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In this paper, a Lengyel–Epstein model with two delays is proposed and considered. By choosing the different delay as a parameter,
the stability and Hopf bifurcation of the system under different situations are investigated in detail by using the linear stability
method. Furthermore, the sufficient conditions for the stability of the equilibrium and the Hopf conditions are obtained. In
addition, the explicit formula determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are
obtained with the normal form theory and the center manifold theorem to delay differential equations. Some numerical examples
and simulation results are also conducted at the end of this paper to validate the developed theories.

1. Introduction

It is of great significance to study the dynamical behaviors of
chemical reaction models to understand the reaction mecha-
nism and evolution law of the reaction process of reactants.
Experiments show that the description of the internal reaction
mechanism of the chemical reaction system by delay reaction-
diffusion equation is more realistic. ,erefore, many scholars
have conducted in-depth studies on the equation and obtained a
large number of practical conclusions. In 1990, De Kepper et al.
discovered Turing patterns in the CIMA reaction experiment,
which also verified Turing’s theoretical work over 40 years ago.
In 1991 and 1992, Lengyel and Epstein in [1, 2] proposed the
following mathematical model to depict the experimental
process of the CIMA:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where u(x, t) and v(x, t) are the concentrations of two
chemical reactants, respectively, a and b are positive con-
stants representing the quantities related to the feed con-
centrations, the ratio of diffusion coefficients and the
rescaling parameter are denoted as c and σ > 0, respectively,
Ω is a bounded open domain in R with smooth boundary
zΩ, and Δ is the Laplace operator.

System (1) has been extensively studied by many scholars
(see [3–7]). In [5], the researchers mainly analyzed some
basic properties of system (1). It can be found through the
study that when the parameter Ω (size of the reactor),
d � c/b(effective diffusion rate), and a (initial concentration
of the reactants) are relatively small, the system has no
nonconstant steady state. In addition, when the initial
concentration of the reactant a is within an appropriate
range, the system has nonconstant steady states for a large
diffusion rate, d � c/b. In 2005, on the basis of [3], Jang et al.
studied the global bifurcation problem of the nonconstant
positive steady-state solutions in one-dimensional case and
considered its limiting behavior by using the shadow system
method. In [6], Yi et al. discussed the conditions of ho-
mogeneous equilibrium solution and periodic solution and
gave the detailed Hopf bifurcation analysis for the ODE and
PDE models. In 2009, Yi et al. [7] proved the global
asymptotical behavior of the constant positive equilibrium
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solution and convergence of all solutions of the system by
constructing the Lyapunov function. In [4], Jin et al. proved
the bifurcations of steady-state solutions and spatially
nonhomogeneous periodic solutions of (1).

Obviously, in the initial study of the model, most
scholars did not consider the influence of time-delay factors.
It is well known that the ordinary differential equation re-
flects that the development of things only depends on the
current state, while the delay differential equation is used to
describe the development system which depends on both the
current state and the past state. In practical problems, if the
delay factor is not considered, the properties and states of the
system may change, even lead to wrong conclusions. Usu-
ally, a long delay will destroy the stability of the equilibrium
point of the system.,erefore, it is more realistic to consider
the delay factor in the system (see [8–15]). Based on this fact,
Celik et al. [16] considered a coupled delayed-Len-
gyel–Epstein model as follows:

_u(t) � a − u(t) −
4u(t)v(t − τ)

1 + u
2
(t)

, t> 0,

_v(t) � σb u(t) −
u(t)v(t − τ)

1 + u
2
(t)

􏼠 􏼡, t> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

By choosing τ as the varying parameter and analyzing
the related characteristic equations, Celik et al. [16] inves-
tigated the stability of the constant equilibrium point and the
existence of Hopf bifurcation of system (2) and determined
the necessary conditions for the parameters.

In [17, 18], Merdan and Kayan proposed the following
delayed models:

_u(t) � a − u(t) −
4u(t − τ)v(t)

1 + u
2
(t)

, t> 0,

_v(t) � σb u(t) −
u(t − τ)v(t)

1 + u
2
(t)

􏼠 􏼡, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

and

_u(t) � a − u(t − τ) −
4u(t − τ)v(t)

1 + u
2
(t − τ)

, t> 0,

_v(t) � σb u(t − τ) −
u(t − τ)v(t)

1 + u
2
(t − τ)

􏼠 􏼡, t> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

,ey investigated the existence of Hopf bifurcation of the
systems and the properties of Hopf bifurcation.

Recently, Zhang and He [19] assumed that the delay only
occurred in the self-decomposition of the activator and
further studied the delayed differential equation model as
the following form:

_u(t) � a − u(t − τ) −
4u(t)v(t)

1 + u
2
(t)

, t> 0,

_v(t) � σb u(t) −
u(t)v(t)

1 + u
2
(t)

􏼠 􏼡, t> 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

,ey analyzed the influence of the change of delay τ on
the dynamical behaviors and found that the equilibrium of
system (5) would eventually become unstable after passing
through several stable switches and Hopf bifurcations at
some certain critical values of τ.

For a long time, most scholars are more concerned about
biological mathematics. ,erefore, in a period of time, bi-
ological mathematics has made a rapid development, and
some practical conclusions have been obtained. However,
there are many chemical reaction functional differential
equations in nature, so it is of great practical significance to
study the existence, stability, and Hopf bifurcation of pe-
riodic solutions of these functional differential equations in
the field of chemistry. Of course, researchers did not realize
the influence of time delay on the properties of periodic
solutions of differential equations in the early stages. With
the maturity of the biological mathematics theory, re-
searchers began to realize the importance of time delay in
chemical reaction systems. Apparently, these models (2)–(5)
discussed above are based on the hypothesis that the delay
effect is a single activator or inhibitor alone. In the field of
chemistry, scholars are concerned about the range of time
delay, when the system produces Hopf bifurcation and the
equilibrium point is stable, which means that the parameters
of the model should be selected in an appropriate range to
save energy to the greatest extent and control environmental
pollution for the model of the system. Many models rep-
resent the dynamic systems of chemical reactions through
ordinary differential equations with no delay or differential
equations with the same delay. However, the effects of time
delay in the activator and inhibitor are completely different.
Based on the fact, a more reasonable mathematical model to
describe CIMA reaction should be depicted by the Len-
gyel–Epstein model with two delays as follows:

_u(t) � a − u t − τ1( 􏼁 −
4u t − τ1( 􏼁v t − τ2( 􏼁

1 + u
2

t − τ1( 􏼁
, t> 0,

_v(t) � σb u t − τ2( 􏼁 −
u t − τ2( 􏼁v t − τ1( 􏼁

1 + u
2

t − τ2( 􏼁
􏼠 􏼡, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where τi ≥ 0(i � 1, 2) are the time lags of the activator and
the inhibitor.

We know that the most widely studied delay differential
equations are the cases with a single delay or multiple
identical delays. When the delay is taken as a parameter, the
unique positive equilibrium of the system often loses sta-
bility at the critical value after Hopf bifurcation. However,
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there are multiple stable intervals and unstable intervals in
the system when it has many different time delays because of
their different critical values. We pay more attention to the
changes happened to the dynamic properties of the system in
this case. If we fix one of the time delays to its stable interval
and take the other as a dynamic parameter, we can study the
rich dynamic properties of the system. Since the time lags
between catalysts and inhibitors are different in actual
chemical reactions, it would be interesting and realistic to
consider the two different delays in the system. To the best
knowledge of the authors, the Lengyel–Epstein model with
two different delays is seldom studied by scholars. By
choosing different delays as the bifurcation parameter, the
main purpose of this article is to analyze the effect of the two
different delays τi ≥ 0(i � 1, 2) on the dynamical behaviors of
system (6).

