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This paper is devoted to study the null controllability properties of a population dynamics model with age structuring and nonlocal
boundary conditions. More precisely, we consider a four-stage model with a second derivative with respect to the age variable. The
null controllability is related to the extinction of eggs, larvae, and female population. Thus, we estimate a time T to bring eggs,
larvae, and female subpopulation density to zero. Our method combines fixed point theorem and Carleman estimate. We end this
work with numerical illustrations.

1. Introduction and T is a positive constant. We consider the following
population dynamics model based on Fokker-Planck or
Letu; (t,a), 1 <i<4,be, respectively, the distribution of eggs, = Kolmogorov-type equations which is written as

larvae, and female and male individuals of age a at time t;
A;, 1<i<4, is the life expectancy of an i—stage individual

i o,u, (t,a) + 0, [v; (((t),a)u, (t,a)] — kaiul (t,a) =—[u, ((t),a) + B, (L (t),a)]u, (t,a) + m(a)w, (t,a),

O,u, (t,a) + 0, [v, (((£), a)u, (t,a)] - k@iuz (t,a) = —{uy (((2),a) + By (L (1), a)]u, (t,a) + m(a)w, (t,a), 0
O,us (t,a) + 0, [vs (( (1), a)uy (t,a)] — ka§u3 (t,a) = -us({(t),a)u, (t,a) + m(a)w; (t,a),

| O,uy (t,a) + 0, [vy (( (1), @)uy (t,a)] — ka§u4 (t,a) = -u, ({(t), a)u,(t,a),
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where (t,a) € Q; = (0,T) x (0, 4;) and w,, w,, and wjy are,
respectively, the control function of eggs, larvae, and fe-
males. Here, m(a) is the characteristic function of

u; (0,a)
L ui(t, A)

Here, u;({(t),a),B;({(t),a), and v;({(t),a) are, re-
spectively, the i—stage mortality rate, the i—stage age specific

JAi 0,8, (((t),a)u; (t,a)da, 1<i<4,
0

Denote, respectively, the distribution of the newborns of
eggs, larvae, females, and males. The constant ¢ denotes the
sex ratio and k>0 (diffusion coeflicient) corresponds to
small deviations of order 2 which represent the dispersion
effects of individuals during their development. Our aim is
to study the null controllability of (1) and (2).

Given a fixed T > 0, we look for controls w,, w,, and w;
such that u,, u,, and u; satisfy

u, (T,a) =u,(T,a) =uy(T,a) = 0. (4)

In practice, this study applies to the dynamics cowpea
pest insects (Callosobruchus maculatus). These insects live in
hot areas, namely, tropical and subtropical regions [1] and
cause important damage to the seeds of cowpeas and other
legumes. This damage is exclusively due to the larvae. In-
deed, females lay their eggs on the pods or on stocked seeds
and then larvae grow by feeding on the cotyledons, see [2].
Twenty five days and a temperature varying between twenty-
seven and thirty-one degrees Celsius are necessary for the
growth of the larvae.

The life cycle of Callosobruchus maculatus can be divided
into three development stages: egg, larva + pupa (growing
stages), and adult (reproduction ability). Besides, during
their growth, beetle larvae transform nitrogen to toxic uric
acid that accumulates into cowpea and make it unfit for
consumption.

Several methods of combating these insects have been
considered. Among them is the method of preservation in

[vi (((t), @), (t,a) — ko,u, (t,a)],-
[v, (((t), @)u, (t,a) — ko ,u, (t,a)],_
{ [vs({(t),a)us (t,a) — ko, us (t,a)],

[ve (C(), @)uy (t,a) — kO, uy (t,a)],-
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w = (0,a*) with 0<a* <min{A,, A,, A;}. To complete the
system, the boundary conditions are stated as follows:

A3
= ﬁs(((t)>a)u3 (t,a)da,

0

>

B (L (1), a)u, (¢, a)da,

0

J
J
i
J

5

a3, (L (t), a)u, (t,a)da, (2)

0
A,

(1-0)B, (¢ (1), a)u, (t,a)da,

0
u) (a),a € (0,4),
0, te(0,T),1<i<4.

1<i<4,

transition functions, and the i—stage growth rate of age a at
temperature ((¢) and at time ¢.
Finally,

o,=1L0,=0,0,=1,0,=1-0. (3)

hermetically sealed containers, thus preventing the devel-
opment of the larvae.

The method of control we are considering is to remove or
eliminate individuals. This can be done with the help of
pesticides. We recall that the optimal and exact control
problems are widely investigated for age-structured pop-
ulation dynamics by many researchers. Most of these studies
are focused on optimal control problems [3-5] and the
references therein. One can also refer to [6, 7]. Lebeau and
Robbiano establish in [8] the null controllability of the linear
heat equation. Next, the exact controllability for age de-
pendent linear and nonlinear single-species population
models with spatial diffusion was investigated by
Ainsebaet al. [9, 10]. Barbu et al. also considered the exact
controllability of the linear Lotka-McKendrick model
without spatial structure by establishing an observability
inequality for the backward adjoint system [11]. Later on, He
and Ainseba investigate the exact null controllability of a
stage and age-structured population dynamics system in [12]
and the exact null controllability of the Lobesia Botrana
model with spatial diffusion in [13].

Moreover, in [14], the authors investigated a semilinear
problem: the null controllability of the heat equation with a
Fourier boundary condition over the entire boundary. In our
work, the Fourier condition contains a nonlocal term and is
set only on a part of the domain. This induces additional
difficulties in establishing the Carleman inequality.

