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,is paper is devoted to study the null controllability properties of a population dynamics model with age structuring and nonlocal
boundary conditions. More precisely, we consider a four-stage model with a second derivative with respect to the age variable.,e
null controllability is related to the extinction of eggs, larvae, and female population. ,us, we estimate a time T to bring eggs,
larvae, and female subpopulation density to zero. Our method combines fixed point theorem and Carleman estimate. We end this
work with numerical illustrations.

1. Introduction

Let ui(t, a), 1≤ i≤ 4, be, respectively, the distribution of eggs,
larvae, and female and male individuals of age a at time t;
Ai, 1≤ i≤ 4, is the life expectancy of an i− stage individual

and T is a positive constant. We consider the following
population dynamics model based on Fokker–Planck or
Kolmogorov-type equations which is written as

ztu1(t, a) + za v1(ζ(t), a)u1(t, a)  − kz
2
au1(t, a) � − μ1(ζ(t), a) + β1(ζ(t), a) u1(t, a) + m(a)w1(t, a),

ztu2(t, a) + za v2(ζ(t), a)u2(t, a)  − kz
2
au2(t, a) � − μ2(ζ(t), a) + β2(ζ(t), a) u2(t, a) + m(a)w2(t, a),

ztu3(t, a) + za v3(ζ(t), a)u3(t, a)  − kz
2
au3(t, a) � − μ3(ζ(t), a)u3(t, a) + m(a)w3(t, a),

ztu4(t, a) + za v4(ζ(t), a)u4(t, a)  − kz
2
au4(t, a) � − μ4(ζ(t), a)u4(t, a),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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where (t, a) ∈ Ωi � (0, T) × (0, Ai) and w1, w2, and w3 are,
respectively, the control function of eggs, larvae, and fe-
males. Here, m(a) is the characteristic function of

ω � (0, a∗) with 0< a∗ <min A1, A2, A3 . To complete the
system, the boundary conditions are stated as follows:

v1(ζ(t), a)u1(t, a) − kzau1(t, a) a�0 � 
A3

0
β3(ζ(t), a)u3(t, a)da,

v2(ζ(t), a)u2(t, a) − kzau2(t, a) a�0 � 
A1

0
β1(ζ(t), a)u1(t, a)da,

v3(ζ(t), a)u3(t, a) − kzau3(t, a) a�0 � 
A2

0
σβ2(ζ(t), a)u2(t, a)da,

v4(ζ(t), a)u4(t, a) − kzau4(t, a) a�0 � 
A2

0
(1 − σ)β2(ζ(t), a)u2(t, a)da,

ui(0, a) � u
0
i (a), a ∈ 0, Ai( , 1≤ i≤ 4,

ui t, Ai(  � 0, t ∈ (0, T), 1≤ i≤ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Here, μi(ζ(t), a), βi(ζ(t), a), and vi(ζ(t), a) are, re-
spectively, the i− stage mortality rate, the i− stage age specific

transition functions, and the i− stage growth rate of age a at
temperature ζ(t) and at time t.

Finally,


Ai

0
σiβi(ζ(t), a)ui(t, a)da, 1≤ i≤ 4, σ1 � 1, σ2 � σ, σ3 � 1, σ4 � 1 − σ. (3)

Denote, respectively, the distribution of the newborns of
eggs, larvae, females, and males. ,e constant σ denotes the
sex ratio and k> 0 (diffusion coefficient) corresponds to
small deviations of order 2 which represent the dispersion
effects of individuals during their development. Our aim is
to study the null controllability of (1) and (2).

Given a fixed T> 0, we look for controls w1, w2, and w3
such that u1, u2, and u3 satisfy

u1(T, a) � u2(T, a) � u3(T, a) � 0. (4)

In practice, this study applies to the dynamics cowpea
pest insects (Callosobruchus maculatus). ,ese insects live in
hot areas, namely, tropical and subtropical regions [1] and
cause important damage to the seeds of cowpeas and other
legumes. ,is damage is exclusively due to the larvae. In-
deed, females lay their eggs on the pods or on stocked seeds
and then larvae grow by feeding on the cotyledons, see [2].
Twenty five days and a temperature varying between twenty-
seven and thirty-one degrees Celsius are necessary for the
growth of the larvae.

,e life cycle of Callosobruchus maculatus can be divided
into three development stages: egg, larva + pupa (growing
stages), and adult (reproduction ability). Besides, during
their growth, beetle larvae transform nitrogen to toxic uric
acid that accumulates into cowpea and make it unfit for
consumption.

Several methods of combating these insects have been
considered. Among them is the method of preservation in

hermetically sealed containers, thus preventing the devel-
opment of the larvae.

,emethod of control we are considering is to remove or
eliminate individuals. ,is can be done with the help of
pesticides. We recall that the optimal and exact control
problems are widely investigated for age-structured pop-
ulation dynamics by many researchers. Most of these studies
are focused on optimal control problems [3–5] and the
references therein. One can also refer to [6, 7]. Lebeau and
Robbiano establish in [8] the null controllability of the linear
heat equation. Next, the exact controllability for age de-
pendent linear and nonlinear single-species population
models with spatial diffusion was investigated by
Aı̈nsebaet al. [9, 10]. Barbu et al. also considered the exact
controllability of the linear Lotka–McKendrick model
without spatial structure by establishing an observability
inequality for the backward adjoint system [11]. Later on, He
and Ainseba investigate the exact null controllability of a
stage and age-structured population dynamics system in [12]
and the exact null controllability of the Lobesia Botrana
model with spatial diffusion in [13].

Moreover, in [14], the authors investigated a semilinear
problem: the null controllability of the heat equation with a
Fourier boundary condition over the entire boundary. In our
work, the Fourier condition contains a nonlocal term and is
set only on a part of the domain. ,is induces additional
difficulties in establishing the Carleman inequality.

In [15], Hegoburu and Anita study in a very practical
way the null controllability of a nonlinear model of
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population dynamics by means of a feedback control. ,is
interesting result cannot be applied easily in our case since
we study a four-stage model via three controls. More pre-
cisely, in our case, we control only three stages. So, it seems
difficult here to compute explicitly the feedback control as it
was done in [15].

,e fundamental difference with [13] lies in the fact that
our model combines a transport effect with the presence of a
first-order derivation with respect to the age variable and a
diffusion along the same variable. ,us, the inequalities
guaranteeing the null controllability obtained in [13] become
inoperative in our case.