,is article is organized as follows. In Section 2, we
investigate the stability of the positive equilibrium and the
existence of local Hopf bifurcation of system (6) in three
cases according to different symbols of τi. In Section 3, by
choosing τ1 as a parameter and fixing τ2 in its stable interval,
the direction and stability of bifurcating periodic solutions
are obtained by using the normal form method and the
center manifold reduction for delayed differential equations
developed by Hassard et al. [20]. In Section 4, some nu-
merical examples and simulations results are included to
illustrate the validity of the main results.

2. Stability and Hopf Bifurcation

In this section, we use the method in [21] to discuss the
system’s positivity and uniform boundedness.

Lemma 1. Let u(0)> 0 and v(0)> 0. %en, the solutions
u(t) and v(t) of system (6) are nonnegative, for all t> 0.

Proof. From the first equation, we have

du

dt
≥ − u −

4uv

1 + u
2 � − u 1 +

4v

1 + u
2􏼠 􏼡≥ − u(1 + 4v), (7)

that is,

u(t)≥ u(0)e
− 􏽒

t

0
(1+4v)dω > 0. (8)

,erefore, one can show that u(t)> 0, for all t> 0.
Similarly, we can apply the same method to prove

v(t)> 0, for all t> 0. In fact, from the second equation, we
can obtain

dv

dt
≥ − σb

uv

1 + u
2, (9)

that is,

v(t)≥ v(0)e
− 􏽒

t

0
σbu/1+u2( )dω > 0. (10)

,erefore, one can show that u(t)> 0, v(t)> 0, for all
t> 0.

For the boundedness of all solutions of system (6),
according to [5], we have the following result. □

Lemma 2. Let u(0)> 0 and v(0)> 0. %en, all solutions of
system (6) are uniformly bounded, that is,

lim sup u(t)
t⟶+∞

≤ a,

lim sup v(t)
t⟶+∞

≤ 1 + a
2
.

(11)

Now, we will analyze the stability of the positive equi-
librium point and the existence of local Hopf bifurcation of
system (6) in detail in three cases
τ1 � τ2 � 0, τ1 � 0 and τ2 > 0, and τ1 > 0 and τ2 > 0.

Let 􏽢α � (a/5); it is easy to get that system (6) has a unique
positive equilibrium point E∗(u∗, v∗) � (􏽢α, 1 + 􏽢α2). ,en,
the linearized system of (6) is given as follows:

_u(t) � P1u t − τ1( 􏼁 − Q1v t − τ2( 􏼁,

_v(t) � P2u t − τ1( 􏼁 − Q2v t − τ2( 􏼁,
􏼨 (12)

where

P1 �
3􏽢α2 − 5
1 + 􏽢α2

,

P2 �
2σb􏽢α2

1 + 􏽢α2
,

Q1 � −
4􏽢α

1 + 􏽢α2
,

Q2 � −
σb􏽢α
1 + 􏽢α2

.

(13)

,e associated characteristic equation of the linear
system (12) is given by the following form:

λ − P1e
− λτ1 − Q1e

− λτ2

− P2e
− λτ2 λ − Q2e

− λτ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (14)

,at is,

λ2 − P1 + Q2( 􏼁λe
− λτ1 + P1Q2e

− 2λτ1 − P2Q1e
− 2λτ2 � 0.

(15)

Case 1. τ1 � τ2 � 0.
,en, the characteristic equation (15) can be simplified

to

λ2 − P1 + Q2( 􏼁λ + P1Q2 − P2Q1 � 0. (16)

By the Routh–Hurwitz criterion, we can see that all roots
of (16) have always negative real parts if the condition,

(H1): P1 + Q2 < 0,

P1Q2 − P2Q1 > 0,
(17)

holds.
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Hence, the positive equilibrium of system (6) is locally
asymptotically stable if (H1) holds.

Case 2. τ1 � 0, τ2 > 0.
,en, the associated characteristic equation (15) can be

transformed to

λ2 − P1 + Q2( 􏼁λ + P1Q2 − P2Q1e
− 2λτ2 � 0. (18)

Let λ � iω(ω> 0) be a root of the characteristic equation
(18); then, we have

− ω2
− i P1 + Q2( 􏼁ω + P1Q2 − P2Q1 cos 2ωτ2(

− i sin 2ωτ2􏼁 � 0.
(19)

Separating the real and imaginary parts of equation (19),
we obtain

ω2
− P1Q2 � − P2Q1 cos 2ωτ2,

P1 + Q2( 􏼁ω � P2Q1 sin 2ωτ2.

⎧⎪⎨

⎪⎩
(20)

It follows from (20) that

ω4
+ P

2
1 + Q

2
2􏼐 􏼑ω2

+ P
2
1Q

2
2 − P

2
2Q

2
1 � 0. (21)

Let z � ω2. ,en, (21) becomes

z
2

+ P
2
1 + Q

2
2􏼐 􏼑z + P

2
1Q

2
2 − P

2
2Q

2
1 � 0. (22)

Notice that P2
1 + Q2

2 > 0 and

Δ � P
2
1 + Q

2
2􏼐 􏼑

2
− 4 P

2
1Q

2
2 − P

2
2Q

2
1􏼐 􏼑

� P
2
1 − Q

2
2􏼐 􏼑

2
+ 4P

2
2Q

2
1 > 0.

(23)

Hence, one can see that if the condition

(H2): P1Q2( 􏼁
2

− P2Q1( 􏼁
2 > 0, (24)

holds, then equation (22) has no positive solution.,erefore,
all solutions of equation (18) have negative real parts when
τ2 > 0, and condition (H2) holds.

Theorem 1. Assume that τ1 � 0 and (H2) holds; then, the
positive equilibrium E∗ of system (6) is asymptotically stable,
for all τ2 > 0.

Now, we suppose that the following condition is given:

(H3): P1Q2( 􏼁
2

− P2Q1( 􏼁
2 < 0. (25)

,en, one can obtain that z0 is a unique positive root of
equation (22) and ±iω0 is a pair of purely imaginary roots of
the characteristic equation (18). Here,

ω0 �
��
z0

√
�

���������������������������������
1
2

− P
2
1 + Q

2
2􏼐 􏼑 +

����������������

P
2
1 − Q

2
2􏼐 􏼑

2
+ 4P

2
2Q

2
1

􏽲

􏼢 􏼣

􏽳

.

(26)

By substitutingω0 into (20), one can solve a series of τ2 as

τ2j �
1

2ω0
arccos

ω2
0 − P1Q2

− P2Q1
+
2jπ
ω0

, (j � 0, 1, 2, . . .).

(27)

Let λ(τ2) � α(τ2) + iω(τ2) be a root of (18) near τ2 � τ2j

such that α(τ2j) � 0 and ω(τ2j) � ω0. Differentiating both
sides of equation (18) with respect to τ2, the following can be
performed:

2λ
dλ
dτ2

− P1 + Q2( 􏼁
dλ
dτ2

− P2Q1e
− 2λτ2 − 2τ2

dλ
dτ2

− 2λ􏼠 􏼡 � 0.

