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In this paper, we present a simple and efficient novel semianalytic method to acquire approximate and exact solutions for the
fractional order Cauchy reaction-diffusion equations (CRDEs).+e fractional order derivative operator is measured in the Caputo
sense. +is novel method is based on the combinations of Elzaki transform method (ETM) and residual power series method
(RPSM).+e proposed method is called Elzaki residual power series method (ERPSM).+e proposed method is based on the new
form of fractional Taylor’s series, which constructs solution in the form of a convergent series. As in the RPSM, during establishing
the coefficients for a series, it is required to compute the fractional derivatives every time. While ERPSM only requires the concept
of the limit at zero in establishing the coefficients for the series, consequently scarce calculations give us the coefficients. +e
recommended method resolves nonlinear problems deprived of utilizing Adomian polynomials or He’s polynomials which is the
advantage of this method over Adomain decomposition method (ADM) and homotopy-perturbation method (HTM). To study
the effectiveness and reliability of ERPSM for partial differential equations (PDEs), absolute errors of three problems are inspected.
In addition, numerical and graphical consequences are also recognized at diverse values of fractional order derivatives. Outcomes
demonstrate that our novel method is simple, precise, applicable, and effectual.

1. Introduction

Differential equations (DEs) can be resolved by a diversity of
procedures, analytical and numerical. However, there are
numerous analytic methods for verdict on the results of DEs;
there occur quite a numeral of DEs that cannot be explained
analytically. +is means that the result cannot be articulated
as a summation of a fixed numeral of basic functions.

Numerous DEs arising in applications are so thorny that
it is occasionally unreasonable to have result formulations or
as a minimum if a result formula is existing, it possibly will
comprise integrals that can be premeditated only by means
of an algebraic quadrature formulation. In moreover in-
stance, numerical procedures offer an influential substitute
means for resolving the DEs under the prearranged pre-
liminary condition.

Earlier, numerous procedures have been offered to re-
solve fractional order DEs comprising the Bernstein wavelets
method [1], Shehu variational iteration method [2], Che-
byshev spectral collocation approach [3], Taylor wavelet
technique [4], operational matrix approach [5], fractional
natural decomposition method [6]. homotopy analysis ap-
proach [7], Aboodh decomposition approach [8], Sumudu
decomposition method [9], Elzaki decomposition technique
[10], residual power series method [11], and generalized
pseudospectral method [12]. Numerical method is based on
the generalized fractional order of the Chebyshev orthogonal
functions (GFCFs) and the collocation method [13].

In this research, an easy and effective novel semi-
analytical method is initiated. +e unexploited method is
called ERPSM that is the merger of ETM and RPSM. +e
process of this efficacious method relies on transforming DE

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5337255, 12 pages
https://doi.org/10.1155/2021/5337255

mailto:ashraf_math20@juniv.edu
https://orcid.org/0000-0002-1490-8576
https://orcid.org/0000-0001-9152-2573
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5337255


into the Elzaki space and creating a series explanation and
subsequently acquiring the consequence of the actual DE by
utilizing the inverse ETM.

Reaction-diffusion equation is a mathematical model,
characterized by the parabolic PDEs. It is exemplifying in
what way chemicals might work to each other, whereas they
diffuse by a medium instantaneously. Alan Tuning recog-
nized it in 1952 [14]. Reaction-diffusion is measured im-
mensely by experts in biology, chemistry, physics, and
computer science [15].

By a reaction-diffusion, we mean an equation of the
following form:

zΦ
zΥ

� ΔΦ +Ω(Φ,ΔΦ, χ,Υ), (1)

where Φ is the diffusion term and Ω(Φ,ΔΦ, χ,Υ) is the
reaction term.

In this paper, we deliberate the one-dimensional time-
fractional CRDEs. +e time-fractional CRDEs can be uti-
lized to explicate several categories of linear and nonlinear
systems in physics, chemistry, ecology, biology, and engi-
neering [16–18].

+e general form of the fractional order CRDE is as
follows [19]:

z
ϖΦ(χ,Υ)

zΥϖ
� λ

z
2Φ(χ,Υ)

zχ2
+ z(χ,Υ)Φ(χ,Υ),

χ ≥ 0, Υ≥ 0, 0<ϖ≤ 1.

(2)

With the initial condition,

Φ(χ, 0) � g(χ). (3)

Fractional derivative is considered in the Caputo sense.
+e term λ (z2Φ(χ,Υ)/zχ2) represents diffusion and

z(χ,Υ)Φ(χ,Υ) represents the reaction, where z(χ,Υ) is the
reaction parameter,Φ(χ,Υ) is the concentration, and λ is the
diffusion coefficient constant.

Verdict on the results of fractional order CRDEs is a
fascinating zone for the researchers. Chowdhury and
Hashim applied homotopy-perturbation method (HPM) to
acquire estimated analytical explanations for the CRDEs
[20]. Ali et al. established estimated results of CRDEs by
optimal homotopy asymptotic method (OHAM) [21]. Wang
and Liu used a novel evaluating procedure for nonlinear
time-fractional CRDE [22]. Kumar et al. applied homotopy
analysis transform method (HATM) for cracking CRDEs
[23]. Hosseini et al. recognized comparative explanation of
CRDEs by Mittag–Leffler law [24]. Lima et al. considered
problems of CRDEs by means of finite element approach
[25].

