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In this paper, the generalized fractional integral operators involving Appell’s function F3(·) in the kernel due to Mar-
ichev–Saigo–Maeda are applied to the (p, q)-extended Struve function.(e results are stated in terms of Hadamard product of the
Fox–Wright function rψs(z) and the (p, q)-extended Gauss hypergeometric function. A few of the special cases (Saigo integral
operators) of our key findings are also reported in the corollaries. In addition, the solutions of a generalized fractional kinetic
equation employing the concept of Laplace transform are also obtained and examined as an implementation of the
(p, q)-extended Struve function. Technique and findings can be implemented and applied to a number of similar fractional
problems in applied mathematics and physics.

1. Introduction

(e Struve functions are interesting special functions that
also provide solutions to a variety of issues formulated in
terms of discrete, integral, and differential equations of
fractional order; thus, many authors have recently become
interested in the domain of fractional calculus and its
implementations. (erefore, an extremely large number of
authors (for details, see [1–7]) have also researched, in detail,
the features, implementations, and numerous extensions of
different fractional calculus operators. (e research
monographs by Miller and Ross [8] can be referred to for

comprehensive overview of fractional calculus operators
(FCOs) together with their characteristics and potential
applications. (e (p, q)-variant (when p � q, p-variant)
associated with a set of similar higher transcendental
hypergeometric style special functions (see [9–13]) has re-
cently been investigated by several authors. In specific,
Maŝireviĉ et al. [14] introduced and analysed the
(p, q)-extended Struve function Hμ,p,q(z) of the first kind of
order δ withR(δ)> (− 1/2) and min p, q ≥ 0 when p � q �

0 in this manner:

Hδ,p,q(z) �
2(z/2)

δ+1

��
π

√
Γ(δ +(1/2))



∞

k�0
(− 1)

k
B k + 1, δ +

1
2
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z
2k

(2k + 1)!
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�
z
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2δΓ(δ +(3/2))
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Choi et al. [15] introduced the (p, q)-extended beta
function as

B(ς, ϑ: p, q) � 
1

0
t
ς− 1

(1 − t)
ϑ− 1

e
− ((p/t)+(q/1− t))dt,

(min R(ς),R(ϑ){ }> 0; min R(p),R(q) ≥ 0).

(3)

(e more details and generalized form of the definitions
(3) are considered in [16]. It is clear that the case p � 0 � q

automatically reduces the classical Struve function Hδ(z) of
the first kind (see, e.g., [17] p. 328, equation (2)):

Hδ(z) � 
∞

k�0
(− 1)

k (z/2)
2k+δ+1

Γ(δ +(3/2))Γ(δ + k +(3/2))
. (4)

(e Struve function is widely studied in the reference to
properties and applications in several papers (see details
[18–22]).

FCO involving different special functions have estab-
lishedmajor significance and requirements in the simulation
of related structures in diverse domain of engineering and
science, such as quantummechanics and turbulence, particle
physics, nonlinear optimization system, and nonlinear
control theory, controlled thermonuclear fusion, nonlinear
natural processes, image processing, quantum mechanics,
and astrophysics.

In the context of the success of Saigo operators [23, 24],
in their study of different function spaces and their use in
differential equations and integral equations, Saigo and
Maeda [25] presented the corresponding generalized frac-
tional differential and integral operators in any complex
order with Appell’s function F3(·) in the kernel as follows.
Let ς, ς′, ϑ, ϑ′,ϖ ∈ C and x> 0, then the generalized frac-
tional calculus operators are defined by the following
equations:

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ f (x) �

x
− ς

Γ(ϖ)


x

0
(x − t)

ϖ− 1
t
− ς′

, (5)

× F3 ς, ς′, ϑ, ϑ′;ϖ; 1 −
t

x
, 1 −

x

t
 f(t)dt, (R(ϖ)> 0)

�
d

dx
 

k

I
ς,ς′ ,ϑ+k,ϑ′ ,ϖ+k
0+ f (x),

(6)

(R(ϖ)≤ 0; k � [− R(ϖ)] + 1);

I
ς,ς′,ϑ,ϑ′ ,ϖ
− f (x) �

x
− ς′

Γ(ϖ)

∞

x
(t − x)

ϖ− 1
t
− ς

,
(7)

× F3 ς, ς′, ϑ, ϑ′;ϖ; 1 −
x

t
, 1 −

t

x
 f(t)dt, (R(ϖ)> 0)