(28)

It follows that

dλ
dτ2

􏼢 􏼣

− 1

�
2λ − P1 + Q2( 􏼁 + 2τ2P2Q1e

− 2λτ2

− 2λP2Q1e
− 2λτ2

�
2λ − P1 + Q2( 􏼁􏼂 􏼃e

2λτ2

− 2λP2Q1
−
τ2
λ

.

(29)

Furthermore, we can know that

d Reλ τ2( 􏼁( 􏼁

dτ2
􏼢 􏼣

− 1

τ2�τ2j

� Re
2λ − P1 + Q2( 􏼁􏼂 􏼃e2λτ2

− 2λP2Q1
􏼨 􏼩|τ2�τ2j

�
2ω2

0 + P
2
1 + Q

2
2

2 P2Q1( 􏼁
2 > 0.

(30)

According to the above discussion and Corollary 2.4 of
[3], we can present the following results.

Theorem 2. Assume that τ1 � 0 and (H3) hold,
τ2j(j � 0, 1, 2, . . .) can be defined by (27), and ω0 can be given
by (26). %en,

(i) %e positive equilibrium E∗ of system (6) is as-
ymptotically stable, for all τ2 ∈ [0, τ20).

(ii) %e positive equilibrium E∗ of system (6) is unstable
for τ2 ∈ (τ20, +∞)

(iii) System (6) undergoes Hopf bifurcation at the positive
equilibrium E∗ for τ2 � τ20

Case 3. τ1 > 0, τ2 > 0.
In this case, we consider the characteristic equation (15)

by choosing τ1 as a parameter and fixing τ2 in its stable
interval [0, τ20). Without loss of generality, we analyze
system (6) under condition (H3).

Multiplying both sides of equation (15) by eλτ1 , then one
can get the following equation:

λ2eλτ1 − P1 + Q2( 􏼁λ + P1Q2e
− λτ1 − P2Q1e

− 2λτ2e
− λτ1 � 0.

(31)

Let λ � iω(ω> 0) be a root of the characteristic equation
(15); then, equation (31) becomes the following form:
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− ω2 cos ωτ1 + i sin ωτ1( 􏼁 − i P1 + Q2( 􏼁ω

+ P1Q2 cos ωτ1 − i sin ωτ1( 􏼁

− P2Q1 cos 2ωτ2 − i sin 2ωτ2( 􏼁 cos ωτ1 + i sin ωτ1( 􏼁 � 0.

(32)

Separating the real and imaginary parts of equation (32),
we obtain

− ω2
+ P1Q2 − P2Q1 cos 2ωτ2􏼐 􏼑cos ωτ1 − P2Q1 sin 2ωτ2( 􏼁sin ωτ1 � 0,

− ω2
− P1Q2 − P2Q1 cos 2ωτ2􏼐 􏼑sin ωτ1 + P2Q1 sin 2ωτ2( 􏼁cos ωτ1 � P1 + Q2( 􏼁ω.

⎧⎪⎨

⎪⎩
(33)

It follows from (33) that

sin ωτ1 �
P1 + Q2( 􏼁ω − ω2

+ P1Q2 − P2Q1 cos 2ωτ2􏼐 􏼑

− ω2
− P2Q1 cos 2ωτ2􏼐 􏼑

2
− P1Q2( 􏼁

2
+ P2Q1 sin 2ωτ2( 􏼁

2
,

cos ωτ1 �
P1 + Q2( 􏼁ωP2Q1 sin 2ωτ2

− ω2
− P2Q1 cos 2ωτ2􏼐 􏼑

2
− P1Q2( 􏼁

2
+ P2Q1 sin 2ωτ2( 􏼁

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

According to (34), we can obtain

ω8
+ l1ω

6
+ l2ω

4
+ l3ω

2
+ l4 � 0, (35)

where

l1 � 4P2Q1 cos 2ωτ2 − P1 + Q2( 􏼁
2
,

l2 � 4 P2Q1 cos 2ωτ2( 􏼁
2

+ 2 P2Q1( 􏼁
2

− P1Q2( 􏼁
2

􏼐 􏼑

+ 2 P1 + Q2( 􏼁
2
P2Q1 cos 2ωτ2,

l3 � 4P2Q1 P2Q1( 􏼁
2

− P1Q2( 􏼁
2

􏼐 􏼑cos 2ωτ2

− P1 + Q2( 􏼁
2

P1Q2( 􏼁
2

+ P2Q1( 􏼁
2

􏼐 􏼑

+ 2 P1 + Q2( 􏼁
2
P1Q2P2Q1 cos 2ωτ2,

l4 � P2Q1( 􏼁
2

− P1Q2( 􏼁
2

􏽨 􏽩
2
.

(36)

Now, we give the following assumption for equation
(35).

(H4): assume that equation (35) has at least one positive
root.

If condition (H4) holds, then equation (35) has a
positive root ω∗ such that equation (15) has a pair of purely
imaginary roots ±ω∗. ,us, we have

τ1j �
1
ω∗

arccos
P1 + Q2( 􏼁ω2

∗P2Q1 sin 2ω∗τ2
− ω2
∗ − P2Q1 cos 2ω∗τ2􏽨 􏽩

2
− P1Q2( 􏼁

2
+ P2Q1 sin 2ω∗τ2( 􏼁

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+
2jπ
ω∗

, j ∈ N0( 􏼁. (37)

Differentiating both sides of equation (15) with respect to
τ1, the following equation can be easily obtained:
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2λ
dλ
dτ1

− P1 + Q2( 􏼁
dλ
dτ1

e
− λτ1 + λe

− λτ1 −
dλ
dτ1

τ1 − λ􏼠 􏼡􏼢 􏼣

+ P1Q2e
− 2λτ1 − 2

dλ
dτ1

τ1 − 2λ􏼠 􏼡

− P2Q1e
− 2λτ2 − 2τ2

dλ
dτ1

􏼠 􏼡 � 0.

(38)

It follows that

dλ
dτ1

􏼢 􏼣

− 1

�
2λ − P1 + Q2( 􏼁e

− λτ1 + P1 + Q2( 􏼁λτ1e
− λτ1 − 2P1Q2τ1e

− 2λτ1 + 2P2Q1τ2e
− 2λτ2

− P1 + Q2( 􏼁λ2e− λτ1 − 2λP1Q2e
− 2λτ1

�
2λ − P1 + Q2( 􏼁e

− λτ1 + 2P2Q1τ2e
− 2λτ2

− P1 + Q2( 􏼁λ2e− λτ1 + 2λP1Q2e
− 2λτ1

−
τ1
λ

�
2λe

λτ1 − P1 + Q2( 􏼁 + 2P2Q1τ2e
− 2λτ2e

λτ1

− P1 + Q2( 􏼁λ2 + 2λP1Q2e
− λτ1

−
τ1
λ

.