Elzaki transform was presented by Elzaki in 2011 [26]. It
is a very useful method to resolve the entire natures of DEs.

Elzaki transform was defined for functions of expo-
nential order. We consider functions in the set ξ defined as

ξ � Φ(Υ)|∃M, Θ1, Θ2 > 0, |Φ(Υ)<Me
|Υ|/Θj( 􏼁if Υ ∈ (− 1)

j
X[0, ∞)􏼚 􏼛. (4)

Elzaki transform is defined as

E[Φ(Υ)] � υ􏽚
∞

0
Φ(Υ)e− (Υ/υ)dΥ, Θ1 ≤ υ≤Θ2, (5)

where E symbolizes Elzaki transform operator.
+e framework of this study is as follows. In the next

section, a new form of fractional Taylor’s series is introduced
that will be used in our work in the next sections and further
explained and the conditions for convergence of the new
form of Taylor’s formula were determined. Moreover, we
presented some new results. Next, we build Elzaki residual
power series solutions for CRDEs. Further, few problems are
solved to illustrate the capability, the potentiality, and the
simplicity of the proposed method. Eventually, our results
are compiled in the conclusion.

2. Some New Results

In this section, we familiarize a novel formula of fractional
Taylor’s series and elucidate and govern the circumstances
for the convergence of the novel formula of fractional
Taylor’s series and present some expedient outcomes which
are pillars for the new effectual method.

Lemma 1 (a new formula of fractional Taylor’s series in
Elzaki transform). Suppose that Φ(Υ) is a piecewise con-
tinuous and exponential order; the Elzaki transform of
Φ(Υ)E[Φ(Υ)] � Ψ(υ) has fractional Taylor’s series repre-
sentation as

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
, (6)

where ℵn represents nth coefficient of the new formula of
fractional Taylor’s series in Elzaki transform.

Proof: Consider the following fractional Taylor’s series:

Φ(Υ) � ℵ0 +
ℵ1
Γ(ϖ + 1)

Υϖ +
ℵ2
Γ(2ϖ + 1)

Υ2ϖ

+
ℵ3
Γ(3ϖ + 1)

Υ3ϖ + · · · .

(7)

Applying Elzaki transform at the both sides of equation
(6),
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E[Φ(Υ)] � ℵ0E[1] +
ℵ1
Γ(ϖ + 1)

E Υϖ􏽨 􏽩 +
ℵ2
Γ(2ϖ + 1)

E Υ2ϖ􏽨 􏽩 +
ℵ3
Γ(3ϖ + 1)

E Υ3ϖ􏽨 􏽩 +
ℵ4
Γ(4ϖ + 1)

E Υ4ϖ􏽨 􏽩 + · · · ,

Ψ(υ) � 􏽘

∞

n�0
ℵnυ

nϖ+2
.

(8)

which is a new form of fractional Taylor formula in Elzaki
transform form. □

Remark 1. +e multiple fractional Taylor’s series or gen-
eralized form of Taylor’s series representation at Υ � 0 takes
the following form in Elzaki transform space:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υnϖ+2

,

where χ � χ1, χ2, χ3 . . . χd( 􏼁 ∈ Rd
, d ∈ N.

(9)

Lemma 2. Assume that the function E[Φ(Υ)] � Ψ(υ) has
fractional power series (FPS) representation as follows:

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
. (10)

?en, limυ⟶0(1/υ2)Ψ(υ) � ℵ0.

Proof: From the new form of fractional Taylor’s series, we
have

1
υ2
Ψ(υ) � ℵ0 + ℵ1υ

ϖ
+ℵ2υ

2ϖ
+ℵ3υ

3ϖ
+ ℵ4υ

4ϖ
+ · · · .

(11)

Taking limit υ⟶ 0, so the last equation becomes as

lim
υ⟶0

1
υ2
Ψ(υ) � ℵ0 � Φ(0). (12)

□

Remark 2. In the case of a generalized form of Taylor’s series
in Elzaki transform space, we have the following:

lim
υ⟶0

1
υ2
Ψ(χ, υ) � ℵ0(χ, 0),

where χ � χ1, χ2, χ3 . . . χd( 􏼁 ∈ Rd
, d ∈ N.

(13)

Lemma 3. Presume that Φ(Υ) is a piecewise continuous
function on [0,∞) and exponential order, E[Φ(Υ)] � Ψ(υ).

?en,

E D
nϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υnϖ − 􏽘

n− 1

j�0
υ(j− n)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0),

0<ϖ≤ 1,

(14)

where Dnϖ
Υ Φ � DϖΥ . DϖΥ .DϖΥ . . . DϖΥ(n − times).

Proof: To prove, we use the principle of mathematical in-
duction method.

Using n � 1 in equation (14),

E D
ϖ
ΥΦ(Υ)􏽨 􏽩 �

Ε[Φ(Υ)]
υϖ

− υ− ϖ+2Φ(0). (15)

Equation (14) is effective for n � 1.
Using n � 2 in equation (14), we get

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υ2ϖ

− υ− 2ϖ+2Φ(0) + υ− ϖ+2
D
ϖ
ΥΦ􏼐 􏼑(0),

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � E D

ϖ
Υ D
ϖ
ΥΦ(Υ)􏼐 􏼑􏽨 􏽩.