As far as we know, there are no results dealing with the
null controllability for an age and stage-dependent system
involving a second derivative with respect to the age variable.
,e second derivative with respect to the physiological age
variable corresponds to small deviations of order two and
represents the dispersion effects of individuals during their
development due to, for example, the temperature, the
humidity, and the quality of food.,is article is structured as
follows. In Section 2, the assumptions and the main result
are stated. We study the null controllability of some asso-
ciated auxiliary model in Section 3. Section 4 is devoted to
the proof of the main result, and some numerical illustra-
tions are given in Section 5.

2. Assumptions and Main Result

For the sequel, we make the following assumptions on the
demographic parameters:

(A1) ,e transition functions βk(ζ(.), .) are positive
and βk ∈ L∞((0, T) × (0, Ak)), 1≤ k≤ 3.
(A2),emortality functions μk(ζ(.), .) are positive and
μk ∈ L∞((0, T) × (0, Ak)), 1≤ k≤ 4.
(A3) ,e initial conditions u0

k(a)≥ 0 a.e. a ∈
(0, A), 1≤ k≤ 4.
(A4) ,e growth functions vi(ζ(.), .), 1≤ i≤ 4 are
positive and bounded, that is,

0< v
min
i < vi(ζ(t), a)< v

max
i , ∀(t, a) ∈ (0, T) × 0, Ai( .

(5)

In addition, for all t ∈ [0, T], vi(ζ(t), .) ∈ C1([0, A]),
and there is a positive constant Ci such that

zavi(ζ(t), a)
����

����∞≤Ci, ∀(t, a) ∈ (0, T) × 0, Ai( .

(6)

(A5) ,e temperature function ζ(.) is measurable.

,ese assumptions are biologically meaningful, see
[3, 16–18].

Setting ui � e− λtui, 1≤ i≤ 4, the vector (u1, u2, u3, u4)

verifies the system:

ztu1 + za v1u1(  − kz
2
au1 � − μ1 + β1 + λ( u1 + m(a) w1,

ztu2 + za v2u2(  − kz
2
au2 � − μ2 + β2 + λ( u2 + m(a) w2,

ztu3 + za v3u3(  − kz
2
au3 � − μ3 + λ( u3 + m(a) w3,

ztu4 + za v4u4(  − kz
2
au4 � − μ4 + λ( u4,

v1(ζ(t), a)u1(t, a) − kzau1(t, a) a�0 � 
A3

0
β3(ζ(t), a)u3(t, a)da,

v2(ζ(t), a)u2(t, a) − kzau2(t, a) a�0 � 
A1

0
β1(ζ(t), a)u1(t, a)da,

v3(ζ(t), a)u3(t, a) − kzau3(t, a) a�0 � 
A2

0
σβ2(ζ(t), a)u2(t, a)da,

v4(ζ(t), a)u4(t, a) − kzau4(t, a) a�0 � 
A2

0
(1 − σ)β2(ζ(t), a)u2(t, a)da,

ui(0, a) � u
0
(a), a ∈ 0, Ai(  and ui t, Ai(  � 0, t ∈ (0, T), 1≤ i≤ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Now, we consider the following auxiliary system:
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ztu1 + za v1u1(  − kz
2
au1 � − μ1 + β1 + λ( u1 + m(a) w1,

ztu2 + za v2u2(  − kz
2
au2 � − μ2 + β2 + λ( u2 + m(a) w2,

ztu3 + za v3u3(  − kz
2
au3 � − μ3 + λ( u3 + m(a) w3,

ztu4 + za v4u4(  − kz
2
au4 � − μ4 + λ( u4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

v1(ζ(t), a)u1(t, a) − kzau1(t, a) a�0 � 
A3

0
β3(ζ(t), a)ϕ3(t, a)da,

v2(ζ(t), a)u2(t, a) − kzau2(t, a) a�0 � 
A1

0
β1(ζ(t), a)ϕ1(t, a)da,

v3(ζ(t), a)u3(t, a) − kzau3(t, a) a�0 � 
A2

0
σβ2(ζ(t), a)ϕ2(t, a)da,

v4(ζ(t), a)u4(t, a) − kzau4(t, a) a�0 � 
A2

0
(1 − σ)β2(ζ(t), a)ϕ2(t, a)da,

ui(0, a) � u
0
(a), a ∈ 0, Ai(  and ui t, Ai(  � 0, t ∈ (0, T), 1≤ i≤ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

For the existence of the solutions to problems similar to
equations (8) and (9), we refer, for instance, to [19] and the
references therein.

Let A � max A1, A2, A3, A4 , we can state the main
result.

Theorem 1. Assume that (A1) − (A5) hold. Let A> 0 and
T> 0 be given. ;en, for all (u0

1, u0
2, u0

3) ∈ (L2(0, A))3, there

exist a controlw � (w1, w2, w3) ∈ (L2((0, T) × ω))3 such that
the associated solution of equations (1) and (2) verify (4).

3. Null Controllability of an Auxiliary System

,is section is devoted to the null controllability of the
following auxiliary system obtained from equations (1) and
(2):

ztu1(t, a) + za v1(ζ(t), a)u1(t, a)  − kz
2
au1(t, a) � − μ1(ζ(t), a) + β1(ζ(t), a) u1(t, a) + m(a)w1(t, a),

ztu2(t, a) + za v2(ζ(t), a)u2(t, a)  − kz
2
au2(t, a) � − μ2(ζ(t), a) + β2(ζ(t), a) u2(t, a) + m(a)w2(t, a),

ztu3(t, a) + za v3(ζ(t), a)u3(t, a)  − kz
2
au3(t, a) � − μ3(ζ(t), a)u3(t, a) + m(a)w3(t, a),

ztu4(t, a) + za v4(ζ(t), a)u4(t, a)  − kz
2
au4(t, a) � − μ4(ζ(t), a)u4(t, a),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

v1(ζ(t), a)u1(t, a) − kzau1(t, a) a�0 � h1(t),

v2(ζ(t), a)u2(t, a) − kzau2(t, a) a�0 � h2(t),

v3(ζ(t), a)u3(t, a) − kzau3(t, a) a�0 � h3(t),

v4(ζ(t), a)u4(t, a) − kzau4(t, a) a�0 � h4(t),

ui(0, a) � u
0
i (a), a ∈ (0, A), 1≤ i≤ 4,

ui(t, a) � 0, t ∈ (0, T), 1≤ i≤ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Here, hi � 
A