(39)

Let λ � iω∗, and we can know that

d Reλ τ1( 􏼁( 􏼁

dτ1
􏼢 􏼣

− 1

τ1�τ1j

�
M1 ω∗( 􏼁N1 ω∗( 􏼁 + M2 ω∗( 􏼁N2 ω∗( 􏼁

M
2
1 ω∗( 􏼁 + M

2
2 ω∗( 􏼁

,

(40)

where

M1 ω∗( 􏼁 � P1 + Q2( 􏼁ω2
∗ + 2P1Q2ω∗ sin ω∗τ1,

M2 ω∗( 􏼁 � 2P1Q2ω∗ cos ω∗τ1,

N1 ω∗( 􏼁 � 2P2Q1τ2 cos 2ω∗τ2 cos ω∗τ1
− 2ω∗ − 2P2Q1τ2 sin 2ω∗τ2( 􏼁sin ω∗τ1
− P1 + Q2( 􏼁,

N2 ω∗( 􏼁 � 2P2Q1τ2 cos 2ω∗τ2 sin ω∗τ1
+ 2ω∗ − 2P2Q1τ2 sin 2ω∗τ2( 􏼁cos ω∗τ1.

(41)

Next, we assume that the following condition holds:

(H5): M1 ω∗( 􏼁N1 ω∗( 􏼁 + M2 ω∗( 􏼁N2 ω∗( 􏼁≠ 0. (42)

,erefore, from the above discussions and Hopf bifur-
cation ,eorem 2, the following results can be directly
deduced.

Theorem 3. Assume that (H3), (H4), and (H5) hold,
τ2 ∈ [0, τ20) and τ1j(j ∈ N0) can be defined by (37), and ω∗
can be given by (35). %en,

(i) %e positive equilibrium E∗ of system (6) is as-
ymptotically stable for all τ1 ∈ [0, τ10)

(ii) %e positive equilibrium E∗ of system (6) is unstable
for τ1 ∈ (τ10, +∞)

(iii) System (6) undergoes Hopf bifurcation at the positive
equilibrium E∗ for τ1 � τ10

3. Direction ofHopf Bifurcation and Stability of
Bifurcating Periodic Solution

In the previous section, the stability of the positive equi-
librium E∗ and the existence of Hopf bifurcation of system
(6) by regarding different delays τi(i � 1, 2) as the bifur-
cation parameter were discussed. In this section, by applying
the normal form theory and the center manifold theorem of
Hassard et al. [20], we derive the explicit formulas, deter-
mining the direction of Hopf bifurcation and the stability of
bifurcation periodic solutions. We always assume that
system (6) undergoes Hopf bifurcation at the positive
equilibrium E∗ for τ1 � τ10, and the corresponding purely
imaginary roots of the characteristic equation at E∗ are
denoted by ±iω∗.

Let us assume that τ∗2 < τ10, where τ2 ∈ (0, τ20) and τ20 is
defined by (27). For the convenience of discussion, let
u(t) � u(t) − u∗, v(t) � v(t) − v∗, t � τt, and τ1 � τ10
+ μ, μ ∈ R; then, μ � 0 is the Hopf bifurcation value of (6).
We drop the bars of these notations to simplify the next
discussion, and system (6) can be concisely regarded as the
abstract FDE in C � C([− 1, 0],R2):

_u(t) � Lμ ut( 􏼁 + F μ, ut( 􏼁, (43)

where u(t) � (u1(t), u2(t))T, ut(θ) � u(t + θ), Lμ: C⟶
R2, and F(μ, ·): R × C⟶ R2 are, respectively, the linear
operator and the nonlinear operator with the following
forms:
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Lμ(ϕ) � τ10 + μ( 􏼁 A

ϕ1 −
τ∗2
τ10

􏼠 􏼡

ϕ2 −
τ∗2
τ10

􏼠 􏼡
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+ B

ϕ1(− 1)

ϕ2(− 1)

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F(μ,ϕ) � τ10 + μ( 􏼁 f1, f2( 􏼁
T
,

(44)

where ϕ(θ) � (ϕ1(θ), ϕ2(θ))T ∈ C, A �
0 Q1

P2 0􏼠 􏼡,

B �
P1 0
0 Q2

􏼠 􏼡, and

f1 �
4α 3 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ

2
1(− 1) +

− 4 1 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ1(− 1)ϕ2

· −
τ∗2
τ10

􏼠 􏼡 + · · · ,

f2 �
σbα 3 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ21 −

τ∗2
τ10

􏼠 􏼡

+
− σb 1 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ1 −

τ∗2
τ10

􏼠 􏼡ϕ2(− 1) + · · · .

(45)

According to Riesz representation theorem, there exists a
matrix function η(θ, μ), θ ∈ [− 1, 0] with bounded variation
components such that

Lμ(ϕ) � 􏽚
0

− 1
dη(θ, μ)ϕ(θ), ϕ(θ) ∈ C [− 1, 0],R

2
􏼐 􏼑. (46)

In fact, we can take

η(θ, μ) �

τ10 + μ( 􏼁(A + B), θ � 0,

τ10 + μ( 􏼁(A + B), θ ∈ −
τ∗2
τ10

, 0􏼢 􏼣,

τ10 + μ( 􏼁B, θ ∈ − 1, −
τ∗2
τ10

􏼠 􏼡,

0. θ � − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

In the following discussion, we define the linear dif-
ferential operators A(μ) and R(μ) by

A(μ)ϕ �

dϕ(θ)

dθ
, θ ∈ [− 1, 0),

􏽚
0

− 1
dη(s, μ)ϕ(s), θ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R(μ)ϕ �

0, θ ∈ [− 1, 0),

F(μ, ϕ), θ � 0.

⎧⎪⎨

⎪⎩

(48)

,en, system (43) can be further represented as

_u(t) � A(μ)ut + R(μ)ut, (49)

where ut(θ) � u(t + θ), θ ∈ [− 1, 0]. For ψ ∈ C1([0, 1],

(R2)∗), the linear differential operator A∗ is defined by

A
∗ψ(s) �

−
dψ(s)

ds
, s ∈ (0, 1],

􏽚
0

− 1
dηT

(t, 0)ψ(− t), s � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

Furthermore, for ϕ ∈ C1([− 1, 0], (R2)∗) and
ψ ∈ C1([0, 1], (R2)∗), we give the definition of the bilinear
inner product:

〈ψ(s), ϕ(θ)〉 � ψ(0)ϕ(0) − 􏽚
0

− 1
􏽚
θ

ξ�0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ,

(51)

where η(θ) � η(θ, 0). Obviously, A(0) and A∗ are adjoint
operators. It is easy to see that they are eigenvalues of the
linear operator A(0). It follows that they are also eigenvalues
of the linear operator A∗.

Assume that q(θ) � (1, α)Teiω∗τ10θ is the eigenvector of
the operator A(0) corresponding to the eigenvalues iω∗τ10;
then, A(0)q(θ) � iω∗τ10q(θ). From the definitions of A,
Lμϕ, and η(θ, μ), we can obtain

iω∗ − P1e
− iω∗τ10 − Q1e

− iω∗τ∗2

− P2e
− iω∗τ∗2 iω∗ − Q2e

− iω∗τ10
⎛⎝ ⎞⎠

1

α
􏼠 􏼡 �

0

0
􏼠 􏼡.