(16)

Let DϖΥΦ(Υ) � z(Υ).
So, equation (16) becomes as

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � E D

ϖ
Υ(z(Υ))􏽨 􏽩. (17)

By utilizing Caputo fractional derivative, the last
equation becomes as

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � E J

1− ϖ
Υ z

(1)
(Υ)􏽨 􏽩. (18)

By using Riemann–Liouville integral formula of Elzaki
transform,

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � υ1− ϖ

E z
(1)

(Υ)􏽨 􏽩. (19)

By differential property, the above equation becomes as
follows:

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � υ− ϖ

Z(υ) − υ2− ϖ
z(0),

where D
ϖ
ΥΦ􏼐 􏼑(0) � z(0).

(20)

From equation (20), we have

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � υ− ϖ

E D
ϖ
ΥΦ(Υ)􏽨 􏽩 − υ2− ϖ

D
ϖ
ΥΦ􏼐 􏼑(0),

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υ2ϖ

− υ2− 2ϖΦ(0) − υ2− ϖ
D
ϖ
ΥΦ􏼐 􏼑(0).

(21)

So, from equation (21), we conclude that formula
equation (14) is accurate when n � 2. Now, suppose formula
is valid for n � r. So, we have

E D
rϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υrϖ − 􏽘

r− 1

j�0
υ(j− r)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0). (22)

Now, we will prove for n � r + 1.
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E D
(r+1)ϖ
Υ Φ(Υ)􏽨 􏽩 �

Ε[Φ(Υ)]
υrϖ − 􏽘

r− 1+1

j�0
υ(j− (r+1))ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0), (23)

L.H.S � E D
(r+1)ϖ
Υ Φ(Υ)􏽨 􏽩,

L.H.S � E D
ϖ
Υ D

rϖ
Υ Φ(Υ)􏼐 􏼑􏽨 􏽩.

(24)

Suppose that

D
rϖ
Υ Φ(Υ) � b(Υ). (25)

So, equation (24) becomes as

L.H.S � E D
ϖ
Υ(b(Υ))􏽨 􏽩. (26)

By utilizing Caputo fractional derivative, so the last
equation becomes as

L.H.S � E J
1− ϖ
Υ b

(1)
(Υ)􏽨 􏽩. (27)

By utilizing Riemann–Liouville fractional integral for-
mula, equation (27) becomes as follows:

L.H.S � υ1− ϖ
E b

(1)
(Υ)􏽨 􏽩. (28)

By differential property of E-L, so equation (28) becomes
as

L.H.S � υϖE D
rϖ
Υ Φ(Υ)􏽨 􏽩 − υ2− ϖ

b(0), (29)

where (Drϖ
Υ Φ)(0) � b(0).

From equation (29), we get

L.H.S �
E[Φ(Υ)]
υ(r+1)ϖ − 􏽘

r− 1

j�0
υ(j− (r+1))ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0) − υ2− ϖ

b(0),

L.H.S �
E[Φ(Υ)]

υnϖ − 􏽘
n− 1

j�0
υ(j− n)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0).

(30)

So, equation (14) is valid for all integers. +us, the proof
completes. □

Remark 3. By making generalization, the above proved
formula takes the following form:

E D
nϖ
Υ Φ(χ,Υ)􏽨 􏽩 �

E[Φ(χ,Υ)]
υnϖ − 􏽘

n− 1

j�0
υ(j− n)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0), whereχ � χ1, χ2, χ3, . . . χd( 􏼁 ∈ Rd

, d ∈ N, (31)

and Dnϖ
Υ Φ � DϖΥ. DϖΥ.D

ϖ
Υ . . . DϖΥ(n − times).

Theorem 1. Suppose that the function E[Φ(Υ)] � Ψ(υ) has
FPS representation as follows:

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
, (32)

thenwe haveℵn � (Dnϖ
Υ Φ)(0), where Dnϖ

Υ Φ � DϖΥ . DϖΥ . DϖΥ
. . . DϖΥ(n − times).

Proof: Consider new form of Taylor’s series.

Ψ(υ) � ℵ0υ
2

+ ℵ1υ
ϖ+2

+ ℵ2υ
2ϖ+2

+ ℵ3υ
3ϖ+2

+ ℵ4υ
4ϖ+2

+ · · · .

(33)

From the above equation, we have

ℵ1 �
1

υϖ+2
Ψ(υ) −

1
υϖ+2

υ2Ψ(0) −
1

υϖ+2
ℵ2υ

2ϖ+2

−
1

υϖ+2
ℵ3υ

3ϖ+2
−

1
υϖ+2
ℵ4υ

4ϖ+2
+ · · · .

(34)

Taking υ⟶ 0 on the above equation,

ℵ1 � lim
υ⟶0

1
υ2

1
υϖ
Ψ(υ) −

1
υϖ− 2Ψ(0)􏼠 􏼡. (35)

By using Lemma 3,

ℵ1 � lim
υ⟶0

1
υ2

E D
ϖ
ΥΦ(Υ)􏽨 􏽩(υ)􏼐 􏼑. (36)

By Lemma 2, the above equation becomes as

ℵ1 � D
ϖ
ΥΦ􏼐 􏼑(0). (37)

Again from equation (32),

ℵ2 �
1
υ2

1
υ2ϖ
Ψ(υ) −

1
υ2ϖ− 2Ψ(0) −

1
υϖ− 2ℵ1􏼠 􏼡 − ℵ3υ

ϖ

− ℵ4υ
2ϖ

+ · · · .