In [15], Hegoburu and Anita study in a very practical
way the null controllability of a nonlinear model of
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population dynamics by means of a feedback control. This
interesting result cannot be applied easily in our case since
we study a four-stage model via three controls. More pre-
cisely, in our case, we control only three stages. So, it seems
difficult here to compute explicitly the feedback control as it
was done in [15].

The fundamental difference with [13] lies in the fact that
our model combines a transport effect with the presence of a
first-order derivation with respect to the age variable and a
diffusion along the same variable. Thus, the inequalities
guaranteeing the null controllability obtained in [13] become
inoperative in our case.

As far as we know, there are no results dealing with the
null controllability for an age and stage-dependent system
involving a second derivative with respect to the age variable.
The second derivative with respect to the physiological age
variable corresponds to small deviations of order two and
represents the dispersion effects of individuals during their
development due to, for example, the temperature, the
humidity, and the quality of food. This article is structured as
follows. In Section 2, the assumptions and the main result
are stated. We study the null controllability of some asso-
ciated auxiliary model in Section 3. Section 4 is devoted to
the proof of the main result, and some numerical illustra-
tions are given in Section 5.

Now, we consider the following auxiliary system:

2. Assumptions and Main Result

For the sequel, we make the following assumptions on the
demographic parameters:

(Al) The transition functions S ({(.),.) are positive
and S € L°((0,T) x (0, Ay)), 1 <k<3.

(A2) The mortality functions y; ({ (.),.) are positive and
e € L2 ((0,T) x (0, Ap)), 1<k <4.

(A3) The initial conditions u{(a)>0 ae. ac
(0,A),1<k<4.

(A4) The growth functions v;({(.),.),1<i<4 are

positive and bounded, that is,

V(t,a) € (0,T)x(0,4)).
(5)

In addition, for all ¢ € [0,T], v;({(¢),.) € C1 ([0, A]),
and there is a positive constant C; such that

||8uvi(((t), a)HOOSCi, V(t,a) € (0,T)x(0,4)).

0< v;m" <v; ({(t),a) <v"™,

(6)

(A5) The temperature function {(.) is measurable.

These assumptions are biologically meaningful, see
(3, 16-18].

Setting 7, = ™M
verifies the system:

u;, 1<i<4, the vector (ii,,1,,1s,1,)

r ‘A3
[v, (C(8), @), (1) — kD@, (1)), JO L(C(1), @)L (1, a)da,
0,0, + 0, (ni1y) — ko i1, = —(uy + By + V)it + m(a)iv,, [v, ( (), @)ty (t, a) — kD, i, (£, )] e = JA' B, (L (t), @), (t,a)da,
3,1, + 0, (vyfly) — ka2, = —(t, + B, + A)ily + m (@), "A
0,11y + 0, (vsil3) — kOi5 = —(u3 + M)ty + m(a)is, [vs (C(6), a)tts (¢, @) — ko, 1k (£, @)] oy = J ap, (¢ (), @), (t, a)da,
—~ —~ 2~ _ —~ N
Oytiy + 0, (vyiiy) — kO, = —(uy + A)ily, [v, (C (), )iy (t, a) — kD, i, (t, a)] . Jo (1-0)B, (L (t),a)t, (t,a)da,
[ #;(0,a) =’ (a), a € (0,A;)and#;(t, A;) =0, t € (0,T), 1<i<4.
(7)
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(0,81, +0, (vilhy) — ko3, = ~(uy + By + )iy + m(a)dy,

0,y + 0, (v,il) = kafﬁz = ~(y + By + Nty + m(a),,
(8)

0,11y + 0, (v31i;) — kd%ity = —(u3 + A)ity + m(a)is,
| 0,2, + 0, (V4’7‘4) - ka§ﬁ4 = _(#4 + /\)ft4,

As

[vi (C(), @)ty (t,a) — ko, 1, (t,a)] .o B3 (L(t),a)¢, (¢, a)da,

N o

1

[v, (C(1), @)ty (t,a) — kO, 1, (t,a)] g J B (L(t),a)¢, (t,a)da,

n o

2 9)

[v5 (((t), a)uis (t,a) — k0,15 (t,a)] . = aﬁz(((t) a)¢, (t,a)da,

[v, (C(t), )iy (t,a) — kO, 1, (t,a)] o = IOZ (1-0)B,((t), a)p, (t,a)da,

#;(0,a) =%’ (a), ac (0,A)andi(t,A,) =0,t € (0,T),1<i<4.

For the existence of the solutions to problems similar to exist a controlw = (w;,w,, w;) € (L*((0,T) x w))? such that
equations (8) and (9), we refer, for instance, to [19] and the the associated solution of equations (1) and (2) verify (4).
references therein.

%et A =max{A;, Ay, A5, Ay}, we can state the main 3, Null Controllability of an Auxiliary System
result.

This section is devoted to the null controllability of the
Theorem 1. Assume that (A1) — (A5) hold. Let A>0 and following auxiliary system obtained from equations (1) and
T >0 be given. Then, for all (u9,u3,u3) € (L*(0, A)), there (2):

[ 0,u, (t,a) +0,[v, ({(t),a)u, (t,a)] - kaf{u1 (t,a) =—uy ({(t),a)+ B, ({(t),a)]u, (t,a) + m(a)w, (t,a),

) O,uy (t,a) + 0, [v, (L (8), a)u, (t,a)] — kaf{u2 (t,a) =—u, ({(t),a)+ B, ({(t),a)]u, (t,a) + m(a)w, (t,a), (10)
O,u5 (t,a) + 0, v ({(t), a)u; (t,a)] - k8§u3 (t,a) = —-uy({(t), a)uy (t,a) + m(a)w, (t,a),

[ 0,uy (t,a) + 0, [v, (( (1), @)uy (t,a)] - ka§u4 (t,a) = —-p, (((t), a)u,(t,a),

( [vi (C(t), @)u, (t,a) — ko u, (t,a)],., =h, (),
[v, (((t), a)u, (t,a) — ko, u, (t,a)] .y = hy (1),

) [vs (((t), a)us (t,a) — kO, uy (t,a)] g = hs (1), (11
[ve (C(1), a)uy (t,a) — kO, uy (t,a)],.g = hy(t),
1; (0, a) =u(a), ac (0,A), 1<i<4,
u; (t,a) =0, te(0,T),1<i<4.