(52)

By simple calculation, we have

α �
iω∗ − P1e

− iω∗τ10

Q1e
− iω∗τ∗2

. (53)

By analogy, we can get the eigenvector
q∗(s) � D(1, α∗)eiω∗τ10s of the operator A∗ corresponding to
the eigenvalues − iω∗τ10, where

α∗ �
iω∗ + P1e

− iω∗τ10

P2e
− iω∗τ∗2

. (54)
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Now, we evaluate the value of D such that
〈q∗(s), q(θ)〉 � 1. From the bilinear inner product of (51), it
follows that

〈q∗(s), q(θ)〉 � q
∗
(0)q(0) − 􏽚

0

− 1
􏽚
θ

ξ�0
q
∗
(ξ − θ)dη(θ)q(ξ)dξ

� D 1, α∗( 􏼁(1, α)
T

− 􏽚
0

− 1
􏽚
θ

ξ�0
D 1, α∗( 􏼁e

− iω∗τ10(ξ− θ)dη(θ)(1, α)
T
e

iω∗τ10ξdξ

� D 1, α∗( 􏼁(1, α)
T

− D 1, α∗( 􏼁 􏽚
0

− 1
􏽚
θ

ξ�0
dη(θ)(1, α)

T
e

iω∗τ10θdξ

� D 1, α∗( 􏼁(1, α)
T

− D 1, α∗( 􏼁 􏽚
0

− 1
θe

iω∗τ10θdη(θ)(1, α)
T

� D 1, α∗( 􏼁(1, α)
T

− D 1, α∗( 􏼁 τ10Aϕ −
τ∗2
τ10

􏼠 􏼡 + τ10Bϕ(− 1)􏼢 􏼣(1, α)
T

� D 1, α∗( 􏼁(1, α)
T

− D 1, α∗( 􏼁 τ10
0 Q1

P2 0
⎛⎝ ⎞⎠ −

τ∗2
τ10

􏼠 􏼡e
− iω∗τ∗2 − τ10

P1 0

0 Q2

⎛⎝ ⎞⎠e
− iω∗τ10⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦(1, α)

T

� D 1 + αα∗( 􏼁 + Dτ10 P1e
− iω∗τ10 + P2α

∗ τ
∗
2

τ10
e

− iω∗τ∗2 + αQ1
τ∗2
τ10

e
− iω∗τ∗2 + Q2αα

∗
e

− iω∗τ10􏼢 􏼣

� D 1 + αα∗( 􏼁 + D P1τ10e
− iω∗τ10 + P2α

∗τ∗2 e
− iω∗τ∗2 + αQ1τ

∗
2 e

− iω∗τ∗2 + Q2τ10αα
∗
e

− iω∗τ10􏽨 􏽩.

(55)

,us, we have

D �
1

1 + αα∗ + P1τ10e
iω∗τ10 + P2α

∗τ∗2 e
iω∗τ∗2 + αQ1τ

∗
2 e

iω∗τ∗2 + Q2τ10αα
∗
e

iω∗τ10
. (56)

In addition, from 〈ψ, Aϕ〉 � 〈A∗ψ, ϕ〉 and
Aq(θ) � − iω∗q(θ), we can obtain

− iω∗〈q∗, q〉 �〈q∗, Aq〉 �〈A∗q∗, q〉

�〈 − iω∗q∗, q〉 � iω∗〈q∗, q〉.
(57)

Hence, 〈q∗(θ), q(θ)〉 � 0.
In the next, we calculate the coordinates describing the

center manifold C0 at μ � 0 by using the method of Hassard
et al. [20]. Let ut be the solution of equation (43) and
z(t) � 〈q∗, ut〉; then, from (49) and (51), we have

_z(t) �〈q∗, _ut〉 �〈q∗, A(0)ut + R(0)ut〉

�〈q∗, A(0)ut〉 +〈q∗, R(0)ut〉

�〈A∗(0)q
∗
, ut〉 + q

∗
(0)F 0, ut( 􏼁

� iω∗τ10z + g(z, z),

(58)

where

g(z, z) � q
∗
(0)F 0, ut( 􏼁 � g20(θ)

z
2

2
+ g11(θ)zz

+ g02(θ)
z
2

2
+ g21(θ)

z
2
z

2
+ , . . . .

(59)

Assume

W(t, θ) � ut(θ) − z(t)q(θ) − z(t)q(θ)

� ut(θ) − 2Re z(t)q(θ)􏼈 􏼉.
(60)

,en, we have

W(t, θ) � W(z(t), z(t), θ) � W20
z
2

2
+ W11zz

+ W02
z
2

2
+ W30

z
3

6
+ · · · ,

(61)

where z and z refer to local coordinates on the center
manifold C0 in the directions of q∗ and q∗. As W is real, if ut
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is real, we only discuss real solutions. From (60), it follows
that

ut(θ) � u1t(θ), u2t(θ)( 􏼁
T

� W(t, θ) + 2Re z(t)q(θ)􏼈 􏼉

� W(t, θ) + z(t)q(θ) + z(t)q(θ)

� (1, α)
T

e
iω∗τ10θz +(1, α)

T
e

− iω∗τ10θz

+ W20
z
2

2
+ W11zz + W02

z
2

2
+ · · · .

(62)

,erefore,

u1t(− 1) � ze
− iω∗τ10 + ze

iω∗τ10 + W
(1)
20 (− 1)

z
2

2
+ W

(1)
11 (− 1)zz + W

(1)
02 (− 1)

z
2

2
+ · · · ,

u2t(− 1) � zαe
− iω∗τ10 + zαe

iω∗τ10 + W
(2)
20 (− 1)

z
2

2
+ W

(2)
11 (− 1)zz + W

(2)
02 (− 1)

z
2

2
+ · · · ,

u1t −
τ∗2
τ10

􏼠 􏼡 � ze
− iω∗τ∗2 + ze

iω∗τ∗2 + W
(1)
20 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ W

(1)
11 −

τ∗2
τ10

􏼠 􏼡zz + W
(1)
02 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ · · · ,

u2t −
τ∗2
τ10

􏼠 􏼡 � zαe
− iω∗τ∗2 + zαe

iω∗τ∗2 + W
(2)
20 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ W

(2)
11 −

τ∗2
τ10

􏼠 􏼡zz + W
(2)
02 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ · · · .

(63)

Furthermore, we have

f1 �
4α 3 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ

2
1(− 1) +

− 4 1 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ1(− 1)ϕ2 −

τ∗2
τ10

􏼠 􏼡 + · · · ,

f2 �
σbα 3 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ21 −

τ∗2
τ10

􏼠 􏼡 +
− σb 1 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ϕ1 −

τ∗2
τ10

􏼠 􏼡ϕ2(− 1) + · · · ,

g(z, z) � q
∗
(0)F 0, ut( 􏼁 � D 1, α∗( 􏼁F 0, ut( 􏼁

� D 1, α∗( 􏼁τ10

α1u
2
1t(− 1) + α2u1t(− 1)u2t −

τ∗2
τ10

􏼠 􏼡

β1u
2
1t −

τ∗2
τ10

􏼠 􏼡 + β2u1t −
τ∗2
τ10

􏼠 􏼡u2t(− 1)
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� Dτ10

α1 ze
− iω∗τ10 + ze

iω∗τ10 + W
(1)
20 (− 1)

z2

2
+ W

(1)
11 (− 1)zz + W

(1)
02 (− 1)

z2

2
+ · · ·􏼠 􏼡

2

+α2 ze
− iω∗τ10 + ze

iω∗τ10 + W
(1)
20 (− 1)

z
2

2
+ W

(1)
11 (− 1)zz + W

(1)
02 (− 1)