� −
d

dx
 

k

I
ς,ς′ ,ϑ,ϑ′+k,ϖ+k
− f (x),

(8)

(R(ϖ)≤ 0; k � [− R(ϖ)] + 1),

D
ς,ς′ ,ϑ,ϑ′,ϖ
0+ f (x) � I

− ς′ ,− ς,− ϑ′,− ϑ,− ϖ
0+ f (x),

(9)

�
d

dx
 

k

I
− ς′ ,− ς,− ϑ′+k,− ϑ,− ϖ+k
0+ f (x),

(R(ϖ)> 0; k � [R(ϖ)] + 1);

D
ς,ς′ ,ϑ,ϑ′ ,ϖ
− f (x) � I

− ς′,− ς,− ϑ′ ,− ϑ,− ϖ
− f (x)

� −
d

dx
 

k

I
− ς′ ,− ς,− ϑ′ ,− ϑ+k,− ϖ+k
− f (x),

(R(ϖ)> 0; k � [R(ϖ)] + 1).

(10)
(e interested reader may refer to the monograph by

Srivastava and Karlsson [26] for the concept of Appell
function F3(·).

(e image formulas for a power function, under oper-
ators (5) and (7), are given by Saigo and Maeda [25] as
follows:

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ x

τ− 1
 (x) � x

τ− ς− ς′+ϖ− 1

× Γ
τ, τ + ϖ − ς − ς′ − ϑ, τ + ϑ′ − ς′

τ + ϑ′, τ + ϖ − ς − ς′, τ + ϖ − ς′ − ϑ
⎡⎣ ⎤⎦,

(11)

where R(τ)>max 0,R(ς + ς′ + ϑ − ϖ),R(ς′ − ϑ′)  and
R(ϖ)> 0.

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
− x

τ− 1
 (x) � x

τ+ϖ− ς− ς′− 1

×
Γ 1 − τ − ϖ + ς + ς′( Γ 1 − τ + ς + ϑ′ − ϖ( Γ(1 − τ − ϑ)

Γ(1 − τ)Γ 1 − τ + ς + ς′ + ϑ′ − ϖ( Γ(1 − τ + ς − ϑ)
,

(12)

where R(c)> 0,R(ϖ)< 1 + min R({ − ϑ),R(ς + ς′ − ϖ),
R(ς + ϑ′ − ϖ)}.

Here, we used the Γ · · ·· · ·  symbol, which represents a
fraction of several of the Gamma functions.

We will need the definition of the Hadamard product (or
convolution) of two analytical properties for our present
investigation. It will help us decompose a newly generated
function into two existing functions. In fact, if one of the two
power series defines a whole function, then the Hadamard
product series also defines a whole function. In reality, let

f(z) � 
∞

l�0
alz

l
|z|<Rf ,

g(z) � 
∞

l�0
blz

l
|z|<Rg ,

(13)

be two given power series whose radii of convergence are
given by Rf and Rg, respectively. (en, their Hadamard
product is a power series defined by
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(f∗g)(z) � 
∞

l�0
alblz

l
� (g∗f)(z)(|x| <R), (14)

whose radius of convergence R is

1
R

� lim
l⟶∞

sup albl


 

(1/l)
≤ lim sup al


 

(1/l)

l⟶∞

⎛⎝ ⎞⎠ lim
l⟶∞

sup bl


 

(1/l)
  �

1
Rf · Rg

,

R≥Rf · Rg.

(15)

(e results in (eorems 1 and 2 will be expressed in a
Hadamard product of (p, q)-extended Gauss hyper-
geometric function (see [15], p. 354, equation (8)):

pF
q
(c, b; a; z) � 

∞

l�0

B(b + l, a − b; p, q)

B(b, a − b)

z
l

l!
(|z|< 1,R(a)>R(b)> 0), (16)

where B(c, b) is the classical beta function [27] and Fox–
Wright function pΨq(z)(p, q ∈ N0) [28].

pΨq

ς1, P1( , . . . , ςp, Pp ;

ϑ1, Q1( , . . . , ϑq, Qq ;

z
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
∞

k�0

Γ ς1 + P1n( , . . . , Γ ςp + Ppn 

Γ ϑ1 + Q1n( , . . . , Γ ϑp + Qpn 

z
k

k!
,

Pj ∈ R
+
(j � 1, . . . , p), Qj ∈ R

+
(j � 1, . . . , q); 1 + 

q

j�0
Qj − 

p

j�0
Pj ≥ 0⎛⎝ ⎞⎠,

(17)

where the convergence condition holds true for

|z|<∇ � 

p

j�1
P

− Pj

j
⎛⎝ ⎞⎠ · 

q

j�1
Q

Qj

j
⎛⎝ ⎞⎠. (18)