Here, h; j o 0B (((1),a)p;(t,a)da, (i,0;, j) € {(1,1,3  Carleman-type inequality for the following adjoint system of

), (2,1,1), (3 0,2), (4 1-o, 2)} We first established a equations (10) and (11):
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~0,q, — 9, (v1q1) — kai‘il +(py + By +0,v1)q; =0,

~0,q, — 0, (29,) — kai‘b + Uy + By +0,v,)q, = 0,
(v3q3) - kai% +(u3 +0,v3)q; = 0,

(

~0,qy — 0, (vaqy) — kD2qy + (g + 0,v4)dy = 0,
(12)

with (t,a) € Q and the following boundary conditions

(q;(t,A) =0,q,(t,0)=0, te (0,T), 1<i<4;
(T,

A qz'(T,a):—M, ac (0,A), 1<i<3; (13)

| 9, (T,a) =0, ac (0,A).

The system equations (12) and (13) admit a unique
solution.

Let wy C Cw be a nonempty bounded subset of
Q= (0,A), and y € C*>(Q) satisfying (see Lemma 1.1 in
(20])

y(a)>0; foranyae Q,y(a)=0,
foranya €0Q, [Vy (a)| >0, (14)

foranya € Q\w,,.

1
—| 0 i aaz > auz
Jo| & (ol +i2tar ) + ool

) J S3(p3qi2<ezszx + 625“>dtda,
[0,T]xw

for all g, € L*((0,T)x (0,A)) solution of (12) and (13),
i=1,2,3, and

J ¢ (a7 + a5 + q§)<e2s“ + ezsg)dtda <C
Q

_ (17)
3/ 2 2 2 2sa 2sa
. +q5 + e + e |dtda.
J[O’T]stv (47 + a5 qs)( )

Remark 2. Here, we have to control the boundary condi-
tions which is not the case studied in [20].

Proof of Lemma 1. Let us consider the operator

kaaq,, 1<i<3. (18)

Lg, = -0,q, -

We set

Now, we define the following weight functions, which
are constructed using the function y (see [21] or [20]):

@ _MMMWle@ 4 M@
t,a) = ———a(t,a) =——5—F—,
plba) =ty bd) HT - 1)
(15)
-y (a) _PMle@) 4 oM@
(0] ts = a ta = >
plba) =y @b T -1)

where A is an appropriate positive constant.

Remark 1. Using the definition of ¢, ¢, @, and &, we deduce
that there is a positive constant ¢ such that

(1) 019 =10,19.0, = 10470, = 10,9, andd,
- u‘/@

(2) Iatgo|<cg02 0, go|<c<p2 0, (x|<cg02 0, ocI<c<p2 1079l
<c<p3 Iatq>|<ap3 07| <cg?, |07 < c3?,10,0,a] <
c¢?, and |0,0,d| < cg*

Lemma 1. Let ¢, o, §, and & be defined as in equation (15).
Then, there exists a number A> 1 such that, for any 1>\,
there exists a number s, (A) such that, for every s> s, (), we
have the following inequalities:

+ 53(p3q12] ( oy ezs;>dtdx <C
(16)

(B3 =P, =0), 1<i<3.
(19)

gi(t,a) = —(y; + B;)q; + vi0.9;»

Let w; = e**q; and w; = ¢€° ql,(1<1<3) where s is a
positive constant. Put 20 =[0,T] x {A}, Z, = [0,T] x {0},
and X =2 UX,.

From (15), we have

w;(T,a) = w;(T,a) =w,;(0,a) = w,;(0,a) = 0on [0, A].
(20)

Let us define the operators P and P as follows:
Pw; = e**Le”**w; and Pw; = e**Le” *w).

It follows from equations (12), (18), and (19) that

onQ,
onQ.

Pw, = e“Le *“w; = esag"]i, "
P~ _ s&i s¢x~ _ ( )
w; = eLe W, = €' g,,

Explicitly, we have
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2

Pw; = —d,w; — kd*w; + s3,aw, + 2ksAd,ypd,w; + ksAd_yow; + ksA* (3,v)’ pw;