z
2

2
+ · · ·􏼠 􏼡

· zαe
− iω∗τ∗2 + zαe

iω∗τ∗2 + W
(2)
20 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ W

(2)
11 −

τ∗2
τ10

􏼠 􏼡zz + W
(2)
02 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ · · ·􏼠 􏼡

+α∗β1 ze
− iω∗τ∗2 + ze

iω∗τ∗2 + W
(1)
20 −

τ∗2
τ10

􏼠 􏼡
z2

2
+ W

(1)
11 −

τ∗2
τ10

􏼠 􏼡zz + W
(1)
02 −

τ∗2
τ10

􏼠 􏼡
z2

2
+ · · ·􏼠 􏼡

2

+α∗β2 ze
− iω∗τ∗2 + ze

iω∗τ∗2 + W
(1)
20 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ W

(1)
11 −

τ∗2
τ10

􏼠 􏼡z + W
(1)
02 −

τ∗2
τ10

􏼠 􏼡
z
2

2
+ · · ·􏼠 􏼡

· zαe
− iω∗τ10 + zαe

iω∗τ10 + W
(2)
20 (− 1)

z
2

2
+ W

(2)
11 (− 1)zz + W

(2)
02 (− 1)

z
2

2
+ · · ·􏼠 􏼡
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� Dτ10 α1e
− 2iω∗τ10 + α2αe

− iω∗τ10e
− iω∗τ∗2 + α∗β1e

− 2iω∗τ∗2 + α∗β2αe
− iω∗τ10e

− iω∗τ∗2􏽨 􏽩z
2

􏽮

+ 2α1 + α2αe
− iω∗τ10e

iω∗τ∗2 + α2αe
iω∗τ10e

− iω∗τ∗2 + 2α∗β1 + α∗β2 αe
iω∗τ10e

− iω∗τ∗2 + αe
− iω∗τ10e

iω∗τ∗2􏼐 􏼑􏽨 􏽩zz

+ α1e
2iω∗τ10 + α2αe

iω∗τ10e
iω∗τ∗2 + α∗β1e

2iω∗τ∗2 + α∗β2αe
iω∗τ10e

iω∗τ∗2􏽨 􏽩z
2

+ α1 2W
(1)
11 (− 1) + W

(1)
20 (− 1)􏼐 􏼑e

− iω∗τ10 + α2 W
(2)
11 −

τ∗2
τ10

􏼠 􏼡e
− iω∗τ10 +

1
2
W

(2)
20 −

τ∗2
τ10

􏼠 􏼡αe
iω∗τ10􏼠􏼢

+
1
2
W

(1)
20 (− 1)αe

iω∗τ∗2 + W
(1)
11 (− 1)αe

− iω∗τ∗2 􏼓 + α∗β1 2W
(1)
11 −

τ∗2
τ10

􏼠 􏼡e
− iω∗τ∗2 + W

(1)
20 −

τ∗2
τ10

􏼠 􏼡e
iω∗τ∗2􏼠 􏼡

+ α∗β2 W
(2)
11 (− 1)e

− iω∗τ∗2 +
1
2
W

(2)
20 (− 1)e

iω∗τ∗2 +
1
2
W

(1)
20 −

τ∗2
τ10

􏼠 􏼡αe
iω∗τ10 + W

(1)
11 −

τ∗2
τ10

􏼠 􏼡αe
− iω∗τ10􏼠 􏼡􏼣􏼩z

2
z + · · · ,

(64)

where

α1 �
4α 3 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ,

α2 �
− 4 1 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ,

β1 �
σbα 3 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 ,

β2 �
− σb 1 − α2􏼐 􏼑

1 + α2􏼐 􏼑
2 .

(65)
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According to the above analysis, we can obtain

g20 � 2Dτ10 α1e
− 2iω∗τ10 + α2αe

− iω∗τ10e
− iω∗τ∗2 + α∗β1e

− 2iω∗τ∗2 + α∗β2αe
− iω∗τ10e

− iω∗τ∗2􏽨 􏽩,

g11 � 2Dτ10 α1 + α2Re αe
iω∗τ10e

− iω∗τ∗2􏽮 􏽯 + α∗β1 + α∗β2Re αe
− iω∗τ10e

iω∗τ∗2􏽮 􏽯􏽨 􏽩;

g02 � 2Dτ10 α1e
2iω∗τ10 + α2αe

iω∗τ10e
iω∗τ∗2 + α∗β1e

2iω∗τ∗2 + α∗β2αe
iω∗τ10e

iω∗τ∗2􏽨 􏽩,

g21 � 2Dτ10 α1 2W
(1)
11 (− 1) + W

(1)
20 (− 1)􏼐 􏼑e

− iω∗τ10 + α2 W
(2)
11 −

τ∗2
τ10

􏼠 􏼡e
− iω∗τ10 +

1
2
W

(2)
20 −

τ∗2
τ10

􏼠 􏼡αe
iω∗τ10􏼠􏼢

+
1
2
W

(1)
20 (− 1)αe

iω∗τ∗2 + W
(1)
11 (− 1)αe

− iω∗τ∗2 􏼓 + α∗β1 2W
(1)
11 −

τ∗2
τ10

􏼠 􏼡e
− iω∗τ∗2 + W

(1)
20 −

τ∗2
τ10

􏼠 􏼡e
iω∗τ∗2􏼠 􏼡

+ α∗β2 W
(2)
11 (− 1)e

− iω∗τ∗2 +
1
2
W

(2)
20 (− 1)e

iω∗τ∗2 +
1
2
W

(1)
20 −

τ∗2
τ10

􏼠 􏼡αe
iω∗τ10 + W

(1)
11 −

τ∗2
τ10

􏼠 􏼡αe
− iω∗τ10􏼠 􏼡􏼣.

(66)

After g20, g21, and g02 are obtained, W20(θ) and W11(θ)

in g21 can be determined by using method in [22–24]. From
(49) and (60), we can obtain

_W � _ut − _zq − _�z�q �
AW − 2Re �q

∗
(0)F 0, ut( 􏼁q(θ)􏽮 􏽯 θ ∈ [− 1, 0)

AW − 2Re �q
∗
(0)F 0, ut( 􏼁q(0)􏽮 􏽯 + F 0, ut( 􏼁 θ � 0

⎧⎪⎨

⎪⎩

≜AW + H(z, �z, θ),

(67)

where

H(z, z, θ) � H20(θ)
z
2

2
+ H11(θ)zz + H02(θ)

z
2

2
+ · · · .

(68)

,us, we have

AW(t, θ) − _W � − H(z, z, θ) � − H20(θ)
z
2

2

− H11(θ)zz − H02(θ)
z
2

2
− · · · .

(69)

From (61), one can obtain

AW(t, θ) � AW20(θ)
z
2

2
+ AW11(θ)zz + AW02(θ)

z
2

2

+ AW30(θ)
z
3

6
+ · · · ,

_W � Wz _z + Wz
_z � W20(θ)z _z + W11(θ)( _zz + z _z)

+ · · · � 2iω∗τ10W20(θ)
z
2

2
+ · · · .