0 σiβj(ζ(t), a)ϕj(t, a)da, (i, σi, j) ∈ (1, 1, 3{

), (2, 1, 1), (3, σ, 2), (4, 1 − σ, 2)}. We first established a
Carleman-type inequality for the following adjoint system of
equations (10) and (11):
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− ztq1 − za v1q1(  − kz
2
aq1 + μ1 + β1 + zav1( q1 � 0,

− ztq2 − za v2q2(  − kz
2
aq2 + μ2 + β2 + zav2( q2 � 0,

− ztq3 − za v3q3(  − kz
2
aq3 + μ3 + zav3( q3 � 0,

− ztq4 − za v4q4(  − kz
2
aq4 + μ4 + zav4( q4 � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

with (t, a) ∈ Q and the following boundary conditions

qi(t, A) � zaqi(t, 0) � 0, t ∈ (0, T), 1≤ i≤ 4;

qi(T, a) � −
ui(T, a)

ε
, a ∈ (0, A), 1≤ i≤ 3;

q4(T, a) � 0, a ∈ (0, A).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

,e system equations (12) and (13) admit a unique
solution.

Let ω0 ⊂ ⊂ ω be a nonempty bounded subset of
Ω � (0, A), and ψ ∈ C2(Ω) satisfying (see Lemma 1.1 in
[20])

ψ(a)> 0; for any a ∈ Ω,ψ(a) � 0,

for any a ∈zΩ, |∇ψ(a)|> 0,

for any a ∈ Ω\ω0.

(14)

Now, we define the following weight functions, which
are constructed using the function ψ (see [21] or [20]):

φ(t, a) �
e
λψ(a)

t(T − t)
, α(t, a) �

− e
2λ‖ψ‖

C(Ω) + e
λψ(a)

t(T − t)
,

φ(t, a) �
e

− λψ(a)

t(T − t)
, α(t, a) �

− e
2λ‖ψ‖

C(Ω) + e
− λψ(a)

t(T − t)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where λ is an appropriate positive constant.

Remark 1. Using the definition of φ, φ, α, and α, we deduce
that there is a positive constant c such that

(1) zaφ � λzaψφ, zaφ � − λzaψφ, zaα � λzaψφ, and zaα
� − λzaψφ

(2) |ztφ|≤ cφ2, |ztφ|≤ cφ2, |ztα|≤ cφ2, |ztα|≤ cφ2, |z2tφ|

≤ cφ3, |z2t φ|≤ cφ3, |z2tα| ≤ cφ3, |z2t α|≤ cφ3, |ztzaα|≤
cφ2, and |ztzaα|≤ cφ2

Lemma 1. Let φ, α, φ, and α be defined as in equation (15).
;en, there exists a number λ> 1 such that, for any λ> λ,
there exists a number s0(λ) such that, for every s≥ s0(λ), we
have the following inequalities:


Q

1
sφ

ztqi



2

+ z
2
aqi



2

  + sφ zaqi



2

+ s
3φ3

q
2
i  e

2sα
+ e

2sα
 dtdx≤C

· 
[0,T]×ω

s
3φ3

q
2
i e

2sα
+ e

2sα
 dtda,

(16)

for all qi ∈ L2((0, T) × (0, A)) solution of (12) and (13),
i � 1, 2, 3, and


Q
φ3

q
2
1 + q

2
2 + q

2
3  e

2sα
+ e

2sα
 dtda≤C

· 
[0,T]×ω

φ3
q
2
1 + q

2
2 + q

2
3  e

2sα
+ e

2sα
 dtda.

(17)

Remark 2. Here, we have to control the boundary condi-
tions which is not the case studied in [20].

Proof of Lemma 1. Let us consider the operator

Lqi � − ztqi − kz
2
aqi, 1≤ i≤ 3. (18)

We set

gi(t, a) � − μi + βi( qi + vizaqi, β3 � β4 � 0( , 1≤ i≤ 3.

(19)

Let wi � esαqi and wi � esαqi, (1≤ i≤ 3), where s is a
positive constant. Put Σ0 � [0, T] × A{ }, Σ1 � [0, T] × 0{ },
and Σ � Σ0 ∪Σ1.

From (15), we have

wi(T, a) � wi(T, a) � wi(0, a) � wi(0, a) � 0 on [0, A].

(20)

Let us define the operators P and P as follows:
Pwi � esαLe− sαwi and Pwi � esαLe− sαwi.

It follows from equations (12), (18), and (19) that

Pwi � e
sαLe

− sα
wi � e

sα
gi, onQ,

P wi � e
sαLe

− sα
wi � e

sα
gi, onQ.

(21)

Explicitly, we have
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Pwi � − ztwi − kz
2
awi + sztαwi + 2ksλzaψφzawi + ksλz

2
aψφwi + ksλ2 zaψ( 

2φwi

− ks
2λ2 zaψ( 

2φ2
wi,

(22)

P wi � − zt wi − kz
2
a wi + sztαwi − 2ksλzaψφza wi − ksλz

2
aψφwi + ksλ2 zaψ( 

2
φwi

− ks
2λ2 zaψ( 

2φ2
wi.

(23)

We also consider the operators L1, L2,
L1, and L2 defined

as follows:

L1wi � − kz
2
awi − ks

2λ2 zaψ( 
2φ2

wi + sztαwi,

L2wi � − ztwi + 2ksλzaψφzawi + 2ksλ2 zaψ( 
2φwi,

L1 wi � − kz
2
a wi − ks

2λ2 zaψ( 
2
φ2

wi + sztαwi,

L2 wi � − zt wi − 2ksλzaψφza wi + 2ksλ2 zaψ( 
2
φwi.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

Using equations (19), (22), and (24), we obtain

L1wi + L2wi � fs, inQ,

L1 wi + L2 wi � fs, inQ,
 (25)

where

fs � gie
sα

− ksλφz
2
aψwi + ksλ2φ zaψ( 

2
wi,

fs � gie
sα

+ ksλφz
2
aψ wi + ksλ2φ zaψ( 

2
wi.

⎧⎪⎨

⎪⎩
(26)

Taking the L2-norm of (25), we obtain

fs

����
����
2
L2(Q)

� L1wi

����
����
2
L2(Q)

+ L2wi

����
����
2
L2(Q)

+ 2 L1wi, L2wi( L2(Q),

fs

����
����
2
L2(Q)

� L1 wi

����
����
2
L2(Q)

+ L2 wi

����
����
2
L2(Q)

+ 2 L1 wi,
L2 wi( L2(Q).