In this paper, we aim to investigate compositions of the
generalized fractional integration operators involving
(p, q)-extended Struve function Hδ,p,q(z). Also, we consider
(2) to achieve the solution of the generalized fractional
kinetics equations (FKEs). Our approach here is based on
Laplace transformation, and we plan to broaden our results
by using the Sumudu transformation in a future career.

2. Fractional Integrations Approach

For this section, we assume that ς, ς′, ϑ, ϑ′,ϖ, τ, δ,ω ∈ C such
that R(ϖ)> 0, min R(p),R(q) > 0,R(δ)> (− 3/2). Fur-
thermore, let the constants satisfy the condition ςi, ϑj ∈ C,

and Pi, Qj ∈ R(Pi, Qj ≠ 0i � 1, 2, . . . , p; j � 1, 2, . . . , q),
such that condition (17) is also satisfied.

2.1. Left-Sided Generalized Fractional Integration of
(p, q)-Extended Struve Function. In this segment, we es-
tablish image formulas for the (p, q)-extended Struve
function involving left-sided operators of M-S-M fractional
integral operators (5), in terms of the Hadamard product of
the Fox–Wright function rψs(z) and the (p, q)-extended
Gauss hypergeometric function. (ese formulas are set out
in the preceding theorems.

Theorem 1. If R(ϖ)> 0, R(τ + δ + 1)>max 0,R(ς + ς′+

ϑ − ϖ),R(ς′ − ϑ′)}, then the generalized fractional integra-
tion I

ς,ς′ ,ϑ,ϑ′,ϖ
0+ of the (p, q)-extended Struve function Hδ,p,q(z)

is given by
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I
ς,ς′ ,ϑ,ϑ′,ϖ
0+ t

τ− 1
Hδ,p,q(ωt)   �

��
π

√
x
τ− ς− ς′+ϖ+δ (ω/2)

δ+1

Γ(δ +(3/2))

× pFq

1, 1;

δ +(3/2);

−
ω2

x
2

4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦∗ 3Ψ4

τ + δ + ϖ − ς + ς′ − ϑ + 1, 2( ,

((3/2), 1), τ + δ + ϑ′ + 1, 2( ,

⎡⎢⎢⎢⎢⎣

τ + δ + ϑ′ − ς′ + 1, 2( , (τ + δ + 1, 2);

τ + δ + ϖ − ς − ς′ + 1, 2( , τ + δ + ϖ − ς′ − ϑ + 1, 2( ;

−
ω2

x
2

4
⎤⎥⎥⎥⎥⎦,

(19)

where ∗ indicates the Hadamard product in (14). Proof. By applying (2) and (5), on the left side of (19), we
have

I
ς,ς′,ϑ,ϑ′ ,ϖ
0+ t

τ− 1
Hδ,p,q(ωt)  (x) �

ωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)kB(1, δ +(1/2))k!
−
ω2

4
 

k

× I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ t

τ+δ+1+2k− 1
  (x),

(20)

upon using the image formula (11):

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ t

τ− 1
Hδ,p,q(ωt)  (x)

�
x
τ+δ− ς− ς′+ϖωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)k B(1, δ +(1/2))k!

− x2ω2

4
 

k

×
Γ τ + δ + ϖ − ς + ς′ − ϑ + 2k + 1( Γ τ + δ + ϑ′ − ς′ + 2k + 1( Γ(τ + δ + 2k + 1)

Γ τ + δ + ϑ′ + 2k + 1( Γ τ + δ + ϖ − ς − ς′ + 2k + 1( Γ τ + δ + ϖ − ς′ − ϑ + 2k + 1( 
.

(21)

Presenting the last summation in (21) in terms of the
Hadamard product (14) with the functions (16) and (17), we
get the right side of (19).