(70)

,erefore, we can further obtain

A − 2iω∗τ10( 􏼁W20(θ) � − H20(θ),

AW11(θ) � − H11(θ).
(71)

For θ ∈ [− 1, 0), we have

H(z, z, θ) � − q
∗
(0)F 0, ut( 􏼁q(θ) − q

∗
(0)F 0, ut( 􏼁q(θ)

� − g(z, z)q(θ) − g(z, z)q(θ).
(72)

A comparison of coefficients for (72) and (68) leads to

H20(θ) � − g20q(θ) + g02q(θ)( 􏼁, (73)

H11(θ) � − g11q(θ) + g11q(θ)( 􏼁. (74)

By (71) and (73) and the definition of A, one can obtain
_W20(θ) � 2iω∗τ10W20(θ) + g20q(θ) + g02q(θ). (75)

Notice that q(θ) � q(0)eiω∗τ10θ � (1, α)Teiω∗τ10θ. By
computing (75), we have

W20(θ) �
ig20

ω∗τ10
q(0)e

iω∗τ10θ +
ig02

3ω∗τ10
q(0)e

− iω∗τ10θ

+ E1e
2iω∗τ10θ,

(76)

where E1 � (E
(1)
1 , E

(2)
1 ) ∈ R2 is also a two-dimensional

constant vector.
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Similarly, by (71) and (74) and the definition of A, one
can obtain

_W11(θ) � g11q(θ) + g11q(θ), (77)

W11(θ) � −
ig11

ω∗τ10
q(0)e

iω∗τ10θ +
ig11

ω∗τ10
q(0)e

− iω∗τ10θ + E2,

(78)

where E2 � (E
(1)
2 , E

(2)
2 ) ∈ R2 is a two-dimensional constant

vector.

Next, we need to compute E1 and E2 in (76) and (78). By
the definition of A and (71), we obtain that

􏽚
0

− 1
dη(θ)W20(θ) � 2iω∗τ10W20(0) − H20(0), (79)

􏽚
0

− 1
dη(θ)W11(θ) � − H11(0). (80)

,us, we have

H20(0) � − g20q(0) − g02q(0) + 2τ10
α1e

− 2iω∗τ10 + α2αe
− iω∗τ10e

− iω∗τ∗2

β1e
− 2iω∗τ∗2 + β2αe

− iω∗τ10e
− iω∗τ∗2

⎛⎝ ⎞⎠, (81)

H11(0) � − g11q(0) − g11q(0) + 2τ10
α1 + α2Re αe

iω∗τ10e
− iω∗τ∗2􏽮 􏽯

β1 + β2Re αe
− iω∗τ10e

iω∗τ∗2􏽮 􏽯

⎛⎝ ⎞⎠. (82)

Noting that

− iω∗τ10I − 􏽚
0

− 1
e

− iω∗τ10θdη(θ)􏼠 􏼡q(0) � 0. (83)

Substituting (76) and (81) into equation (80) yields

2iω∗τ10I − 􏽚
0

− 1
e
2iω∗τ10θdη(θ)􏼠 􏼡E1

� 2τ10
α1e

− 2iω∗τ10 + α2αe
− iω∗τ10e

− iω∗τ∗2

β1e
− 2iω∗τ∗2 + β2αe

− iω∗τ10e
− iω∗τ∗2

⎛⎝ ⎞⎠.

(84)

,at is,

2iω∗ − P1e
− 2iω∗τ10 − Q1e

− 2iω∗τ∗2

− P2e
− 2iω∗τ∗2 2iω∗ − Q2e

− 2iω∗τ10
⎛⎝ ⎞⎠E1

� 2
α1e

− 2iω∗τ10 + α2αe
− iω∗τ10e

− iω∗τ∗2

β1e
− 2iω∗τ∗2 + β2αe

− iω∗τ10e
− iω∗τ∗2

⎛⎝ ⎞⎠.

(85)

It follows that

E
(1)
1 �

2
Δ1

α1e
− 2iω∗τ10 + α2αe

− iω∗τ10e
− iω∗τ∗2 − Q1e

− 2iω∗τ∗2

β1e
− 2iω∗τ∗2 + β2αe

− iω∗τ10e
− iω∗τ∗2 2iω∗ − Q2e

− 2iω∗τ10

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

E
(2)
1 �

2
Δ1

2iω∗ − P1e
− 2iω∗τ10 α1e

− 2iω∗τ10 + α2αe
− iω∗τ10e

− iω∗τ∗2

− P2e
− 2iω∗τ∗2 β1e

− 2iω∗τ∗2 + β2αe
− iω∗τ10e

− iω∗τ∗2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

(86)

where

Δ1 �
2iω∗ − P1e

− 2iω∗τ10 − Q1e
− 2iω∗τ∗2

− P2e
− 2iω∗τ∗2 2iω∗ − Q2e

− 2iω∗τ10

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (87)

Similarly, substituting (78) and (82) into (80) yields

􏽚
0

− 1
dη(θ)E2 � − 2τ10

α1 + α2Re αe
iω∗τ10e

− iω∗τ∗2􏽮 􏽯

β1 + β2Re αe
− iω∗τ10e

iω∗τ∗2􏽮 􏽯

⎛⎝ ⎞⎠.

(88)

,at is,

− P1 − Q1

− P2 − Q2
􏼠 􏼡E2 � 2

α1 + α2Re αe
iω∗τ10e

− iω∗τ∗2􏽮 􏽯

β1 + β2Re αe
− iω∗τ10e

iω∗τ∗2􏽮 􏽯

⎛⎝ ⎞⎠.

(89)

It follows that

E
(1)
2 �

2
Δ2

α1 + α2Re αe
iω∗τ10e

− iω∗τ∗2􏽮 􏽯 − Q1

β1 + β2Re αe
− iω∗τ10e

iω∗τ∗2􏽮 􏽯 − Q2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

E
(2)
2 �

2
Δ2

− P1 α1 + α2Re αe
iω∗τ10e

− iω∗τ∗2􏽮 􏽯

− P2 β1 + β2Re αe
− iω∗τ10e

iω∗τ∗2􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

(90)

where
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Figure 1: ,e trajectories graphs and phase graphs of system (93) with τ1 � 0 and τ2 � 1 at the initial value (1, 1.2).
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Figure 2: ,e trajectories graphs and phase graphs of system (93) with τ1 � 0 and τ2 � 20 at the initial value (1, 1.2).
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Figure 3: ,e trajectories graphs and phase graphs of system (94) with τ1 � τ2 � 0 at the initial value (0, 0).
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Figure 4: ,e trajectories graphs and phase graphs of system (94) with τ1 � 0, τ2 � 0.15< τ20 � 0.2061 at the initial value (1, 1).
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Δ2 �
P1 Q1

P2 Q2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (91)

,us, from (76), (78), (86), and (90), we can determine
g21 and compute the following values:

c1(0) �
i

2ω∗τ10
g20g11 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

−
1
3

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
1
2
g21,

μ2 � −
Re c1(0)􏼈 􏼉

Re λ′ τ10( 􏼁􏼈 􏼉
,

β2 � 2Re c1(0)􏼈 􏼉,

T2 � −
1

ω∗τ10
Im c1(0)􏼈 􏼉 + μ2Im λ′ τ10( 􏼁􏼈 􏼉( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(92)

Now, the main results in this section are given.

Theorem 4. If μ2 > 0 (resp.μ2 < 0), then the periodic solution
is supercritical (resp.subcritical); if β2 < 0 (resp.β2 > 0), then
the bifurcating periodic solutions are orbitally asymptotically
stable with an asymptotical phase (resp. unstable); if T2 > 0
(resp.T2 < 0), then the period of the bifurcating periodic so-
lutions increases (resp. decreases).