2,2 2 2 (22)
—ks“A (aall/) ¢ w;
P, = ~0,i; — ko, ; + s0,0; — 2ksAd, Y0, ; — ksAO.ypiD; + ks\* (3,y) ¢ 23
~ks'\? (aall/)z‘/’zﬂ’i-
We also consider the operators L, L,, L;,and L, defined = where
as follows: @ ) 5 5
fs=5i€" — kshpoyw; + ksA"9 (9,v) w;,
Lyw; = —kd’w; - ks’A* (3,v)* 9w, + s0,aw;, _ ~ ) ) 5 (26)
5 X fs =€ + ksAgo,yw; + ksA"9 (0,y) ;.
Lyw; = —0,w; + 2ksA0,y¢d,w; + 2ksA” (0,¥) pw;,
zlwi _ —kaifui _ k)2 (aaW)2¢2wi + 59,3, Taking the L,-norm of (25), we obtain
2 2 2
L,@; = 0,i; — 2ksAd,y§0,; + 2ksA* (3,v) ;. { 17 @ = |Lywi;: O |Lowi];. @ *2(Liwi Lw) iz g
~ 2 = _ 2 S = =
(24) 1@ =Tl ) +|Eail ) + 2 (Lh @y, LoD 2 o
Using equations (19), (22), and (24), we obtain (27)
{ Liw;,+Lw;,=f, inQ, (25) By using (24), we have the following equalities:
Liw;+Lw; = f, inQ
2(Lywy, Lyw;) 2 ) = 2k253)t4j (w,)’¢’ (0,v)"dtda + 6k25A2J (0,w;) ¢ (0,v) dtda
Q Q
T T
-2k [ [w g 0], ol + 4N [ (07 @], ol
0 ] 0 . (28)
F 2K J ()29 (@,p)°],_ydt - 2K*5A J [(@,,) 0 (0,v)] dt
0 = 0
o (" 2
—2ks“A Jo [(wi) (p(aaw)ata]azodt + X,
2L, B L, 12 ) = 2k253)t4j (@,)%5" (3,y) dtda + 6k25A2J (2,@:)°5(2,y) dtda
Q Q
T T
221 [ (20,85 @)oot - 45N [ [(@)°F @0u)’], e
D ‘7 ) (29)
YRR j [(@)°F (0,9)°],_dt + 25 J [(0,,)°7(0,v)] ¢
0 = 0
T
+2ks*A JO [(@,)°% (0,v)9,a] _,dt + X,,
with
|X,| < CIJ [(53/\3(;)3 + 52)L4(p3) (w;)” + (sho + l)|aawi|2]dtda, Vs>1,1>1, (30)
Q

|X,| < CZIQ [(SXF + 1) (@,)° + (50§ + V|o,@;[*|dtda, Vs=1,A>1. (31)
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Considering equations (27)-(29) and using the fact that
y(a) = 0 on 0Q), it follows that

—~ 2 ~ ~
”fs"iz Q +||fs"L2 Q= ||L1w,-||iz Q J“"szi"i2 Q +||L1wi“iz(Q) +”szi"i2 Q

+2X, +2X, + 2k253A4J [(w,)’9’ @,)" + (0,)*%° (3,v)"]|dtda (32)
Q

+ RS [ [(0,)'0 (0,0 + 2,2)'7 (2,)')deda,

and we deduce from (32)

~ 2 -~ _ -~ _
I£.05 @ tIfdlz o2 |Lyw; ) + w7 Q@ +”L1wf||iuq> +|La . @

+ X, + X, + 2k253/\4j [(w,)’0’ @)" + (0,)°% (0,v)"]|dtda (33)
Q

#2050 [ [(0,0)'9 (00 + (2,5)'7 (2,9)']dtda.

Note that there exists § >0 such that
|0,y (a)| >8>0, VaeQ\w, (34)

After these calculations, we can now use the same ar-
guments developed in [21] or [20] to get (16).

By summing with respect to i, one deduces easily in-
equality (17). We can now establish the observability in-
equality of the system equations (12) and (13) and then the
null controllability result of the system equations (10) and
(11). We start by proving our observability inequality by
means of Carleman estimate. O

Lemma 2. We have the following inequality:

A3 5 T 3 5
J > ]a;(0,a)] da+J > |a,(0,a)|"dt
o e (35)

3
<K I dtda,
= J[O,T]Xw;|ql| ra

for all solution, q = (q,,q,q;) € (L*((0,T) x (0,A)))* of
equations (12) and (13).

Let A be a positive constant and g;(t,a)=
e’“qi (t,a), 1<i<4. Then, equations (12) and (13) become
=0,q; =0, (V1q1) = kaizh +
=0,G, = 0, (V2d,) = kaff]z +
—0,43 — 0, (v33) — kaiZb +
=04y — 0, (V4ds) = kai% +

Aty + By +0,v,)q, =0
Aty + By +0,v,), =0
A+ s +0,v3)q; = 0,

~ o~ o~ o~

A+ phy +0,v4)qy = 0,
(36)

(G,(t,A) =0,3,(t,0) =0, te (0,T), 1<i<4;

eATui (T, a)

‘qi(T,a):—T, ae(0,4) 1<i<3; (37)

( §4(T,a) =0, ae (0,A).

For the proof of Lemma 2, we need an auxiliary result.
This result is given in the following proposition.

Proposition 1. Let § = (4;,4,,4,) € (L*((0,T) x (0, A)))’
be solution of (36) and (37). Then,

A
2 (0, +[3, (0, ) +[3: (0,a) da
0

(38)
<k'| af el +[adeda.
[0,T]xw
Proof of Proposition 1. Remark that
- e—2C(1+(1/T)2)
(p3e25“2T, t € [(T/4), (3T/4)], (39)
P’ e® <B e, tel0,T] (40)

Using (39), (40), and (16), it follows that

) (qi)zdtdasKlj (@) dida. (a)

.[ QX|(T/4),(3T/4 [0,7]

Let 6 € C%([0,T]) be a cut-off function such that
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0(t)=1 tel0,(T/4)],
0<0(t)<1 te[(T/4), (3T/4)], (42)
0(t)=0 t>(3T/4).

Multiplying the equation i of (36) by 6g; and integrating
by parts on Q, we obtain

jA (4,(0,@))2da + (2 - c,.)J (4,)6dtda
’ ¢ (43)

< J -9,0(g,) dtda.
Q
From the definition of 9, it follows that

A
J (éi(o,a))zdausj (g)’dtda.  (44)
0 QX((T/4),(3T/4)]

Next, (41) and (44) give

jA (@:(0,))*da sK/j (g;)’dtda. (45)
0

[0,T]xw

Finally, (45) leads to the desired result by summing with
respect to i, 1 <i<3. O

Proof of Lemma 2.