Now, we discuss the special cases of (19) as follows.
For ς � ς + ϑ, ς′ � ϑ′ � 0, ϑ � − β,ϖ � ς, we obtain the

following relationship:

I
ς,ς′ ,ϑ,ϑ′,ϖ
0+ f (x) � I

ς,ϑ,β
0+ f (x), (22)

where the operator I
ς,ϑ,β
0+ (·) express the Saigo fractional in-

tegral operator [23], which is defined by

I
ς,ϑ,β
0+ f (x) �

x
− ς− ϑ

Γ(ς)


x

0
(x − t)

ς− 1
2 F1 ς + ϑ, − β; ς; 1 −

t

x
 f(t)dt, R(ς)> 0. (23)

□
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Corollary 1. Let R(ς)>0,R(τ+δ+1)>max[0,R(ϑ − β)],
then there holds the following formula:

I
ς,ϑ,β
0+ t

τ− 1
Hδ,p,q(ωt)   �

��
π

√
x
τ+δ− ϑ (ω/2)δ+1

Γ(δ +(3/2))p

Fq

1, 1;

δ +(3/2);

−
ω2

x
2

4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

∗ 2Ψ3

(τ + δ − ϑ + β + 1, 2), (τ + δ + 1, 2);

3
2
, 1 , (τ + δ − ϑ + 1, 2), (τ + δ + ς + β + 1, 2);

−
ω2

x
2

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

2.2. Right-Sided Generalized Fractional Integration of the
(p, q)-Extended Struve Function. In this portion, we es-
tablish image formulas for the (p, q)-extended Struve
function containing right-sided operators of M-S-M frac-
tional integral operators (7), in terms of the Hadamard
product of the Fox–Wright function rψs(z) and the

(p, q)-extended Gauss hypergeometric function. (ese
formulas are set out in the preceding theorems.

Theorem 2. If R(τ − δ)< 2 + min R(− ϑ),R(ς + ς′ − ϖ),

R(ς − ϑ′ − ϖ)}, R(ϖ)> 0, then the generalized fractional
integration Iς,ς′ ,ϑ,ϑ′,ϖ

− of the (p, q)-extended Struve function
Hδ,p,q(z) is given by

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
− t

τ− 1
Hδ,p,q

ω
t

    �
��
π

√
x
τ− ς− ς′+ϖ− δ− 2 (ω/2)

δ+1

Γ(δ +(3/2))

×pFq

1, 1;

δ +(3/2);
−

ω2

4x
2

⎡⎢⎣ ⎤⎥⎦∗ 3Ψ4
2 − τ + δ − ϖ + ς + ς′, 2( ,

((3/2), 1), (2 − τ + δ, 2),

⎡⎢⎢⎣ ⎤⎥⎥⎦

2 − τ + δ + ς + ϑ′ − ϖ, 2( , (2 − τ + δ − ϑ, 2);

2 − τ + δ − ϖ + ς + ς′ + ϑ′, 2( , (2 − τ + δ + ς − ϑ, 2);
−

ω2

4x
2
⎤⎥⎥⎦.

(25)

Proof. By applying (2) and (7) on the left-hand side of (25), we
get

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
− t

τ− 1
Hδ,p,q

ω
t

   (x) �
ωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)k B(1, δ +(1/2))k!
−
ω2

4
 

k

× I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0− t

τ− δ− 2k− 2
  (x),

(26)

and upon using the image formula (12) yields

I
ς,ς′,ϑ,ϑ′ ,ϖ
− t

τ− 1
Hδ,p,q(ωt)  (x)

�
x
τ+δ− ς− ς′+ϖωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)kB(1, δ +(1/2))k!

− x2ω2

4
 

k

×
Γ 2 − τ + δ − ϖ + ς + ς′ + 2k( Γ 2 − τ + δ + ς + ϑ′ − ϖ + 2k( Γ(2 − τ + δ − ϑ + 2k)

Γ(2 − τ + δ + 2k)Γ 2 − τ + δ − ϖ + ς + ς′ + ϑ′ + 2k( Γ(2 − τ + δ + ς − ϑ + 2k)
.

(27)
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Interpreting the right-hand side of (27) in terms of the
Hadamard product (14) with the functions (16) and (17), we
get the right side of (25).