⎧⎪⎨

⎪⎩

(27)

By using (24), we have the following equalities:

2 L1wi, L2wi( L2(Q) � 2k
2
s
3λ4

Q
wi( 

2φ3
zaψ( 

4dtda + 6k
2
sλ2

Q
zawi( 

2φ zaψ( 
2dtda

− 2ksλ
T

0
wiztwiφ zaψ(  a�0dt + 4k

2
s
2λ3 

T

0
wi( 

2φ2
zaψ( 

3
 

a�0dt

+ 2k
2
s
3λ3 

T

0
wi( 

2φ3
zaψ( 

3
 

a�0dt − 2k
2
sλ

T

0
zawi( 

2φ zaψ(  
A

0 dt

− 2ks
2λ

T

0
wi( 

2φ zaψ( ztα 
a�0dt + X1,

(28)

2 L1 wi,
L2 wi( L2(Q) � 2k

2
s
3λ4

Q
wi( 

2
φ3

zaψ( 
4dtda + 6k

2
sλ2

Q
za wi( 

2
φ zaψ( 

2dtda

+ 2ksλ
T

0
wizt wiφ zaψ(  a�0dt − 4k

2
s
2λ3 

T

0
wi( 

2
φ2

zaψ( 
3

 
a�0dt

− 2k
2
s
3λ3 

T

0
wi( 

2
φ3

zaψ( 
3

 
a�0dt + 2k

2
sλ

T

0
za wi( 

2
φ zaψ(  

A

0 dt

+ 2ks
2λ

T

0
wi( 

2
φ zaψ( ztα 

a�0dt + X2,

(29)

with

X1


≤ c1
Q

s
3λ3φ3

+ s
2λ4φ3

  wi( 
2

+(sλφ + 1) zawi



2

 dtda, ∀ s≥ 1, λ≥ 1, (30)

X2


≤ c2
Q

s
3λ3φ3

+ s
2λ4φ3

  wi( 
2

+(sλφ + 1) za wi



2

 dtda, ∀ s≥ 1, λ≥ 1. (31)
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Considering equations (27)–(29) and using the fact that
ψ(a) � 0 on zΩ, it follows that

fs

����
����
2
L2(Q)

+ fs

����
����
2
L2(Q)

� L1wi

����
����
2
L2(Q)

+ L2wi

����
����
2
L2(Q)

+ L1 wi

����
����
2
L2(Q)

+ L2 wi

����
����
2
L2(Q)

+ 2X1 + 2X2 + 2k
2
s
3λ4

Q
wi( 

2φ3
zaψ( 

4
+ wi( 

2
φ3

zaψ( 
4

 dtda

+ 6k
2
sλ2

Q
zawi( 

2φ zaψ( 
2

+ za wi( 
2
φ zaψ( 

2
 dtda,

(32)

and we deduce from (32)

fs

����
����
2
L2(Q)

+ fs

����
����
2
L2(Q)
≥ L1wi

����
����
2
L2(Q)

+ L2wi

����
����
2
L2(Q)

+ L1 wi

����
����
2
L2(Q)

+ L2 wi

����
����
2
L2(Q)

+ X1 + X2 + 2k
2
s
3λ4

Q
wi( 

2φ3
zaψ( 

4
+ wi( 

2
φ3

zaψ( 
4

 dtda

+ 2k
2
sλ2

Q
zawi( 

2φ zaψ( 
2

+ za wi( 
2
φ zaψ( 

2
 dtda.

(33)

Note that there exists δ > 0 such that

zaψ(a)


> δ > 0, ∀ a ∈ Ω\ω0. (34)

After these calculations, we can now use the same ar-
guments developed in [21] or [20] to get (16).

By summing with respect to i, one deduces easily in-
equality (17). We can now establish the observability in-
equality of the system equations (12) and (13) and then the
null controllability result of the system equations (10) and
(11). We start by proving our observability inequality by
means of Carleman estimate. □

Lemma 2. We have the following inequality:


A

0


3

i�1
qi(0, a)



2da + 

T

0


3

i�1
qi(0, a)



2dt

≤K
[0,T]×ω



3

i�1
qi



2dtda,

(35)

for all solution, q � (q1, q2, q3) ∈ (L2((0, T) × (0, A)))3 of
equations (12) and (13).

Let λ be a positive constant and qi(t, a) �

eλtqi(t, a), 1≤ i≤ 4. ,en, equations (12) and (13) become

− ztq1 − za v1q1(  − kz
2
aq1 + λ + μ1 + β1 + zav1( q1 � 0,

− ztq2 − za v2q2(  − kz
2
aq2 + λ + μ2 + β2 + zav2( q2 � 0,

− ztq3 − za v3q3(  − kz
2
aq3 + λ + μ3 + zav3( q3 � 0,

− ztq4 − za v4q4(  − kz
2
aq4 + λ + μ4 + zav4( q4 � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(36)

qi(t, A) � zaqi(t, 0) � 0, t ∈ (0, T), 1≤ i≤ 4;

qi(T, a) � −
e
λT

ui(T, a)

ε
, a ∈ (0, A) 1≤ i≤ 3;

q4(T, a) � 0, a ∈ (0, A).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

For the proof of Lemma 2, we need an auxiliary result.
,is result is given in the following proposition.

Proposition 1. Let q � (q1, q2, q2) ∈ (L2((0, T) × (0, A)))3

be solution of (36) and (37). ;en,


A

0
q1(0, a)



2

+ q2(0, a)



2

+ q3(0, a)



2da

≤K′
[0,T]×ω

q1



2

+ q2



2

+ q3



2dtda.

(38)

Proof of Proposition 1. Remark that

φ3
e
2sα ≥

e
− 2C 1+(1/T)2( )

T
6 , t ∈ [(T/4), (3T/4)], (39)

φ3
e
2sα ≤B1e

3C
, t ∈ [0, T]. (40)

Using (39), (40), and (16), it follows that


Ω×[(T/4),(3T/4)]

qi( 
2dtda≤K1

[0,T]×ω
qi( 

2dtda. (41)

Let θ ∈ C2([0, T]) be a cut-off function such that
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θ(t) � 1 t ∈ [0, (T/4)],

0≤ θ(t)≤ 1 t ∈ [(T/4), (3T/4)],

θ(t) � 0 t>(3T/4).

