.46) (5.29) (5.86)

lnLPSA − 0.0168 − 0.0166 − 0.0217 − 0.0192∗ − 0.0168∗
(− 1.64) (− 1.63) (− 2.18) (− 1.93) (− 1.72)

lnHPSA 0.0771∗∗∗ 0.0779∗∗∗ 0.0841∗∗∗ 0.0917∗∗∗ 0.0954∗∗∗
(6.22) (6.26) (6.86) (7.39) (7.86)

lnLSA − 0.0489∗∗∗ − 0.0491∗∗∗ − 0.0453∗∗∗ − 0.0324∗∗∗ − 0.0323∗∗∗
(− 4.71) (− 4.73) (− 4.38) (− 3.25) (− 3.10)

lnLC 0.3102∗∗∗ 0.3098∗∗∗ 0.3011∗∗∗ 0.3067∗∗∗ 0.2888∗∗∗
(30.48) (30.44) (29.34) (29.37) (27.27)

lnKC 0.5845∗∗∗ 0.5839∗∗∗ 0.5980∗∗∗ 0.5846∗∗∗ 0.6056∗∗∗
(58.92) (58.31) (59.34) (57.24) (57.75)

lnEC 0.0168 0.0156 0.0110 0.0171 0.0166
(1.47) (1.35) (0.98) (1.51) (1.50)

lnGOV − 0.1449∗∗∗ − 0.1449∗∗∗ − 0.1424∗∗∗ − 0.1459∗∗∗ − 0.1328∗∗∗
(− 13.78) (− 13.78) (− 13.47) (− 13.48) (− 12.16)

lnFDI 0.0431∗∗∗ 0.0430∗∗∗ 0.0379∗∗∗ 0.0247∗∗∗ 0.0243∗∗∗
(16.71) (16.64) (13.97) (8.15) (8.16)

W∗lnYC 0.0280 0.8810∗∗∗ 0.7410∗∗∗
(0.65) (34.07) (22.95)

W∗lnMA 0.2622∗∗∗ 0.1604∗∗∗
(4.52) (2.58)

W∗lnLPSA 0.0929 0.2920∗∗
(0.93) (2.48)

W∗lnHPSA − 0.0475 0.1181
(− 0.64) (0.88)

W∗lnLSA − 0.0936 − 0.0918
(− 1.00) (0.84)

W∗lnLC − 0.0775∗ 0.1160
(− 1.88) (1.23)

W∗lnKC − 0.1404∗∗∗ − 0.9061∗∗∗
(− 4.81) (− 10.66)

W∗lnEC 0.2639∗∗∗ 0.4451∗∗∗
(3.07) (3.73)

W∗lnGOV − 0.3234∗∗∗ − 0.3823∗∗∗
(− 4.16) (− 3.36)

W∗lnFDI 0.0900∗∗∗ 0.0620∗∗∗
(5.49) (3.39)

log-lik 563.3508 563.5052 630.6464 663.2215 715.5981
R2 0.8942 0.8976 0.8970 0.9045 0.9092
Observation 2850 2850 2850 2850 2850
Note.)e symbols ∗, ∗∗, and ∗∗∗ represent significance levels at 10%, 5%, and 1%, respectively; the values in parentheses are t statistics; log-lik is log-likelihood.
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positive, which shows that FDI plays a positive role in
promoting China’s economic development and shows that
the “pollution heaven hypothesis” is not currently available
for China [67]. )e coefficient of lnGOV is significantly
negative, which indicates that the government should not
interfere too much in the economy. Otherwise, it will lead to
an inefficiency of resource allocation and the “race to the
bottom” in energy utilization, which will not be conducive to
improving urban carbon efficiency.

4.5. 'e Effects of Industrial Agglomeration on Carbon Effi-
ciency in a Megalopolis. At the level of the megalopolis, the
agglomerations of manufacturing, high-end productive
service, and living service industries all play important roles
in promoting the urban carbon efficiency (Table 9), while the
low-end productive service industry mainly has a negative
impact on the carbon efficiency. Compared with the esti-
mated results at the national level (Table 8), the
manufacturing industry and the high-end industry have the
same impact direction, but the degree of industrial ag-
glomeration in promoting carbon efficiency in the mega-
lopolis is significantly higher than that at the national level.
)e reason is that the spatial concentration of industries and
population in a megalopolis improve the frequencies of
knowledge spillover between manufacturing and service
enterprises and reduce the transportation cost of goods
exchanged between enterprises.)ey ultimately improve the
efficiency of the economic operation and the efficiency of the
energy utilization of the whole region. As far as the control
variables are concerned, the direct effects of labor-carbon
ratio, capital-carbon ratio, and energy-carbon ratio are
significantly positive, while the direct effect of lnGOV is
negative. )is indicates that at both the national or level of
the megalopolis, too much policy intervention will reduce
carbon efficiency.