When we let ς � ς + ϑ, ς′ � ϑ′ � 0, ϑ � − β,ϖ � ς, then we
obtain the relationship

I
ς,ς′ ,ϑ,ϑ′,ϖ
− f (x) � I

ς,ϑ,β
− f (x), (28)

where the Saigo fractional integral operator [23] is repre-
sented as

I
ς,ϑ,β
− f (x) �

1
Γ(ς)


∞

x
(t − x)

ς− 1
t
− ς− ϑ
2 F1 ς + ϑ, − β; ς; 1 −

x

t
 f(t)dt. (29)

□
Corollary 2. If R(ς)> 0,R(τ − δ)< 2 + min[R(ϑ),R(β)],
then we have

I
ς,ϑ,β
− t

τ− 1
Hδ,p,q

ω
t

    �
��
π

√
x
τ− ϑ− δ− 2 (ω/2)δ+1

Γ(δ +(3/2))p

Fq

1, 1;

δ +(3/2);

−
ω2

4x
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

∗ 2Ψ3

(2 − τ + δ + ϑ, 2), (2 − τ + δ + β, 2);

3
2
, 1 , (2 − τ + δ, 2), (2 − τ + δ + ς + ϑ + β, 2);

−
ω2

4x
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

In the next part, we derived the generalized fractional
kinetic equations (FKEs) and take into account the Laplace
transformation technique to produce outcomes.

3. Generalized Fractional Kinetic Equations
Involving (p, q)-Extended Struve Function

(e generalized FKEs involving the (p, q)-extended Struve
function with the Laplace transform (LT) is derived in this
section. FKEs were extensively reviewed in a variety of ar-
ticles [29–35].

LetN(t) be an arbitrary reaction that depends on time, d
is a destruction rate, and p is a production rate ofN, then the
mathematical representation of these three ratios is de-
scribed by Haubold and Mathai [36] as a fractional differ-
ential equation:

dN
dt

� − d Nt(  + p Nt( , (31)

where Nt(t∗) � N(t − t∗) for t∗ > 0. Also, [36] have
researched that equation (31) would become the following
differential equation if spatial fluctuation or inhomogenei-
ties in quantity N(t) are ignored:

dNi

dt
� − ciNi(t), (32)

with Ni(t � 0) � N0. Solution of equation (32) is given by

Ni(t) � N0e
− cit. (33)

Alternatively, if we eliminate the index i and integrate
(32), we get

N(t) − N0 � c0D
− 1
t N(t), (34)

where 0D
− 1
t is the standard integral operator. (e fractional

generalization of equation (34) was defined by Haubold and
Mathai [36] as

N(t) − N0 � c
v
0D

− v
t N(t), (35)

where 0D
− v
t is given by

0D
− v
t f(t) �

1
Γ(v)


t

0
(t − x)

v− 1
f(x)dx, R(v)> 0.

(36)

Definition 1. (e Mittag–Leffler function is generalized by
Wiman [28] in the following form:

Eς,ϑ(z) � 

∞

l�0

z
l

Γ(ςl + ϑ)
, (z, ς, ϑ ∈ C;R(ς)> 0,R(ϑ)> 0).

(37)

(e results of this section, solutions of generalized
FKESs, will be expressed based on the generalized Mit-
tag–Leffler function which is defined in (37).

Theorem 3. If d> 0, v> 0, with min p, q ≥ 0 and R(δ)> −

(1/2), the solution of fractional kinetic equation

N(t) − N0Hδ,p,q(t) � − d
v
0D

− v
t N(t) (38)

becomes
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N(t) � N0
t
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)Γ(δ + 2k + 2)

(3/2)kB(1, δ +(1/2))k!

− t2

4
 

k

× Ev,δ+2k+2 − d
v
t
v

( .

(39)

Proof. (e LT of the Riemann–Liouville (RL) fractional
integral operator is given by Srivastava and Saxena [37] as

L 0D
− v
t f(t); s  � s

− v
F(s). (40)

Now, applying the LT to both sides of (38) and using (2)
and (40), we have

L N(t); s{ } � N0L Hδ,p,q(t); s  − d
v
L 0D

− v
t N(t); s , (41)

which gives

N(s) � N0 
∞

0
e

− st t
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)

(3/2)kB(1, δ +(1/2))k!

− t
2

4
 dt − d

v
s

− v
N(s), (42)

which implies that

N(s) + d
v
s

− v
N(s) �

N0

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)

(3/2)k B(1, δ +(1/2))k!

(− 1)
k

4k

× 
∞

0
e

− st
t
2k+δ+1dt.

(43)

After some simple calculation, we get

N(s) 1 + d
v
s

− v
(  �

N0

2δΓ(δ +(3/2))


∞

k�0

− 1
4

 
kB(k + 1, δ +(1/2); p, q)

(3/2)k B(1, δ +(1/2))k!