⎧⎪⎪⎨

⎪⎪⎩
(42)

Multiplying the equation i of (36) by θqi and integrating
by parts on Q, we obtain


A

0
qi(0, a)( 

2da + 2λ − Ci( 
Q

qi( 
2θdtda

≤
Q

− ztθ qi( 
2dtda.

(43)

From the definition of θ, it follows that


A

0
qi(0, a)( 

2da≤K2
Ω×[(T/4),(3T/4)]

qi( 
2dtda. (44)

Next, (41) and (44) give


A

0
qi(0, a)( 

2da≤K′
[0,T]×ω

qi( 
2dtda. (45)

Finally, (45) leads to the desired result by summing with
respect to i, 1≤ i≤ 3. □

Proof of Lemma 2.

Note that qi(t, 0) � − 
A

0 (zaqi)da. Using Cauchy–Sch-
warz and Young inequalities and integrating on [0, T], we
obtain


T

0
qi(t, 0)



2dt≤

A

ρ(T/2)


T

0


A

0
ρ zaqi( 

2dadt. (46)

By using (16), (40), and (46), it follows that


T

0
qi(t, 0)



2dt≤Ks

[0,T]×ω
q
2
i dtda, (47)

with Ks � s3B1e
3C. Now, as qi(0, a) � qi(0, a), q2i ≤ e2λTq2i ,

using (47) and Proposition 1, we get (35).
With our observability inequality, we are ready to prove

the null controllability result. □

Theorem 2. Assume that (A1) − (A5) hold. Let A> 0 and
T> 0 be given.

,en, for all (u0
1, u0

2, u0
3) ∈ (L2(0, A))3, there exists a

control w � (w1, w2, w3) ∈ (L2((0, T) × ω))3 such that the
associated solution of (10) and (11) verifies (4).

Proof of ,eorem 2.
We consider systems (10) and (11) and the optimal

control problem:

Minimize
1
2


Q

w1(t, a)



2

+ w2(t, a)



2

+ w3(t, a)



2

 dtda +
1
2ε


A

0
u1(T, a)



2

+ u2(T, a)



2

+ u3(T, a)



2da , (48)

where Q � (0, T) × (0, A), wi ∈ L2(Q), and ui(1≤ i≤ 3) are
solutions of (10) and (11).

Let

Jε(w) �
1
2


Q

w1(t, a)



2

+ w2(t, a)



2

+ w3(t, a)



2

 dtda +
1
2ε


A

0
u1(T, a)



2

+ u2(T, a)



2

+ u3(T, a)



2da, (49)

with w � (w1, w2, w3).
,e functional Jε is continuous, convex, and coercive.

Hence, it admits a unique minimizer wε � (w1,ε, w2,ε, w3,ε),
and we have after easy computations

wi,ε(t, a) � m(a)qi,ε(t, a), a.e.(t, a) ∈ Q, 1≤ i≤ 3. (50)

Note that (q1,ε, q2,ε, q3,ε) is the solution of (12) and (13)
and uε � (u1,ε, u2,ε, u3,ε) is the solution of (10) and (11) as-
sociated to wε.

Multiplying equation number i of (12) and (13) by ui,ε
and integrating on Q, it follows that


Q

qi,εm(a)wi,εdtda +
1
ε


A

0
u
2
i,ε(T, a)da + 

A

0
qi,ε(0, a)u

0
i (a)da + 

T

0
qi,ε(t, 0)hi(t)dt � 0. (51)
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From (51) and (50), we obtain


[0,T]×ω

w
2
i,εdtda +

1
ε


A

0
u
2
i,ε(T, a)da � − 

A

0
qi,ε(0, a)u

0
i (a)da − 

T

0
qi,ε(t, 0)hi(t)dt. (52)

Young inequality in (52) leads to


[0,T]×ω

w
2
i,εdtda +

1
ε


A

0
u
2
i,ε(T, a)da≤

1
2K


A

0
q
2
i,ε(0, a)da + 

T

0
q
2
i,ε(t, 0)dt 

+ 2K 
A

0
u
0
i 

2
(a)da + 

T

0
h
2
i (t)dt .

(53)

,us,


[0,T]×ω



3

i�1
w

2
i,εdtda +

1
ε


A

0


3

i�1
u
2
i,ε(T, a)da≤

1
2K


A

0


3

i�1
q
2
i,ε(0, a)da + 

T

0


3

i�1
q
2
i,ε(t, 0)dt⎛⎝ ⎞⎠

+ 2K 
A

0


3

i�1
u
0
i 

2
(a)da + 

T

0


3

i�1
h
2
i (t)dt⎛⎝ ⎞⎠.

(54)

,erefore, inequalities (35) and (54) imply

1
2


[0,T]×ω



3

i�1
w

2
i,εdtda +

1
ε


A

0


3

i�1
u
2
i,ε(T, a)da≤ 2K 

A

0


3

i�1
u
0
i 

2
(a)da + 

T

0


3

i�1
h
2
i (t)dt⎛⎝ ⎞⎠. (55)

From (55), we deduce

wi,ε
����

����
2
L2([0,T]×ω)

≤ 4K 
A

0


3

i�1
u
0
i 

2
(a)da + 

T

0


3

i�1
h
2
i (t)dt⎛⎝ ⎞⎠, 1≤ i≤ 3,


A

0
u
2
i,ε(T, a)da≤ 2εK 

A

0


3

i�1
u
0
i 

2
(a)da + 

T

0


3

i�1
h
2
i (t)dt⎛⎝ ⎞⎠, 1≤ i≤ 3.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(56)

,en, one can extract subsequences also denoted by
wi,ε, ui,ε(1≤ i≤ 3) such that wi,ε⟶ wi weakly in L2((0, T) ×

ω) and ui,ε⟶ ui weakly in L2((0, T) × (0, A)). Moreover,
u � (u1, u2, u3) is the unique solution of (10) and (11) as-
sociated to w � (w1, w2, w3) and verifies (4). □

4. Proof of the Main Result

Now, we consider a real number λ0 > 0 and we set
ui � e− λ0tui(1≤ i≤ 4).,en, u � (u1, u2, u3, u4) is solution of
the following system:

ztu1 + za v1u1(  − kz
2
au1 + λ0 + μ1 + β1( u1 � m(a) w1,

ztu2 + za v2u2(  − kz
2
au2 + λ0 + μ2 + β2( u2 � m(a) w2,

ztu3 + za v3u3(  − kz
2
au3 + λ0 + μ3( u3 � m(a)w3,

ztu4 + za v4u4(  − kz
2
au4 + λ0 + μ4( u4 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

with (t, a) ∈ Ω � (0, T) × (0, A), wi � e− λ0twi, and
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v1u1 − kzau1( a�0 � 
A