(38)

Taking υ⟶ 0 on the last equation, utilizing Lemma 3,
the above equation becomes as

ℵ2 � lim
υ⟶0

1
υ2

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩(υ)􏼐 􏼑. (39)

By Lemma 2,

ℵ2 � D
2ϖ
Υ Φ􏼐 􏼑(0). (40)

Again from equation (32), we have

ℵ3 � lim
υ⟶0

1
υ2

1
υ3ϖ
Ψ(υ) − Ψ(0)

1
υ3ϖ− 2 − ℵ1

1
υ2ϖ

− ℵ2
1

υϖ− 2􏼠 􏼡.

(41)

By Lemma 3,
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ℵ3 � lim
υ⟶0

1
υ2

E D
3ϖ
Υ Φ(Υ)􏽨 􏽩(υ)􏼠 􏼡. (42)

By Lemma 2, the last equation becomes as

ℵ3 � D
3ϖ
Υ Φ􏼐 􏼑(0). (43)

In the samemanner, we can obtain the following form by
making generalization:

ℵn � D
nϖ
Υ Φ􏼐 􏼑(0). (44)

+is completes the proof of the theorem. □

Remark 4. For multiple Taylor’s series, the proved result
becomes as follows:

ℵn(χ) � D
nϖ
Υ Φ􏼐 􏼑(0), where χ � χ1, χ2, χ3, . . . χd( 􏼁 ∈ Rd

, d ∈ N.

(45)

+e following theorem describes and determines the
conditions for convergence of the new form of Taylor’s
formula that are introduced in Lemma 1.

Theorem 2. Let Ψ(υ) � E[Φ(Υ)] be represented as the new
form of fractional Taylor’s formula as in Elzaki transform:

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
, (46)

if
1
υ2

E D
(n+1)ϖ
Υ Φ(Υ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤T. (47)

+en, the remainder Rn(υ) of the new form of fractional
Taylor’s formula satisfies the following inequality:

Rn(υ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ υ(n+1)ϖ+2
T. (48)

Proof: Consider the following:

Ψn(υ) � ℵ0υ
2

+ ℵ1υ
ϖ+2

+ ℵ2υ
2ϖ+2

+ ℵ3υ
3ϖ+2

+ · · · ℵnυ
nϖ+2

.

(49)

From equations (46) and (49), we get

Rn(υ) � Ψ(υ) − 􏽘
n

k�0
ℵkυ

kϖ+2
. (50)

By +eorem 1,

Rn(υ) � Ψ(υ) − 􏽘
n

k�0
υkϖ+2

D
kϖ
Υ Φ􏼐 􏼑(0),

1
υ(n+1)ϖ+2Rn(υ) �

1
υ2

1
υ(n+1)ϖ Ψ(υ) − 􏽘

n

k�0

1
υ(n+1− k)ϖ− 2 D

kϖ
Υ Φ􏼐 􏼑(0)⎛⎝ ⎞⎠.

(51)

By Lemma 3,
1

υ(n+1)ϖ+2Rn(υ) �
1
υ2

E D
(n+1)ϖ
Υ Φ(Υ)􏽨 􏽩,

1
υ(n+1)ϖ+2Rn(υ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

1
υ2

E D
(n+1)ϖ
Υ Φ(Υ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(52)

By the given assumption, the above equation becomes as

− υ(n+1)ϖ+2
T≤Rn(υ)≤ υ(n+1)ϖ+2

T, (53)

|Rn(υ)|≤ υ(n+1)ϖ+2T. Hence, the required result is
proved. □

3. Demonstrating the ERPSM for the CRDEs

We exploit our novel ERPSM to originate the results of the
linear and nonlinear CRDEs.+e foremost set of rules of this
method for resolving the CRDEs can be accumulated by the
following steps: employing the Elzaki transform to CRDE

and then deploying the novel form of Taylor’s series to
introduce the solution of CRDE in the novel space. +e
coefficients of this series are established with a new idea. At
the end, employing the inverse Elzaki transform to achieve
the solution of the problem in the actual space.

3.1. Elzaki Residual Power Series Solutions for the CRDEs.
In this subsection, we systematized the stages for conquering
the Elzaki residual power series solution for the linear and
nonlinear CRDE by the following procedure.

Step 1. Rewriting equation (2) as demonstrated:

z
ϖΦ(χ,Υ)

zΥϖ
− λ

z
2Φ(χ,Υ)

zχ2
− z(χ,Υ)Φ(χ,Υ) � 0. (54)

Step 2. Manipulating Elzaki transform at both sides of
equation (54), we get in this way

E
z
ϖΦ(χ,Υ)

zΥϖ
􏼢 􏼣 − λE

z
2Φ(χ,Υ)

zχ2
􏼢 􏼣 − E E

− 1
[Z(χ, υ)]E

− 1
[Ψ(χ, υ)]􏽨 􏽩 � 0, (55)
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where

E
− 1

[Z(χ, υ)] � z(χ,Υ),

E
− 1

[Ψ(χ, υ)] � Φ(χ,Υ),

E
z
ϖΦ(χ,Υ)

zΥϖ
􏼢 􏼣 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2

g(χ).