Journal of Mathematics

Note that g;(t,0) = - J? (0,9;)da. Using Cauchy-Sch-
warz and Young inequalities and integrating on [0, T], we
obtain

A
p(T12)

By using (16), (40), and (46), it follows that

r 2
J lg: (1,0 dtsKsj
0

T ) T A 5
JO |q; (£,0)["dt < JO jo p(9,q;) dadt.  (46)

q;dtda, (47)
[0,T]xw
with K, = s*B,e*°. Now, as §;(0,a) = q;(0,a),g; <e*'q?,
using (47) and Proposition 1, we get (35).
With our observability inequality, we are ready to prove
the null controllability result. O

Theorem 2. Assume that (Al) — (A5) hold. Let A>0 and
T >0 be given.

Then, for all (uf,ud,u)) € (L2(0, A))*, there exists a
control w = (wy, w,,w;) € (L?((0,T) x w))® such that the
associated solution of (10) and (11) verifies (4).

Proof of Theorem 2.
We consider systems (10) and (11) and the optimal
control problem:

A
Minimize«[;J- (|w1 (t, a)l2 +|w, (¢, a)|2 +|w; (¢, a)|2)dtda +2i8 J |y (T,a)|2 +|u, (T,a)|2 +|us (T, a)|2da}, (48)
Q 0
where Q = (0,T) x (0, A), w; € L*(Q), and u; (1<i<3) are Let
solutions of (10) and (11).
1 2 2 2 1 (4 2 2 2
J. (w) = EJQ(|w1 (t,a)| +|w2 (t, a)| +|w3(t, a)| )dtda +2—€ J-o |u1 (T, a)l +|u2(T, a)| +|u3(T,a)| da, (49)

with w = (w,, w,, w;).

The functional J, is continuous, convex, and coercive.
Hence, it admits a unique minimizer w, = (w,,, w,,, w; ),
and we have after easy computations

w;, (t,a) =m(a)g;.(t,a), ae.(t,a) €Q,1<i<3. (50)

A
J q;:m(a)w, dtda +1 J. uize (T,a)da + J
Q eJo

Note that (g, 9, q3,) is the solution of (12) and (13)
and u, = (u,,u,,,Us,) is the solution of (10) and (11) as-
sociated to w,.

Multiplying equation number i of (12) and (13) by u;,
and integrating on Q, it follows that

T
g;. (0,a)u; (a)da + j gi.. (£, 0)h; (t)dt = 0. (51)
0 0
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From (51) and (50), we obtain
2 1 (4, 4 0 T
I wl.deda + 1 j W2 (T,a)da = —J gi. (0,) (@)da - J g, (1, )k (D). (52)
0T]xw €Jo 7 0o 0o
Young inequality in (52) leads to
2 1 (4 1 4 Ty
J w? dtda + - j W2 (T, a)da < — J ¢ (0,a)da + j o (1,0)dt
0T]xw elJo ® 2K\ Jo ™ 0o
(53)
A 5 L
+2K(J () @da+ | B (t)dt).
0 0
Thus,
A 3
J wadtda+ J Zu,S(T a)da<—<J Z . (0, a)da+J qu(t 0)dt>
[0T]><wl 1 i=1 i=1
(54)

Therefore, inequalities (35) and (54) imply

% J. Z w; 2 dtda + -

[0,Txw i1

From (55), we deduce

A3 T 3
”wzs”Lz (10T )xw) S4 <J Z( ) (a)da + Jo th(t)dt), 1<i<3,
-1

i=1

b

3 T 3 5
+2K<J > ( )(a)da+JO;hi (t)dt).

i=1

A3 T 3
J Zu,s(T a)da<2K<J Y (uf)’ (a)da+JOZhiZ(t)dt>. (55)
i=1

A 5 A3 T3 5 )
jo ul,(T,a)da <2eK J > (u )(a)da+j();h,. (Hdt ), 1<i<3.

i=1

Then, one can extract subsequences also denoted by
w; > Ui (1 <i<3) such that w;, — w; weakly in L* ((0, T) x
w) and u;, — u; weakly in L?((0,T) x (0, A)). Moreover,
u = (uy,u,,u;) is the unique solution of (10) and (11) as-
sociated to w = (w;, w,, w;) and verifies (4). O

4. Proof of the Main Result

Now, we consider a real number A;>0 and we set
i, = e M, (1<i<4). Then, @ = (%, tiy, U3, tiy) is solution of
the following system:

(56)
' 0ty + 0, (Vi) — kazﬁl +(Ag + g + )8y = m(a)y,
0,1, + 0, (v,1i,) — ko? iy + (Mg + py + By)id, = m(a)w,,
0,03 + 0, (v31i3) — ko? s+ (Ag + p3)tis = m(a)is,
| 011y + 0, (v4iiy) — ko? g+ (Mg +py), =0,

(57)

with (t,a) € Q= (0,T) x (0,A),w; = e‘*“twi, and
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( A
(v, — kD), j B, (t, a)da,
0
A
(v,7h, — kD, ), o J B.ii, (t, a)da,
0
A
1 (vsii5 — kO,ii3) g = _[0 B.ii, (t, a)da, (58)
A
(v4ity — kO, Tiy) 4p J (1 -0)B,1, (t,a)da,
0

7;(0,a) =7} (a), a€Qy=(0,A4),1<i<4,
[ % (1,A) =0, teQr=(0,T), 1<i<4

Let us consider the following system:
Oty + 0, (viihy) — KOG, + (Ao + py + B)ihy

0,1, + 0, (v,1i,) — ko1, +

=m (a)a)p
( (Ao + thy + By)tiy = m(a)i,,
0,115 + 0, (v31i;) — kO%Tis + (g + p3)it; = m (a)iD,,
0ty + 0, ( (Ao + phy)iy = 0,

_ 2~
o (Vally) — k0,1, +

(59)

3
o, (R, Ry, Ry, Ry) = {a) = (@), ,,@5) € [ [ L*(q), @is solution of (59) - (60)and (i, ii,, iy ) verifies (4); i,

i=1
= R; and @ satisfies (56)}.