0
β3u3(t, a)da,

v2u2 − kzau2( a�0 � 
A

0
β1u1(t, a)da,

v3u3 − kzau3( a�0 � 
A

0
β2u2(t, a)da,

v4u4 − kzau4( a�0 � 
A

0
(1 − σ)β2u2(t, a)da,

ui(0, a) � u
0
i (a), a ∈ ΩA � (0, A), 1≤ i≤ 4,

ui(t, A) � 0, t ∈ ΩT � (0, T), 1≤ i≤ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

Let us consider the following system:

ztu1 + za v1u1(  − kz
2
au1 + λ0 + μ1 + β1( u1 � m(a)w1,

ztu2 + za v2u2(  − kz
2
au2 + λ0 + μ2 + β2( u2 � m(a)w2,

ztu3 + za v3u3(  − kz
2
au3 + λ0 + μ3( u3 � m(a) w3,

ztu4 + za v4u4(  − kz
2
au4 + λ0 + μ4( u4 � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(59)

and

v1u1 − kzau1( a�0 � h1(t),

v2u2 − kzau2( a�0 � h2(t),

v3u3 − kzau3( a�0 � h3(t),

v4u4 − kzau4( a�0 � h4(t),

ui(0, a) � u
0
i (a), a ∈ ΩA � (0, A), 1≤ i≤ 4,

ui(t, A) � 0, t ∈ ΩT � (0, T), 1≤ i≤ 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

with h1, h2, h3, h4 ∈ L2(ΩT) is defined as in (58).
Note that, from Section 3, systems (59) and (60) are null

controllable. Now, we will prove the null controllability of
(57) and (58).

Let M � 
4
i�1 L2(ΩT), and we define the following set:

Ac R1, R2, R3, R4(  � w � w1, w2, w3(  ∈ 
3

i�1
L
2
(q), u is solution of (59) − (60)and u1, u2, u3(  verifies (4); hi

⎧⎨

⎩

� Ri and w satisfies (56).

(61)

We introduce a multivalued function as follows:

Λc: R1, R2, R3, R4(  ∈M↦Λc R1, R2, R3, R4(  ∈ 2M,

(62)

such that

Λc R1, R2, R3, R4(  � 
A

0
β3u3,w(t, a)da, 

A

0
β1u1,w(t, a)da, 

A

0
σβ2u2,w(t, a)da, 

A

0
(1 − σ)β2u2,w(t, a)da  :

u1,w, u2,w, u3,w  is solution of (59) − (60) and w ∈ Ac R1, R2, R3, R4( .

(63)

,e goal is to prove that the multivalued function Λc

admits a fixed point. To this end, we will use the general-
ization of Leray–Schauder fixed point theorem. Consider

Nc � R1, R2, R3, R4(  ∈M: ∃ρ ∈ (0, 1), R1, R2, R3, R4( 

∈ ρΛc R1, R2, R3, R4( .

(64)

,e fixed point existence of the multivalued function Λc

is an immediate consequence of the following proposition.

Proposition 2. (i) Nc is bounded on M

(ii) For all (R1, R2, R3, R4) ∈M,Λc(R1, R2, R3, R4) is a
nonempty closed and convex subset of M

(iii) Λc : M⟶ 2M is compact
(iv) ;e multivalued mapping Λc is upper semi-

continuous on M

Proof of Proposition 2.
Let us set (u1,w, u2,w, u3,w, u4,w) � (u1, u2, u3, u4). (i) Let

(R1, R2, R3, R4) ∈Nc. ,ere is ρ ∈ (0, 1) such that
(1/ρ)(R1, R2, R3, R4) ∈ Λc(R1, R2, R3, R4). Hence, there is
(u1, u2, u3) ∈ 

3
i�1 L2(Ω) associated to w ∈ 

3
i�1 L2(q) such

that
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R1 � 
A

0
β3u3da,

R2 � 
A

0
β1u1da,

R3 � 
A

0
β2u2da,

R4 � 
A

0
β2u2da,

(65)

with (u1, u2, u3) solution of (57) and (58) associated to w

satisfying (56). ,en, we have



4

i�1
Ri

����
����
2
L2 ΩT( ) ≤ 

4

i�1
ξi ui

����
����
2
L2(Ω)

ξi � A βi

����
����L∞([0,A])

and ξ4 � 0.

(66)

Multiplying the equation number i of (57) and (58) by ui

and integrating by parts onΩ, we obtain after summing with
respect to i(1≤ i≤ 4):



4

i�1
2λ0 − Ci − 1(  ui

����
����
2
L2(Ω)
≤ 

4

i�1
u
0
i

����
����
2
L2([0,A])

+ 
4

i�1
Ri

����
����
2
L2 ΩT( )

+ 

4

i�1
wi

����
����
2
L2(q)

, w4 ≡ 0( .

(67)

In virtue of (66), (67), and (56), it follows that



4

i�1
2λ0 − Ci − 1(  ui

����
����
2
L2(Ω)
≤ (4K + 1) 

4

i�1
u
0
i

����
����
2
L2([0,A])

+(4K + 1) 
4

i�1
ξi ui

����
����
2
L2(Ω)

.

(68)

Inequality (68) leads to



4

i�1
2λ0 − Ci − 1 − (4K + 1)ξi(  ui

����
����
2
L2(Ω)
≤ (4K + 1) 

4

i�1
u
0
i

����
����
2
L2([0,A])

.

(69)

Considering again (66) and (69), we get the desired
result. (ii)(R1, R2, R3, R4) ∈M,Λc(R1, R2, R3, R4) is non-
empty. In fact, systems (57) and (58) are equivalent to
systems (10) and (11) which admits a solution. Also, w

satisfies (56).
Since the function (R1, R2, R3, R4)↦ (u1, u2, u3, u4) is

affine, it follows that Λc(R1, R2, R3, R4) is convex.
Let (η1n, η2n, η3n, η4n) ∈ Λc(R1, R2, R3, R4) such that

(η1n, η2n, η3n, η4n)⟶ (η1, η2, η3, η4) inM. ,us, for all n, there
exists wn which satisfies (56), such that

η1n � 
A

0
β3u3,nda,

η2n � 
A

0
β1u1,nda,

η3n � 
A

0
σβ2u2,nda,

η4n � 
A

0
(1 − σ)β2u2,nda.