(56)

So, we get the following form:

Ψ(χ, υ) � υ2g(χ) + λυϖDχχΨ(χ, υ)

+ υϖE E
− 1

[Z(χ, υ)]E
− 1

[Ψ(χ, υ)]􏽨 􏽩.
(57)

Step 3. Considering the solution of equation (57) as the
following:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (58)

Step 4. Setting ℵ0(χ) � lim
υ⟶∞

(1/υ2)Ψ(χ, υ) � Φ(χ, 0).

Step 5. Establishing the kth-truncated series of Ψ(χ, υ)

as

Ψk(χ, υ) � 􏽘
k

n�0
ℵn(χ)υ2+nϖ

,

ℵ0 � lim
υ⟶0

1
υ2
Ψ(χ, υ),

Ψk(χ, υ) � ℵ0υ
2

+ 􏽘
k

n�1
ℵn(χ)υ2+nϖ

.

(59)

Step 6. Considering the Elzaki residual function (ERF)
of equation (57) and the kth-truncated ERF separately
such that

ERes(χ, υ) � Ψ(χ, υ) − υ2g(χ) − λυϖDχχΨ(χ, υ)

− υϖE E
− 1

[Z(χ, υ)]E
− 1

[Ψ(χ, υ)]􏽨 􏽩,

EResk(χ, υ) � Ψk(χ, υ) − υ2g(χ) − λυϖDχχΨk(χ, υ)

− υϖE E
− 1

[Z(χ, υ)]E
− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩.

(60)

Step 7. Replacing the series form of Ψk(χ, υ) into
equation (60).
Step 8. Dividing at both sides of equation (60) with
υkυ+2 as follows:
1

υ2+kϖ EResk(χ, υ) �
1

υ2+kϖΨk(χ, υ) −
1

υ2+kϖυ
2
g(χ)

− λ
1

υ2+kϖυ
ϖ

DχχΨk(χ, υ)

−
1

υ2+kϖυ
ϖ

E E
− 1

[Z(χ, υ)]E
− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩.

(61)

Step 9. Taking limit at both sides of equation (61).

lim
υ⟶0

1
υ2+kϖ EResk(χ, υ) � lim

υ⟶0

1
υ2+kϖΨk(χ, υ) − lim

υ⟶0

1
υ2+kϖυ

2
g(χ)

− λ lim
υ⟶0

1
υ2+kϖυ

ϖ
DχχΨk(χ, υ) − lim

υ⟶0

1
υ2+kϖυ

ϖ
E E

− 1
[Z(χ, υ)]E

− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩.

(62)

Step 10. Solving the following equation for ℵn(χ):

lim
υ⟶0

1
υkϖ+2 EResk(χ, υ)􏼠 􏼡 � 0, k � 1, 2, 3, . . . . (63)

Step 11. Replacing the attained values of ℵn(χ) into
kth-truncated series of Ψ(χ, υ) to get the kth-approx-
imate solution of equation (57).
Step 12. Manipulating the inverse Elzaki transform on
Ψk(χ, υ) to attain the kth-approximate solution of
Φk(χ,Υ) in the real space.

3.2. Applications to Linear and Nonlinear CRDEs. In this
subsection, we consider three main problems of CRDEs to
illustrate the execution and capability of ERPSM.

3.2.1. Approximate and Closed Form Solutions of Linear
CRDEs. Two applications are considered for linear CRDEs.

Problem 1. Consider the time-fractional linear CRDE [19].

D
ϖ
ΥΦ(χ,Υ) � Φχχ(χ,Υ) − Φ(χ,Υ), χ, Υ≥ 0, 0<ϖ≤ 1.

(64)
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Subject to initial condition,

Φ(χ, 0) � e
− χ

+ χ. (65)

Solution. Utilizing Elzaki transform on equation (64),

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 � E Φχχ(χ,Υ)􏽨 􏽩 − E[Φ(χ,Υ)], (66)

where E[Φ(χ,Υ)] � Ψ(χ, υ),

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2Φ(χ, 0), (67)

so equation (66) becomes as

Ψ(χ, υ) � υ2Φ(χ, 0) + υϖDχχΨ(χ, υ) − υϖΨ(χ, υ). (68)

Initiate a series solution to the algebraic equation (68).
Hence, presume that the expansion of Ψ(χ, υ) is the
following:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (69)

Assume that Ψ(χ, υ) has the kth-truncated series as

Ψk(χ, υ) � 􏽘

k

n�0
ℵn(χ)υ2+nϖ

. (70)

By Lemma 2, we have

lim
υ⟶0

1
υ2
Ψ(χ, υ) � Φ(χ, 0) � e

− χ
+ χ. (71)

+e kth-truncated series becomes as follows:

Ψk(χ, υ) � υ2 e
− χ

+ χ( 􏼁 + 􏽘
k

n�1
ℵn(χ)υ2+nϖ

. (72)

+e ERF of the algebraic equation (68) is described as

ERes(χ, υ) � Ψ(χ, υ) − υ2 e
− χ

+ χ( 􏼁 − υϖDχχΨ(χ, υ) + υϖΨ(χ, υ).