We introduce a multivalued function as follows:
s
A,: (R Ry Ry, R,) € Ml — A, (Ry, Ry, Ry, R,) € 277,
(62)

A A A
A, (R Ry, Ry, Ry) = {(J Bty = (t, a)da, JO B, = (t, a)da, JO 0BT, (t, a)da, jo

0
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and
viily — kO, iy ), = hy (1),
Vylly — kO, 1,) .9 = By (1),
v3tly — kO,il3) . = b3 (1),
VyTly — kO, ly) o = hy (1),
%,(0,a) = (a), aecQ,=(0,A),1<i<4,
| 7,(5A) =0, teQp=(0,T), 1<i<4,

(
(
(
(

with hy, by, hy, by € L (Qg) is defined as in (58).

Note that, from Section 3, systems (59) and (60) are null
controllable. Now, we will prove the null controllability of
(57) and (58).

Let / = [];, L*(Qy), and we define the following set:

(61)

such that

: (1-0)B,u, 5 (¢, a)da) :
(63)

(i, 5» 11, 3 i3 7 ) is solution of (59) - (60)and @ € /., (R,, Ry, Rs, R4)}.

The goal is to prove that the multivalued function A,
admits a fixed point. To this end, we will use the general-
ization of Leray-Schauder fixed point theorem. Consider

/Vy ={(R\,R,, Ry, Ry) € M: Fp € (0,1), (R}, Ry, Ry, Ry)
€ pA, (R, Ry, Ry, R,)}.
(64)

The fixed point existence of the multivalued function A,
is an immediate consequence of the following proposition.

Proposition 2. (i) /' is bounded on M

(ii) For all (Ry,Ry,R3,Ry) € M, A\, (R}, Ry, R, Ry) is a
nonempty closed and convex subset of M

(iii) Ay M — 2% is compact

(iv) The multivalued mapping A,
continuous on M

is upper semi-

Proof of Proposition 2.

Let us set (4, 5, U, 5, Us 7> Uy 7) = (U, Uy, Uy, Uy). (i) Let
(R, R,,R5,R) € /Vy There is pe (0,1) such that
(1/p) (Rl,Rz,R3, 1) €A (RI,RZ,R3,R4) Hence, there is
(i, 1, 13) € ] 1L2 (Q) associated to @ € [];_, L?(g) such
that
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A
Bsitzda,

B4, da,
(65)

PN

R; =

_t_"_‘
n o

B,it,da,
0

A
R, = J B,ii,da,
0

with (%, 4,, ;) solution of (57) and (58) associated to @
satisfying (56). Then, we have

4 4
Z;,"Ri"i2 (0r) = Z}fi"ai"izm) §i = A"ﬂi"Lm([O,A])and =0
i= i=

(66)

Multiplying the equation number i of (57) and (58) by #;
and integrating by parts on €, we obtain after summing with
respect to i(1<i<4):

4

> (24 -C; -

i=1

4 4
1)"ﬁi|liz(ﬂ) s ;"ﬁ?”imo,A]) + Zl "Ri“i2 (o)
i= i=

4
+ Z, "i’i”é(q)
P

(wy =0).
(67)

In virtue of (66), (67), and (56), it follows that

4

> (2A -

i=1

4
_ 012
Ci = D]l 0y < K+ D Y12 0.0
i=1

4
+ (4K +1) Y &2 o
i=1

(68)
Inequality (68) leads to
4 o 4 o2
;(2)‘0 - 1= (4K + DE) |t 12 ) < (4K + 1) ; (e
(69)

Considering again (66) and (69), we get the desired
result. (if) (R, Ry, Ry, Ry) € M, A, (R, Ry, R3, R,) is non-
empty. In fact, systems (57) and (58) are equivalent to
systems (10) and (11) which admits a solution. Also, @
satisfies (56).

Since the function (R, R,,Rs,Ry) > (Ui}, Uy, U5, 1y) is
affine, it follows that A, (R;, Ry, R, R,) is convex.

Let (nn,nn,nn, )e A;’ (R;,R,,R5,R,) such that
(Lt oty — (', 7% 7, n*) in . Thus, for all n, there
exists w,, which satisfies (56), such that

11
A
= Jo Bsiis ,da,
A
:J it ,da,
. (70)
= [ ot

PN

nf[ = .[o (1 -0)B,1, ,da.

Here, (i, ,,,1;,) is solution of (59) and (60), with
(R}, Ry, Ry, R,) instead of (hy, hy, hy, hy) and (4, i, ,, T3,)
which verify (69). From (66), (69), and (56), one can extract
sequences still denoted by ((#, ,,, #,,,, ,,)),, and (i@,), that
converge weakly towards (i, %i,, ;) and @ in (L? (Q))3 and
in (L*(g))’, respectively.

So,

LA
no= Jo Bsit;da,

j B,ii,da,
(71)

A
= J 0p,iiyda,
0

L (A
n = J.o (1 - 0)p,t,da.