Comparing three large megalopolises, the direct effect of
manufacturing agglomeration in the Yangtze River Delta is
the largest, and the positive spatial spillover effect of
manufacturing agglomeration in the Pearl River Delta is
significantly greater than that in other megalopolises. In
terms of the segmented service industry, the low-end pro-
ductive service industry has no significant impact in the
Circum-Bohai Sea Economic Zone. )e direct effect in the
Yangtze River Delta city group is significantly negative, and
the indirect effect in the Pearl River Delta city group is
significantly negative. )e high-end productive service in-
dustry has a significant positive impact in each megalopolis,
and the impact degrees are arranged by the Pearl River Delta,
the Yangtze River Delta, and the Circum-Bohai Sea Eco-
nomic Zone from large to small. All of the above are
consistent with Hypothesis 2. It is worth noting that the
spatial effect of high-end productive service agglomeration
in the Pearl River Delta megalopolis is far greater than other
megalopolises, which provides a good example for the de-
velopment of megalopolis.

We know that the manufacturing industry is inclined
to be located near to the cities with productive services
[69], while there also exists a “crowding out” effect be-
tween the manufacturing and service industries [70]. We
further analyzed the trend of the ratio of the employment
number in central cities (municipalities, subprovincial
cities, and provincial capital cities) in megalopolises to
measure the level of the division of labor. As shown in
Figure 5, the employment proportion of high-end pro-
ductive service increased in the central cities but that of
manufacturing and low-end productive service decreased
year by year, which partially confirm Hypothesis 3.
)erefore, the central cities tend to cultivate the high-end
productive service industry and gradually become
“technology pools” and “market areas” for improving
carbon efficiency of themselves and surrounding areas.

Table 8: Direct and indirect effects of the SDM model.

Explanatory variables
Effects

Direct effects Indirect effects

lnMA 0.0477∗∗∗ 0.7610∗∗∗
(6.05) (3.05)

lnLPSA − 0.0128 1.0955∗∗
(− 1.27) (2.30)

lnHPSA 0.0980∗∗∗ 0.7468
(8.06) (1.39)

lnLSA − 0.0316∗∗∗ 0.2567
(− 3.15) (0.59)

lnLC 0.2931∗∗∗ 1.2854∗∗∗
(27.87) (3.32)

lnKC 0.5997∗∗∗ − 1.7800∗∗∗
(57.50) (− 4.71)

lnEC 0.0224∗∗ 1.7800∗∗∗
(2.06) (3.41)

lnGOV − 0.1393∗∗∗ − 1.8826∗∗∗
(− 12.99) (− 3.79)

lnFDI 0.0255∗∗∗ 0.3102∗∗∗
(8.69) (4.11)

Note.)e symbols ∗, ∗∗, and ∗∗∗ represent significance levels at 10%, 5%, and 1%, respectively; the values in parentheses are t statistics; log-lik is log-likelihood.
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)e common cities are inclined to develop their
manufacturing industry with complementary functions
for neighboring areas. )erefore, the divisions of labor for

central and common cities in the megalopolis are coupled
with the industrial agglomeration for improving carbon
efficiency.

Table 9: Direct and indirect effects of the SDM model in three megalopolises.

Explanatory variables
Circum-Bohai Sea Economic

Zone Yangtze River Delta Megalopolis Pearl River Delta Megalopolis

Direct effect Indirect effect Direct effect Indirect effect Direct effect Indirect effect

lnMA 0.0824∗∗∗ 0.3533∗∗∗ 0.1700∗∗∗ 0.9558∗∗ 0.0540 2.4513∗∗∗
(4.21) (3.53) (3.96) (2.13) (0.81) (3.85)

lnLPSA 0.0090 − 0.0819 − 0.0699∗∗ − 0.2967 − 0.0554 − 0.7830∗∗
(0.49) (− 0.87) (-2.10) (− 1.09) (− 1.15) (− 2.88)

lnHPSA 0.0747∗∗∗ 0.0118 0.1978∗∗∗ − 0.4740 0.4088∗∗∗ 2.2624∗∗∗
(2.84) (0.10) (3.60) (− 0.79) (5.04) (4.88)

lnLSA 0.0570∗ 0.2721∗∗ 0.0329 0.9612∗ 0.0880∗∗ 0.6404∗∗
(1.93) (2.62) (0.70) (2.05) (2.31) (2.82)

lnLC 0.2555∗∗∗ − 0.6340∗∗∗ 0.4077∗∗∗ 0.9400∗∗∗ 0.3041∗∗∗ 0.5630∗∗
(8.39) (− 3.54) (11.30) (2.91) (6.29) (2.45)