(73)

Furthermore, kth-truncated ERF of the algebraic
equation (69) is explained as follows:

EResk(χ, υ) � Ψk(χ, υ) − υ2 e
− χ

+ χ( 􏼁

− υϖDχχΨk(χ, υ) + υϖΨk(χ, υ).
(74)

By utilizing equations (72) and (74), we get undefined
coefficients in the following form:

ℵ1(χ) � − χ,

ℵ2(χ) � χ,

ℵ3(χ) � − χ,

ℵ4(χ) � χ,

ℵ5(χ) � − χ.

(75)

So, we get the 5th approximate solution of Elzaki
transform of equation (68).

Ψ5(χ, υ) �
e

− χ
+ χ

υ2
−

χ
υ2+ϖ +

χ
υ2+2ϖ −

χ
υ2+3ϖ +

χ
υ2+4ϖ −

χ
υ2+5ϖ.

(76)

Operating inverse Elzaki transform on both sides of
equation (76), we get the 5th approximate solution of
equation (64).

Φ5(χ,Υ) � e
− χ

+ χ 1 −
Υϖ

Γ(ϖ + 1)
+
Υ2ϖ

Γ(2ϖ + 1)
−
Υ3ϖ

Γ(3ϖ + 1)
+
Υ4ϖ

Γ(4ϖ + 1)
−
Υ5ϖ

Γ(5ϖ + 1)
􏼠 􏼡. (77)

When ϖ � 1, equation (77) becomes as

Φ5(χ,Υ) � e
− χ

+ χ 1 −
Υ
1!

+
Υ2

2!
−
Υ3

3!
+
Υ4

4!
−
Υ5

5!
􏼠 􏼡. (78)

Equation (78) is coinciding with the six terms of the
expansion of the exact solution Φ(χ,Υ) � e− χ + χe− Υ.

Table 1 demonstrates the values of absolute error of the
5th order approximate and exact solutions at ϖ � 1 when
χ � 1 which support the capability and exactness of the novel
technique.

Figure 1 displays the evaluations of exact solution at ϖ �

1 and the 5th approximate solution of Problem 1, at χ � 1, for
several values ofΥ andϖ. Figure 1 confirms that when values
of ϖ approach to “1,” the approximate solution approaches
to the exact solution, which approves the efficacy and
correctness of the new method. Moreover, the approximate

solution overlaps with the exact solution at ϖ � 1 and this
once more ratifies the usefulness and correctness of the
ERPSM.

Problem 2. Consider the time-fractional linear CRDE [20],

D
ϖ
ΥΦ(χ,Υ) � Φχχ(χ,Υ) − 1 + 4χ2􏼐 􏼑Φ(χ,Υ),

χ,Υ≥ 0, 0<ϖ≤ 1.
(79)

With the initial condition,

Φ(χ, 0) � e
χ2

. (80)

Solution. Manipulating Elzaki transform on equation
(79),
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E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 � E Φχχ(χ,Υ)􏽨 􏽩 − 1 + 4χ2􏼐 􏼑E[Φ(χ,Υ)],

Ψ(χ, υ) � υ2eχ
2

+ υϖDχχΨ(χ, υ) − υϖ 1 + 4χ2􏼐 􏼑Ψ(χ, υ),

(81)

where

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2

e
χ2

,

E[Φ(χ,Υ)] � Ψ(χ, υ).

(82)

Now, establishing a series solution of equation (81),
consequently assume that Ψ(χ, υ) has the expansion as
follows:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (83)

+e kth-truncated series Ψ(χ, υ) is as follows:

Ψk(χ, υ) � 􏽘
k

n�0
ℵn(χ)υ2+nϖ

. (84)

By Lemma 2, we have

lim
υ⟶0

1
υ2
Ψ(χ, υ) � Φ(χ, 0) � e

χ2
. (85)

So, equation (84) becomes as

Ψk(χ, υ) � e
χ2υ2 + 􏽘

k

n�1
ℵn(χ)υ2+nϖ

. (86)

+e ERF of equation (81) is defined as

ERes(χ, υ) � Ψ(χ, υ) − υ2eχ
2

− υϖDχχΨ(χ, υ)

+ υϖ 1 + 4χ2􏼐 􏼑Ψ(χ, υ).
(87)

+e kth-ERF is as follows:

EResk(χ, υ) � Ψk(χ, υ) − υ2eχ
2

− υϖDχχΨk(χ, υ)

+ υϖ 1 + 4χ2􏼐 􏼑Ψk(χ, υ).
(88)

To find unspecified coefficients using equations (86) and
(88), so we have

ℵ1(χ) � e
χ2

,

ℵ2(χ) � e
χ2

,

ℵ3(χ) � e
χ2

,

ℵ4(χ) � e
χ2

,

ℵ5(χ) � e
χ2

.

(89)

Table 1: Absolute error of ERPS results.