(70)

Here, (u1,n, u2,n, u3,n) is solution of (59) and (60), with
(R1, R2, R3, R4) instead of (h1, h2, h3, h4) and (u1,n, u2,n, u3,n)

which verify (69). From (66), (69), and (56), one can extract
sequences still denoted by ((u1,n, u2,n, u3,n))n and ( wn)n that
converge weakly towards (u1, u2, u3) and w in (L2(Ω))3 and
in (L2(q))3, respectively.

So,

η1 � 
A

0
β3u3da,

η2 � 
A

0
β1u1da,

η3 � 
A

0
σβ2u2da,

η4 � 
A

0
(1 − σ)β2u2da.

(71)

Moreover, (u1, u2, u3) is solution of (59) and (60), with
(R1, R2, R3, R4) � (h1, h2, h3, h4). Also, w verifies (56) and
(u1, u2, u3) verifies (4).,en, (η1, η2, η3, η4) ∈ Λc(R1, R2, R3,

R4). (iii) Let (R1, R2, R3, R4) ∈ K a bounded subset of M.
,en, there exist ri > 0(1≤ i≤ 4) such that

Ri

����
����L2 QT( )≤ ri, 1≤ i≤ 4. (72)

Consider ((η1n, η2n, η3n, η4n))n ∈ Λc(R1, R2, R3, R4); for all
n ∈ N, there is (u1,n, u2,n, u3,n) ∈ (L2(Ω))3 and a control
function wn ∈ (L2(q))3 such that

η1n � 
A

0
β3u3,nda,

η2n � 
A

0
β1u1,nda,

η3n � 
A

0
σβ2u2,nda,

η4n � 
A

0
(1 − σ)β2u2,nda,

(73)

where (u1,n, u2,n, u3,n) is solution of (59) and (60) with
(R1,n, R2,n, R3,n, R4,n) instead of (h1, h2, h3, h4) and wn verifies
(56). Using (56), it follows that


q



3

i�1
w
2
i,n(t, a)dtda≤ 4K 

A

0


4

i�1
u
0
i 

2
da + 

4

i�1
r
2
i

⎛⎝ ⎞⎠.

(74)
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,erefore, ( wn) is bounded, and we can extract a se-
quence still denoted by (wn) that weakly converges towards
w in L2(q).

Now, multiplying the equation number i of (59) and (60)
by ui,n, integrating by parts on Q and using (72), we get after
summing


Q



4

i�1
k ui,n 

a
 

2
(t, a) + u

2
i,n(t, a)dtda

≤ (4K + 1) 
A

0


4

i�1
u
0
i 

2
da + 

4

i�1
r
2
i

⎛⎝ ⎞⎠.

(75)

Consequently, the sequence (u1,n, u2,n, u3,n) is bounded
in (L2(Q))3. One can extract a sequence denoted
((u1,nk

, u2,nk
, u3,nk

)) that converges weakly towards
(u1, u2, u3) in (L2(Q))3.

As

η1nk
� 

A

0
β3u3,nk

da,

η2nk
� 

A

0
β1u1,nk

da,

η3nk
� 

A

0
σβ2u2,nk

da,

η4nk
� 

A

0
(1 − σ)β2u2,nk

da,

(76)

using (75), we obtain



4

i�1
ηi

nk

�����

�����L2 QT( )
≤K′ 

A

0


4

i�1
u
0
i 

2
da + 

4

i�1
r
2
i

⎛⎝ ⎞⎠. (77)

From (77), one can extract a sequence which also
denoted ((η1nk

, η2nk
, η3nk

, η4nk
)) that converges weakly to

(η1, η2, η3, η4) on L2(QT).
So,


QT

ϕηi
nj
dt⟶ 

QT

ϕηidt, ∀ϕ ∈ L
2

QT( , 1≤ i≤ 4. (78)

Moreover, the sequence ((u1,nk
, u2,nk

, u3,nk
)) converges

weakly towards (u1, u2, u3) on (L2(Q))3. ,us, the sequence
((u1,nk

, u2,nk
, u3,nk

)) associated to ((η1nk
, η2nk

, η3nk
, η4nk

)) con-
verges weakly towards (u1, u2, u3). Since ϕβk ∈ L2(QT), for
all ϕ ∈ L2(QT) and for all k ∈ 1, 2, 3{ }, it follows that



QT

ϕη1nk
dt⟶ 

QT

ϕ 

A

0

β3u3da⎛⎜⎜⎝ ⎞⎟⎟⎠dt,



QT

ϕη2nk
dt⟶ 

QT

ϕ 

A

0

β1u1da⎛⎜⎜⎝ ⎞⎟⎟⎠dt,



QT

ϕη3nk
dt⟶ 

QT

ϕ 

A

0

σβ2u2da⎛⎜⎜⎝ ⎞⎟⎟⎠dt,



QT

ϕη4nk
dt⟶ 

QT

ϕ 

A

0

(1 − σ)β2u2da⎛⎜⎜⎝ ⎞⎟⎟⎠dt.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)

Equations (78) and (79) imply


QT

ϕ η1 − 
A

0
β3u3da dt � 0, ∀ϕ ∈ L

2
QT( ,


QT

ϕ η2 − 
A

0
β1u1da dt, ∀ϕ ∈ L

2
QT( ,


QT

ϕ η3 − 
A

0
σβ2u2da dt � 0, ∀ϕ ∈ L

2
QT( ,


QT

ϕ η4 − 
A

0
(1 − σ)β2u2da dt � 0, ∀ϕ ∈ L

2
QT( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(80)

Consequently,

η1 � 
A

0
β3u3da, a.e. t ∈ QT,

η2 � 
A

0
β1u1da, a.e. t ∈ QT,

η3 � 
A

0
σβ2u2da, a.e. t ∈ QT,

η4 � 
A

0
(1 − σ)β2u2da, a.e. t ∈ QT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(81)

,en, (u1, u2, u3, u4) is solution of (59) and (60) with
(R1, R2, R3, R4) instead of (h1, h2, h3, h4); (u1, u2, u3) and w

satisfy, respectively, (4) and (56). (iv) Let K be a closed
subset ofM. We will prove that Λ− 1

c (K) is a closed subset of
M. Remark that Λ− 1

c (K) � (R1, R2, R3, R4) ∈M;Λc(R1, R2,

R3, R4)∩K≠∅}.
Suppose that (R1,n, R2,n, R3,n, R4,n)⟶ (R1, R2, R3, R4)