lnKC 0.5859∗∗∗ 0.3367∗∗ 0.5403∗∗∗ 0.1373 0.6311∗∗∗ 0.7830∗∗

(22.81) (2.53) (14.26) (0.57) (14.04) (2.73)

lnEC 0.1922∗∗∗ 0.6959∗∗∗ 0.1319∗∗∗ 1.0999∗∗∗ 0.1133∗∗ − 1.7118∗∗∗
(3.89) (3.17) (3.42) (3.32) (2.52) (− 4.79)

lnGOV − 0.1336∗∗∗ 0.2348∗∗∗ − 0.2877∗∗∗ 0.0798 − 0.3571∗∗∗ − 0.0075
(− 4.65) (2.76) (− 4.78) (0.15) (− 6.47) (− 0.02)

lnFDI 0.0137∗∗ − 0.0188 0.0188 − 0.1689 0.1440∗∗∗ 0.3523∗∗∗
(2.28) (− 1.17) (1.45) (− 1.37) (10.65) (3.04)

Note.)e symbols ∗, ∗∗, and ∗∗∗ represent significance levels at 10%, 5%, and 1%, respectively; the values in parentheses are t statistics; log-lik is log-likelihood.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Circum-Bohai Sea Economic Zone
Yangtze River Delta Megalopolis
Pearl River Delta Megalopolis

0.3

0.5

0.7

0.9

(a)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0.3

0.5

0.7

0.9

Circum-Bohai Sea Economic Zone
Yangtze River Delta Megalopolis
Pearl River Delta Megalopolis

(b)

0.3

0.5

0.7

0.9

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Circum-Bohai Sea Economic Zone
Yangtze River Delta Megalopolis
Pearl River Delta Megalopolis

(c)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0.3

0.5

0.7

0.9

Circum-Bohai Sea Economic Zone
Yangtze River Delta Megalopolis
Pearl River Delta Megalopolis

(d)

Figure 5: )e ratio of employees of central cities to other cities in three megalopolises from 2007 to 2016. (a) Manufacturing industry.
(b) Low-end productive service industry. (c) High-end productive service industry. (d) Living service industry.
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5. Conclusion

)ere are two constraints on China’s economic develop-
ment: economic growth and the control of CO2 emissions.
In the present study, we used the spatial econometric
method to explore the impact of industrial agglomeration on
carbon efficiency with panel data of 285 cities above pre-
fecture level and three megalopolises in China, for the period
2007–2016. )e results showed the following. (1) At the
national level, all industrial agglomerations, except the living
service industry, take positive roles in improving the urban
carbon efficiency, and the impact from low-end productive
service agglomeration mainly comes from the spatial
spillover effect. (2) Comparing the industrial agglomerations
of the whole country and the megalopolises, we found that
manufacturing industry, high-end productive service in-
dustry, and living service industry of each megalopolis have
significant influences on the urban carbon efficiency, and the
influences are greater than the average national level. (3) In
the three megalopolises, manufacturing agglomeration,
high-end productive service agglomeration, and living ser-
vice agglomeration all significantly improve carbon effi-
ciency. )e impacts of manufacturing agglomeration and
high-end productive service agglomeration on carbon effi-
ciency are ranked from large to small in the order of the Pearl
River Delta, the Yangtze River Delta, and the Circum-Bohai
Sea Economic Zone. )e low-end productive service ag-
glomerations in the Yangtze River Delta and Pearl River
Delta have negative effects on carbon efficiency with the
crowding effect.

Accordingly, we propose several policy implications.
)e empirical examination showed that manufacturing

agglomeration and high-end productive service agglomer-
ation improve carbon efficiency in the city itself and sur-
rounding cities. With the purpose of keeping stable
economic growth and reducing CO2 emissions, the Chinese
government should “unbound” the factor market and es-
tablish a “common market” between cities and release the
“institutional dividend” through breaking down adminis-
trative barriers and regional trade protectionism. According
to the heterogeneity of the industrial agglomeration effects,
the government should accord priority to specific industries
from the perspective of regional comparative advantages. It
should avoid the excessive pursuit of industrial advancement
in the competition of cities, especially the “comparison and
pursuit” for the development of high-end productive service
industry among cities.

At the level of megalopolises, compared with the na-
tional level, the agglomerations of manufacturing and high-
end productive service have greater impacts on carbon ef-
ficiency. )e central cities have more chances to obtain
institutional and policy priority and should cultivate di-
versified high-end productive service industries as well as
become the “technology pool” and “market area” for im-
proving carbon efficiency in native and surrounding areas.
Since the manufacturing and low-end productive service
industries are more dependent on savings on production
costs and improvement of transaction efficiency, the com-
mon cities should form complementary functions for central

cities and make the coordinated development of
manufacturing and low-end productive services.
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