Υ Exact solution Approximate solution Absolute error
0 2.71828182846 2.71828182846 0
0.06 2.88637098927 2.88637098909 1.7766543792×10− 10
0.12 3.06485420329 3.06485419182 1.1469452055×10− 8
0.18 3.25437420289 3.2543740711 1.3178722424×10− 7
0.24 3.45561346476 3.45561271778 7.4698766506×10− 7
0.30 3.66929666762 3.66929379283 0.00000287478963168
0.36 3.8961933018 3.89618464113 0.00000866066429372
0.42 4.13712044025 4.13709840516 0.0000220350955411
0.48 4.39294568092 4.39289613873 0.044093686996

0.0 0.1 0.2 0.3 0.4 0.5

0.9

1.0

1.1

1.2

1.3

Φ
 (Y

)

Y

ϖ=0.6
ϖ=0.7
ϖ=0.8

ϖ=0.9
ϖ=1.0
Exact

Figure 1: Evaluation of closed form and approximate consequences of Problem 1.
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+e 5th approximate solution of equation (81) in Elzaki
transform form is

Ψ5(χ, υ) � e
χ2 1

υ2
+

1
υ2+ϖ +

1
υ2+2ϖ +

1
υ2+3ϖ +

1
υ2+4ϖ +

1
υ2+5ϖ􏼠 􏼡.

(90)

By applying inverse Elzaki transform on equation (90),
we get the 5th approximate solution of equation (79) as
follows:

Φ5(χ,Υ) � e
χ2 1 +

Υϖ

Γ(ϖ + 1)
+
Υ2ϖ

Γ(2ϖ + 1)
+
Υ3ϖ

Γ(3ϖ + 1)
+
Υ4ϖ

Γ(4ϖ + 1)
+
Υ5ϖ

Γ(5ϖ + 1)
􏼠 􏼡. (91)

When ϖ � 1, equation (91) becomes as

Φ5(χ,Υ) � e
χ2 1 +
Υ
1!

+
Υ2

2!
+
Υ3

3!
+
Υ4

4!
+
Υ5

5!
􏼠 􏼡. (92)

Equation (92) represents the first six terms of the ex-
pansion of eχ

2+Υ, so closed form solution of equation (79) is
eχ

2+Υ.
Table 2 demonstrates the values of absolute error of the

5th order approximate and exact solutions at ϖ � 1 when
χ � 1, which support the capability and accuracy of the new
technique.

Figure 2 demonstrates the exploits of exact solution at
ϖ � 1 and the 5th approximate solution of Problem 2, when
χ � 1 for numerous values of Υ andϖ. +e figure endorses
that when values of ϖ approach to “1,” the approximate
solution approaches to exact solution, which supports the
ability and precision of the new method. Moreover, the
approximate solution overlaps with the exact solution at ϖ �

1 and this once more ratifies the usefulness and correctness
of the ERPSM.

3.2.2. Approximate and Closed Form Solutions of Nonlinear
CRDEs

Problem 3. Consider the nonlinear time-fractional CRDE
[21],

D
ϖ
ΥΦ(χ,Υ) � Φχχ(χ,Υ) − Φχ(χ,Υ) +Φ(χ,Υ)Φχχ(χ,Υ)

− Φ2(χ,Υ) +Φ(χ,Υ), χ,Υ≥ 0, 0<ϖ≤ 1,

(93)

With the initial condition,

Φ(χ, 0) � e
χ
. (94)

Solution. By applying Elzaki transform on equation (93),
we get

Ψ(χ, υ) � υ2eχ + υϖDχχΨ(χ, υ) − υϖDχΨ(χ, υ)

+ υϖE E
− 1

[Ψ(χ, υ)]DχχE
− 1

[Ψ(χ, υ)]􏽨 􏽩

− υϖE E
− 1Ψ(χ, υ)􏽨 􏽩

2
􏼔 􏼕 + υϖΨ(χ, υ).

(95)

Here,

E Φχχ(χ,Υ)􏽨 􏽩 � DχχΨ(χ, υ),

E Φχ(χ,Υ)􏽨 􏽩 � DχΨ(χ, υ),

Φ(χ,Υ) � E
− 1

[Ψ(χ, υ)],

Φ2(χ,Υ) � E
− 1

[Ψ(χ, υ)]􏽨 􏽩
2
,

Φχχ(χ,Υ) � DχχE
− 1

[Ψ(χ, υ)],

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2

e
χ
.

(96)

Define a series solution of equation (95) as follows:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (97)

+e kth-truncated series is

Ψk(χ, υ) � 􏽘
k

n�0
ℵn(χ)υ2+nϖ

. (98)

By Lemma 2,

lim
υ⟶0

1
υ2
Ψ(χ, υ) � Φ(χ, 0) � e

χ
. (99)

+erefore, the kth-truncated series becomes as

Ψk(χ, υ) � e
χυ2 + 􏽘

k

n�1
ℵn(χ)υ2+nϖ

. (100)

Now, define ERF in the following form:

ERes(χ, υ) � Ψ(χ, υ) − υ2eχ − υϖDχχΨ(χ, υ) + υϖDχΨ(χ, υ)

− υϖE E
− 1

[Ψ(χ, υ)]DχχE
− 1

[Ψ(χ, υ)]􏽨 􏽩

+ υϖE E
− 1Ψ(χ, υ)􏽨 􏽩

2
􏼔 􏼕 − υϖΨ(χ, υ).