Moreover, (ii,,,,Ii;) is solution of (59) and (60), with
(R, Ry, R, Ry) = (hy, hy, by, hy). Also, W verifies (56) and
(%, 1y, ;) verifies (4). Then, (', 7%, 7, 1*) € A, (Ry, Ry, Ry,
R,). (iii) Let (Ry,R,,R;,R,) € K a bounded subset of /.
Then, there exist r; >0 (1 <i<4) such that

IRi] - (@) Sre  1<is4 (72)

Consider ((nL, 712, 1%)), € A (RI,RZ,R3,R4) for all
n e N, there is (uln,uz,,,u3n) € (LZ(Q)) and a control
function @, € (L?(q))’ such that

1 A
My = Jo ﬁs”s,nda>

A
rln = J ﬁlﬁl,nda’
° (73)

A
3 P

A
= J (1 -0)B,1,,da,
0

where (#,,,#,,,13,) is solution of (59) and (60) with
(Ry,» Ry, Ry, R, ) instead of (hy, hy, by, h,) and @, verifies
(56). Using (56), it follows that

quwin(t,a)dtda§4K<J Y (i )da+z >

=1
(74)
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Therefore, (w,) is bounded, and we can extract a se-
quence still denoted by (i,,) that weakly converges towards
@ in L% (qg).

Now, multiplying the equation number i of (59) and (60)
by #, ,, integrating by parts on Q and using (72), we get after
summing

4
| Y K(a),) €+ 2, (1 a)dtea
Qix
4
g<41<+1)<j Y (@) da+r Y >
=1

i=1

(75)

Consequently, the sequence (%, i, ,, i3,,) is bounded
in (L2(Q))’. One can extract a sequence denoted

((ty > Uy nk,u3 ) that converges weakly towards
(1), 7, 73) i (L (Q))*,
As
A
’1nk Jo Bsits  da,
2 A
r’nk = JO ﬁlul,nkda’
R (76)
’1nk = JO gﬁZuZ,nkda’
A
= [ (- st da

using (75), we obtain

4 Ao 4
1; LZ(QT)SK,<J0;(ui) da+;ri>. (77)

i
My,

From (77), one can extract a sequence which also
2 3
denoted  ((m,, 17, 15, -1, )) that converges weakly to

(%, n*) on L2(Qy).
So,

J ¢11f1’dt—>J' oridt, Vo e L*(Qp), 1<i<4. (78)
Q Qr

Moreover, the sequence ((iiy,, ,u2 o U3,)) converges
weakly towards (%, i, ;) on (L? Q). Thus, the sequence
(B, By, B3, ) associated to ((ﬂnk ﬂnk ’7nk ﬂnk)) con-
verges weakly towards (@, i, i1;). Since ¢f; € L*(Qy), for
all ¢ € L?(Qy) and for all k € {1,2,3}, it follows that

Journal of Mathematics

J ¢;1,14kdt — | ¢ ﬁ3ﬁ3da>dt,

Qr

O e,

J ‘P’?flkdt — | ¢ ﬁlalda>dt’

Qr

(]
I
erikdt — ¢(
I

) . (79)
J aﬁzﬁzda>dt,
0
A
J ot dt — [ Ju - a)ﬁzﬁzda>dt.
[ & 0
Equations (78) and (79) imply
A
IQ ¢<;71 - JO ﬁ3ﬁ3da>dt =0, V¢ € L*(Qr),
4 2
JQ ( jo ﬁlulda>dt v € I2(Qp),
) A
J-Q < Jo o uzda>dt =0, Vo € L*(Qr),
A 2
JQ‘ ( JO (1—a)ﬁ2u2da>dt 0, V¢ eIX(Qp).
(80)
Consequently,
A
J Piiizda, a.e.t € Qp,
0
A
= J piuda, a.e.t€Qyp,
1 . (81)
= J oByiyda, a.e.t € Qp,
0
A
;1 = J (1-o0)B,u,da, a.e.teQr.

Then, (#,,4,, s, 1,) is solution of (59) and (60) with
(Ry, Ry, R5, Ry) instead of (hy, hy, hs, hy); (G, T,, i5) and @
satisfy, respectively, (4) and (56). (iv) Let K be a closed
subset of .#. We will prove that A;l (K) is a closed subset of
M. Remark that A (K) = {(R;, Ry, Ry, Ry) € M3 A, (R}, Ry,
Ry, Ry)NK + D}

Suppose that (R,,R,,,R;,,R,,) — (R}, Ry, R;3,Ry)
(strongly) in .Z. Then, the sequence (R,,,R,,,R;,,R,,) is
bounded. There also exists a sequence (175, 72, 72, 712)), € K,
such that, for all n>1, (L7317, 1k € Ay (Ry Ry



Journal of Mathematics

Initial condition of eggs
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Initial condition of larvae

0.3 0.8
0.7
0.25
0.6
0.2
0.5
s Z
2 0.15 2 04
j U
a a
0.3
0.1
0.2
0.05
0.1
0 0 . . . .
0 02 04 06 08 1 1.2 14 16 18 0 0.5 1 1.5 2 2.5 3
Age Age
Initial condition of females Initial condition of males
0.16 0.8
0.14 0.7
0.12 0.6
0.1 0.5
g iy
2 0.08 2 04
j U
a a
0.06 0.3
0.04 0.2
0.02 0.1
0 0

0 0.5 1 L5 2 2.5 3 3.5
Age

0 0.5 1 1.5 2 2.5 3 3.5 4

FiGure 1: Initial conditions.