(strongly) in M. ,en, the sequence (R1,n, R2,n, R3,n, R4,n) is
bounded. ,ere also exists a sequence ((η1n, η2n, η3n, η4n))n ∈ K,
such that, for all n≥ 1, (η1n, η2n, η3n, η4n) ∈ Λc(R1,n, R2,n,
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R3,n, R4,n). So, there exist (u1,n, u2,n, u3,n) ∈ (L2(Ω))3 and a
control function wn ∈ (L2(q))3 such that

η1n � 
A

0
β3u3,nda,

η2n � 
A

0
β1u1,nda,

η3n � 
A

0
σβ2u2,nda,

η4n � 
A

0
(1 − σ)β2u2,nda,

(82)

with wn, (u1,n, u2,n, u3,n) verifying (56) and (u1,n, u2,n, u3,n) is
solution of (59) and (60) with (R1,n, R2,n, R3,n, R4,n) instead of
(h1, h2, h3, h4), and (u1,n, u2,n, u3,n) verifies (4). From (66),
(69), and (56), it follows that (wn) and (u1,n, u2,n, u3,n) are
bounded, respectively, in (L2(q))3 and (L2(Ω))3. ,us,
there are sequences also denoted by (wn)n and
((u1,n, u2,n, u3,n))n that converge weakly towards w and
(u1, u2, u3), respectively, in (L2(q))3 and (L2(Ω))3. More-
over, w verifies (56) and

η1 � 
A

0
β3u3da,

η2 � 
A

0
β1u1da,

η3 � 
A

0
σβ2u2da,

η4 � 
A

0
(1 − σ)β2u2da.

(83)

Here, (u1, u2, u3) is solution of (59) and (60) with
(R1, R2, R3, R4) instead of (h1, h2, h3, h4), and (u1, u2, u3)

verifies (4). ,erefore,

η1, η2, η3, η4  ∈ Λc R1, R2, R3, R4( . (84)

In addition, from (77) and Lions–Aubin lemma, one can
extract a sequence ((η1n, η2n, η3n, η4n))n that converges strongly
to (η1, η2, η3, η4) in M. Since K is closed, then
(η1, η2, η3, η4) ∈ K.

Finally, from (84), we conclude that (R1, R2, R3, R4) ∈
Λ− 1

c (K). □
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Figure 1: Initial conditions.
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Proof. of ,eorem 1.
,is result is a consequence of Proposition 2. In fact, from

Proposition 2, there is (R1, R2, R3, R4) ∈M such that (R1,

R2, R3, R4) ∈ Λc(R1, R2, R3, R4), see ,eorem 1.3 in [22]. □

5. Numerical Simulations

In this section, we display the numerical simulations of
problems (1) and (2). ,e first part is to reduce the PDE to a
finite dimensional system of the form: _X � AX + BY, where
A and B are matrices.We construct the control problem,
which consists in minimizing the functional and we choose
the classical Hum functional and the control matrix B � χΘ,
where Θ � (0, A) × (0, T).

Example 1. For the simulation, we take k � 0.25,

A1 � 2, A2 � 3, A3 � A4 � 4, and Δa � 1/20. Moreover, the
transition functions β1, β2, and β3 are given by

β1(a) �

0, if a � 0,

7(11a − 4)
4
e

− 0.52(10a− 4)

Γ(5)
, if a≠ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β2(a) �

0, if a � 0,

7(50a − 4)
4
e

− 0.52(10a− 4)

Γ(5)
, if a≠ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β3(a) �

0, if a � 0,

7 12.106a − 4 
3
e

− 0.52(10a− 4)

Γ(5)
, if a≠ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(85)

0.3
0.4
0.5

0
0.1
0.2

0.7
0.6

0.8
0.9
1

0.4

0.2

0.6

0.8

1

1.2

1.4

1.6

1.8

2
A

ge

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.450.4

Time

State u1 of the system

0.3

0.4

0.5

0

0.1

0.2

0.7

0.6

0.5

1

1.5

2

2.5

3

A
ge

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.450.4

Time

State u2 of the system

0

0.1

0.05

0.15

0.5

1

1.5

2

2.5

3.5

3

4

A
ge

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.450.4

Time

State u3 of the system

0.3

0.4

0.5

0

0.1

0.2

0.7

0.6

0.5

1

1.5

2

2.5

3.5

3

4

A
ge

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.450.4

Time

State u4 of the system

Figure 2: Uncontrolled solution at final time T � 0.5 and A � 4.
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and the initial population distributions
u0

i (a) � kie
− (1/Ai − a), (1≤ i≤ 4,with k1 � 0.5, k2 � k4 �

1 and k3 � 0.2) will be used in the computation. ,e growth
rates are given by

v1(a) �
0.2, if a � 0,

a, if a≠ 0,


v2(a) �
0.3, if a � 0,

a, if a≠ 0,


v3(a) �
0.4, if a � 0,

a, if a≠ 0,


v4(a) �
0.4, if a � 0,

a, if a≠ 0.


(86)

,e following numerical results were obtained.
We notice that we have the positivity of the initial

conditions, see Figure 1. Moreover, the colors green, blue,
and yellow show that the uncontrolled solutions are not null

at the final time T � 0.5 and the color red shows that the
uncontrolled solutions are null at the final age A � 4, see
Figure 2.

We use ODE 45 for the simulations of the uncontrolled
system.

Example 2. In this example, we are going back to the data
from Example 1.

,e control states and the controlled states results are
obtained for T � 0.5 and A � 4.

We notice that numerically the control covers all the
domains. However, we could not take a positivity constraint
in our simulations, see Figure 3.

Moreover, the colors red and yellow show that the
controlled states are zero at the final time T � 0.5, see
Figure 4. ,is confirms the result of null controllability
obtained theoretically.

,e CaSadi toolbox is used to simulate the control (by
the minimization of functional: Hum Method).

Below, we have the numerical simulations results.
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6. Conclusion

In this paper, we have proved the null controllability of a
four-stage and age-structured population dynamics model.
We consider three controls acting on eggs, larvae, and fe-
males. We end with numerical illustrations to confirm the
theoretical results. In order to consolidate the result ob-
tained in this article, we are going to think about studying
the controllability with less controls (two or one) and also to
establish algorithms allowing to calculate the control from
its characterization.
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