(101)

+e kth-truncated ERF is
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EResk(χ, υ) � Ψk(χ, υ) − υ2eχ − υϖDχχΨk(χ, υ)

+ υϖDχΨk(χ, υ)

− υϖE E
− 1 Ψk(χ, υ)􏼂 􏼃DχχE

− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩

+ υϖE E
− 1Ψk(χ, υ)􏽨 􏽩

2
􏼔 􏼕 − υϖΨk(χ, υ).

(102)

+e undefined coefficients are determined in the fol-
lowing form by utilizing equations (100) and (102).

ℵ1(χ) � e
χ
,

ℵ2(χ) � e
χ
,

ℵ3(χ) � e
χ
,

ℵ4(χ) � e
χ
,

ℵ5(χ) � e
χ
.

(103)

+e 5th approximate solution of equation (95) is given as

Ψ5(χ, υ) � e
χ 1

υ2
+

1
υ2+ϖ +

1
υ2+2ϖ +

1
υ2+3ϖ +

1
υ2+4ϖ +

1
υ2+5ϖ􏼠 􏼡.

(104)

By applying inverse Elzaki transform on the above
equation, we get the 5th approximate solution of equation
(93).

Φ5(χ,Υ) � e
χ 1 +

Υϖ

Γ(ϖ + 1)
+
Υ2ϖ

Γ(2ϖ + 1)
+
Υ3ϖ

Γ(3ϖ + 1)
+
Υ4ϖ

Γ(4ϖ + 1)
+
Υ5ϖ

Γ(4ϖ + 1)
􏼠 􏼡. (105)

For ϖ � 1, the last equation becomes as

Table 2: Absolute error of ERPS results.

Υ Exact solution Approximate solution Absolute error
0.00 1.36787944117 1.36787944117 0.0
0.06 1.30964397476 1.30964397469 7×10− 11
0.12 1.25479987789 1.25479987381 4.08×10− 9
0.18 1.20314965258 1.20314960653 4.605×10− 8
0.24 1.15450730224 1.15450704565 2.5659×10− 7
0.30 1.10869766185 1.10869669117 9.7068×10− 7
0.36 1.06555576724 1.06555289269 0.00000287455
0.42 1.02492626099 1.02491907181 0.00000718918
0.48 0.98666283297 0.98664694453 0.000015888447
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Figure 2: +e behavior of exact and approximate outcomes of Problem 2.
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Φ5(χ,Υ) � e
χ 1 +
Υ
1!

+
Υ2

2!
+
Υ3

3!
+
Υ4

4!
+
Υ5

5!
􏼠 􏼡. (106)

Equation (106) coincides with the 1st six terms of the
expansion of eχ+Υ, therefore exact solution of equation (93) is
eχ+Υ.

Table 3 demonstrates the values of absolute error of the
5th order approximate and exact results at ϖ � 1, and χ � 1,
which support the ability and accuracy of the novel
technique.

Figure 3 establishes the actions of exact solution at ϖ � 1
and the 5th approximate solution of Problem 3, when χ � 1
for certain values of Υ andϖ. +e figure recommends that
when values of ϖ approach to “1,” the approximate solution
approaches to exact solution, which supports the capability
and exactness of the new method. Moreover, the approxi-
mate solution overlaps with the exact solution at ϖ � 1 and
this once more ratifies the usefulness and correctness of the
ERPSM.

4. Conclusions

+ere are enormous number of numerical and analytical
methods for resolving the DEs; there are numerous methods
that have superiority over the others. Few of them are precise
and operative, but they necessitate mathematical operations
that can be problematic and elongated. Our novel method,

ERPSM, is considered by accurateness, rapidity, and ef-
fortlessness in finding exact and approximate solutions to
DEs.

To study the efficiency and reliability of ERPSM for
PDEs, absolute errors of three applications are scruti-
nized. Consequences verify that our novel technique is
simple, accurate, applicable, and efficient. +e recom-
mended techniques offered us an effortless and quick
technique to perceive the coefficients of the suggested
series to be a solution to the equation. Dissimilar to the
traditional RPS method, while establishing the coefficients
for a series, it is required to compute the fractional de-
rivative every time, while ERPSM only requires the
concept of the limit at zero in establishing the coefficients
for the series.

+e gain of the ERPSM is that it decreases considerably
the numerical calculations to construct the consequences for
this category of equations related to existing methods, for
instance, the differential transform method (DTM), per-
turbation method, and Adomian decomposition method
(ADM). Consequently, we can accomplish that the ERPSM
is effortless, effective, and practical for solving numerous
further fractional order PDEs.

Data Availability
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Table 3: Absolute error of ERPS results.

Υ Exact solution Approximate solution Absolute error
0.00 1.36787944117 1.36787944117 0.0
0.06 1.30964397476 1.30964397469 7×10− 11
0.12 1.25479987789 1.25479987381 4.08×10− 9
0.18 1.20314965258 1.20314960653 4.605×10− 8
0.24 1.15450730224 1.15450704565 2.5659×10− 7
0.30 1.10869766185 1.10869669117 9.7068×10− 7
0.36 1.06555576724 1.06555289269 0.00000287455
0.42 1.02492626099 1.02491907181 0.00000718918
0.48 0.98666283297 0.98664694453 0.000015888447
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Figure 3: 2D plot of exact and approximate solution of Problem 3.
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