Rs,, Ry, So, there exist (#y,, iy, Uis,) € (L2(Q)) and a
control function @,, € (L (q))3 such that

1 A
rln = JO ﬁ3ﬁ3,nda’

5 A
Mn = Jo Bty ,da,
(82)

3 A ~
’1n = JO aﬁZul,nda’
4 A
Hy = JO (1 - U)ﬂZﬁZ,nda’

with @, (2, ,, i, ,, ti3,,) verifying (56) and (i, ,, U, ., U3 ,) is
solution of (59) and (60) with (R, , R, ,, Rs,, R,,) instead of
(hys hy, hs, hy), and (i, s, ,, U3 ,,) Verifies (4). From (66),
(69), and (56), it follows that (@,) and (i, i, ,, i3,) are
bounded, respectively, in (L?(q))’ and (L2(Q))’. Thus,
there are sequences also denoted by (@,), and
(@, tiy,» U3 ,,)),, that converge weakly towards @ and
(iiy, 1y, 1), respectively, in (L?(g))* and (L?(€2))’. More-
over,  verifies (56) and

1 A
n = Jo Bsitzda,
2 A
n= ,[0 B, da,
" (83)
0= JO ap,i,da,

A
it = J (1 - 0)B, i, da.
0

Here, (#i,1,,1;) is solution of (59) and (60) with
(Ry,R,, R5, R,) instead of (hy,h,,hs,hy), and (@, 1,, 1)
verifies (4). Therefore,

(’71> ’Iz’ ’13’ ’74> €A, (Ri, Ry, Ry, Ry).

In addition, from (77) and Lions-Aubin lemma, one can
extract a sequence ((17), 72,72, 114)),, that converges strongly
to (7,757 n*) in . Since K is closed, then
(', %) € K.

Finally, from (84), we conclude that (R;,R,,R5,R,) €
A;l (K). O

(84)
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State ul of the system

Age

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time

State u3 of the system

4#—

0.1

Age

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time

0.05
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State u2 of the system

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

4#—

3.5

2.5

Age

1.5

0.5

Time

State u4 of the system

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time

FiGure 2: Uncontrolled solution at final time T = 0.5 and A = 4.

Proof. of Theorem 1.

This result is a consequence of Proposition 2. In fact, from
Proposition 2, there is (R,,R,,R;,R,) € # such that (R,
Ry, R3,Ry) € A, (R, Ry, Ry, Ry), see Theorem 1.3 in [22]. O

5. Numerical Simulations

In this section, we display the numerical simulations of
problems (1) and (2). The first part is to reduce the PDE to a
finite dimensional system of the form: X = AX + BY, where
A and B are matrices.We construct the control problem,
which consists in minimizing the functional and we choose
the classical Hum functional and the control matrix B = yg,
where ® = (0, A) x (0,T).

Example 1. For the simulation, we take k =0.25,
A =2, A, =3, Ay = A, =4, and Aa = 1/20. Moreover, the
transition functions §,, 3,, and f3; are given by

Pi(a) =
P.(a) =
Bs(a) =

(0, ifa=0,
7(11a — 4)*e 052(10a-4)
(1la 12(2) , ifa+0,
(0, ifa=0,
7(50a — 4)*e” 0.52(10a—4) (85)
6 , ifa+0,
(0, ifa=0,

3 - —
7(12.106a_4) o~ 052(10a-1)

> .f 0:
(5 ita+#
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The control state wl

Density

0.5
0.4

0.3
0.2
T0®

0.1

00

The control state w3

0.3

0.2

15

The control state w2

0.2 -

-0.2

Density
s
NS

0.1 gy

The control state w4

Figure 3: Control state at final time T = 0.5 and A = 4.

and the initial population distributions
W (a) = ke~ V4=9) (1<i<4,withk, = 0.5k, =k, =

landk; = 0.2) will be used in the computation. The growth
rates are given by

0.2, if a=0,
n(@ ={a, if a#+0,
0.3, if a=0,
v (@) =<la, if a+0,
04, if a=0, (86)
vs (@) ={a, if a+0,
0.4, if a=0,
v‘*(a):{a, if a0

The following numerical results were obtained.

We notice that we have the positivity of the initial
conditions, see Figure 1. Moreover, the colors green, blue,
and yellow show that the uncontrolled solutions are not null

at the final time T = 0.5 and the color red shows that the
uncontrolled solutions are null at the final age A =4, see
Figure 2.

We use ODE 45 for the simulations of the uncontrolled
system.

Example 2. In this example, we are going back to the data
from Example 1.

The control states and the controlled states results are
obtained for T'= 0.5 and A = 4.

We notice that numerically the control covers all the
domains. However, we could not take a positivity constraint
in our simulations, see Figure 3.

Moreover, the colors red and yellow show that the
controlled states are zero at the final time T = 0.5, see
Figure 4. This confirms the result of null controllability
obtained theoretically.

The CaSadi toolbox is used to simulate the control (by
the minimization of functional: Hum Method).

Below, we have the numerical simulations results.
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The controlled state ul

2 0.5
1.8 0.45
1.6 [ 0.4
1.4 0.35
1.2 03
% 0.25

0.2
0.15
0.1
1 0.05

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time
The controlled state u3
4
0.14
3.5
0.12
3 0.1
2.5 0.08
(5]
%‘3 ) 0.06
0.04
1.5
0.02
1 0
0.5 -0.02

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time
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The controlled state u2

Age

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time

The controlled state u4

Age

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time

FiGUure 4: Controlled solution at final time T = 0.5 and A = 4.

6. Conclusion

In this paper, we have proved the null controllability of a
four-stage and age-structured population dynamics model.
We consider three controls acting on eggs, larvae, and fe-
males. We end with numerical illustrations to confirm the
theoretical results. In order to consolidate the result ob-
tained in this article, we are going to think about studying
the controllability with less controls (two or one) and also to
establish algorithms allowing to calculate the control from
its characterization.
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