Γ(δ + 2k + 2)

s
δ+2k+2 ,

N(s) �
N0

2δΓ(δ +(3/2))


∞

k�0

− 1
4

 
k B(k + 1, δ +(1/2); p, q)Γ(δ + 2k + 2)

(3/2)kB(1, δ +(1/2))k!

× s
− (δ+2k+2)



∞

l�0
(1)l

− (s/d)
− v

 
l

l!
.

(44)

Taking inverse LT on both sides of (44) and using
L− 1(s− v) � (tv− 1/Γ(v)) for R(v)> 0, we get

N(t) �
N0

2δΓ(δ +(3/2))


∞

k�0

− 1
4

 
k B(k + 1, δ +(1/2); p, q)Γ(δ + 2k + 2)

(3/2)kB(1, δ +(1/2))k!

× 
∞

l�0
(− 1)

l
d

vl t
δ+2k+vl+1

Γ(δ + vl + 2k + 2)
.

(45)

□
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Interpreting the right-hand side of (45) in the view of
(37), we obtain the needful result (39).

Theorem 4. If d> 0, v> 0, with min p, q ≥ 0 and R(δ)> −

(1/2), then the solution of

N(t) − N0Hδ,p,q d
v
t
v

(  � − d
v
0D

− v
t N(t) (46)

is given by

N(t) � N0
d

v
t
v

( 
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)Γ(2vk + δv + v + 1)

(3/2)kB(1, δ +(1/2))k!

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − d
v
t
v

( .

(47)

Proof. Taking the LT on both sides of (46), using the def-
inition of (p, q)-extended Struve functions (2) and (40), and
after doing simple calculation and taking inverse LT term
written in the view of (37), we obtain the needful result
(47). □

Theorem 5. If d> 0, v> 0, with min p, q ≥ 0, a≠ d and
R(δ)> − (1/2), the solution of fractional kinetic equation

N(t) − N0Hδ,p,q d
v
t
v

(  � − a
v
0D

− v
t N(t) (48)

becomes

N(t) � N0
d

v
t
v

( 
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)Γ(2vk + δv + v + 1)

(3/2)k B(1, δ +(1/2))k!

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − a
v
t
v

( .

(49)

Proof. In similar way of proof of (eorem 4, we can get
solution (49). (erefore, we omitted the proof.

Now by setting p � 0, q � 0, on equation (3), then results
of (eorems 3–5 are adjusted on Corollaries 3–5. □

Corollary 3. If d> 0, v> 0, andR(δ)> − (1/2), the solution
of fractional kinetic equation

N(t) − N0Hδ,0,0(t) � − d
v
0D

− v
t N(t) (50)

becomes

N(t) � N0
t
δ+1

Γ(δ +(3/2))


∞

k�0

Γ(δ + 2k + 2)

Γ(δ + k +(3/2))

− t2

4
 

k

× Ev,δ+2k+2 − d
v
t
v

( .

(51)

Corollary 4. If d> 0, v> 0, withmin p, q ≥ 0 andR(δ)> −

(1/2), then the solution of

N(t) − N0Hδ,p,q d
v
t
v

(  � − d
v
0D

− v
t N(t) (52)

is given by

N(t) � N0
d

v
t
v

( 
δ+1

Γ(δ +(3/2))


∞

k�0

Γ(2vk + δv + v + 1)

Γ(δ + k +(3/2))

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − d
v
t
v

( .

(53)

Corollary 5. If d> 0, v> 0, with min p, q ≥ 0, a≠ d and
R(δ)> − (1/2), the solution of fractional kinetic equation

N(t) − N0Hδ,p,q d
v
t
v

(  � − a
v
0D

− v
t N(t) (54)

becomes

N(t) � N0
d

v
t
v

( 
δ+1

2δΓ(δ +(3/2))


∞

k�0

Γ(2vk + δv + v + 1)

Γ(δ + k +(3/2))

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − a
v
t
v

( .

(55)

4. Conclusion

In this article, the authors have established the generalized
fractional integrations of the (p, q)-extended Struve func-
tion. (e achieved results are expressed in terms of Hada-
mard product of the Fox–Wright function rψs(z) and the
(p, q)-extended Gauss hypergeometric function. (e solu-
tions of fractional kinetic equations are obtained with the
support of Laplace transforms to show the possible appli-
cation of the (p, q)-extended Struve function. As the so-
lution of the equations is common and can derive several
new and existing FKE solutions involving different types of
special functions, the results obtained in this study are
significant.
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