4. Examples and Numerical Simulations

In this section, by applying the Matlab software package, we
shall give some examples and numerical simulations to
verify the results developed in the previous sections.

Example 1. Let a � 3.3 and σb � 2; then, system (6) becomes

_u(t) � 3.3 − u t − τ1( 􏼁 −
4u t − τ1( 􏼁v t − τ2( 􏼁

1 + u
2

t − τ1( 􏼁
,

_v(t) � 2 u t − τ2( 􏼁 −
u t − τ2( 􏼁v t − τ1( 􏼁

1 + u
2

t − τ2( 􏼁
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(93)

By calculating, system (93) has a unique positive equi-
librium (u∗, v∗) � (0.66, 1.4356). When τ1 � 0, it is easily
obtained that the condition (H2): (P1Q2)

2 − (P2Q1)
2 �

0.6136> 0 is satisfied. By ,eorem 1, the positive equilib-
rium E∗ of (93) is asymptotically stable for any τ2 > 0, as
shown in Figures 1 and 2.

Example 2. Let a � 5.5 and σb � 2; we have the following
system:

_u(t) � 5.5 − u t − τ1( 􏼁 −
4u t − τ1( 􏼁v t − τ2( 􏼁

1 + u
2

t − τ1( 􏼁
,

_v(t) � 2 u t − τ2( 􏼁 −
u t − τ2( 􏼁v t − τ1( 􏼁

1 + u
2

t − τ2( 􏼁
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(94)

By calculation with Matlab, system (94) has a unique
positive equilibrium (u∗, v∗) � (1.1, 2.21). When
τ1 � τ2 � 0, we obtain P1 + Q2 � − 1.6154< 0 andP1
Q2 − P2Q1 � 4.9774> 0. ,at is, condition (H1) holds.
,us, the positive equilibrium E∗ of (94) is asymptotically
stable, as depicted in Figure 3.When τ1 � 0, τ2 > 0, we obtain
that condition (H3): (P1Q2)

2 − (P2Q1)
2 � − 18.6311< 0

holds and ω0 � 1.9192, τ20 � 0.2061, [d(Reλ(τ2))/
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Figure 5: ,e trajectories graphs and phase graphs of system (94) with τ1 � 0, τ2 � 0.23> τ20 � 0.2061 at the initial value (1, 1).
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dτ2]
− 1
λ�iw20 ,τ2�τ20 � 0.2299> 0. It is known from ,eorem 2,

the positive equilibrium E∗ of system (94) is asymptotically
stable when τ2 ∈ [0, τ20). However, τ2 passes through the
critical value τ20, the positive equilibrium E∗ loses its sta-
bility, and a Hopf bifurcation occurs, as shown in Figures 4
and 5.

Let τ2 � 0.15 ∈ [0, 0.2061), and choose τ1 > 0 as a pa-
rameter. ,e numerical results show that
ω∗ � 2.3361 and τ10 � 0.2107 and the conditions (H3):

(P1Q2)
2 − (P2Q1)

2 � − 18.6311< 0, (H4): ω∗ � 2.3361> 0,

and (H5): M1(ω∗)N1(ω∗) − M2(ω∗)N2(ω∗) � 0.4023> 0
are satisfied. By ,eorem 3, the positive equilibrium E∗ of
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Figure 6: ,e trajectories graphs and phase graphs of system (94) with τ1 � 0.2< τ10 � 0.2107, τ2 � 0.15 ∈ [0, 0.2061) at the initial value
(1, 1).
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Figure 7: ,e trajectories graphs and phase graphs of system (94) with τ1 � 0.23> τ10 � 0.2107, τ2 � 0.15 ∈ [0, 0.2061) at the initial value
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system (94) is asymptotically stable. And, the transversality
condition [d(Reλ(τ1))/dτ1]

− 1
λ�iw∗,τ1�τ10 � 0.0065> 0 is also

satisfied.,erefore, when τ1 passes through the critical value
τ10, the positive equilibrium E∗ loses its stability and a family
of periodic solutions bifurcates from the positive equilib-
rium E∗, as shown in Figures 6 and 7. From formula (92) in
Section 3, it follows that c10 � − 1.1543 + 7.05i, μ2 � 1.7611,

β2 � − 2.3087, and T2 � − 22.7964. Since μ2 > 0 and β2 < 0, the
direction of Hopf bifurcation of system (94) at τ10 � 0.2107
is supercritical, and these bifurcating periodic solutions are
stable, as shown in Figure 7.

5. Conclusions

Researchers often apply differential equations with para-
metric-to-dynamic system modeling because the solution of
the equations depends on the behaviors of the parameters,
which can effectively help researchers understand the sys-
tem. In the past few decades, the dynamic behavior of the
time-delay model has been widely concerned in many fields
(chemistry, economics, medicine, ecology, etc.), which is
inseparable from its biological and physical significance. ,e
research on the dynamics of delay differential equations has
always been the focus of attention in various fields. Of
course, it is especially widely used in chemistry. ,e main
reason is that the chemical reaction of the system with a
particular input is often not immediate but delayed, and the
system has different time delays for a chemical reaction with
different inputs. ,erefore, it is necessary to analyze the
dynamical behaviors of the system with multiple delays.

In this article, we investigated the dynamical behaviors of
the Lengyel–Epstein model with two delays which are dif-
ferent from the one studied in [5, 12, 14, 16]. By choosing the
delay τi(i � 1, 2) as the bifurcation parameter, the stability of
the positive equilibrium and the existence of Hopf bifur-
cation of the system are discussed in detail in three different
cases. When τ1 � 0 and τ2 > 0 and condition (H2) holds, the
positive equilibrium E∗ of system (6) is asymptotically stable
for any τ2 > 0. For the same τi, when condition (H3) holds,
the positive equilibrium of system (6) is asymptotically stable
for τ2 ∈ [0, τ20), and with the increase of τ2, the positive
equilibrium loses its stability and a sequence of Hopf bi-
furcations occur. More generally, we further analyze the
case, where τ2 is fixed to the stable interval and τ1 is taken as
the bifurcation parameter. When τ1 > 0 and τ2 > 0 and
conditions (H3) − (H5) hold, the positive equilibrium of
system (6) is asymptotically stable for τ1 ∈ [0, τ10). ,ere-
fore, under certain conditions, if the value of the time-delay
factor is lower than the critical value, the system is in an ideal
stable state, which is convenient for the effective control of
the chemical reaction in the system (See Figure 6). With the
increase of τ1, the positive equilibrium loses its stability and
a sequence of Hopf bifurcations occurs. In this case, the
phenomenon of small amplitude periodic solution is gen-
erated near the equilibrium point of the system, which is not
conducive to the effective control of the reaction in the
system (see Figure 7). In addition, by applying the normal
form and the center manifold theorem, the explicit formula
determining the direction of Hopf bifurcation and the

stability of the bifurcating periodic solutions are obtained.
Moreover, some numerical examples also support our
theoretical results. ,e above results indicate that the sta-
bility of chemical reactions can be controlled by setting
parameters, which plays a positive role in the safety and
effectiveness of chemical experiments. Secondly, it is worth
noting that there are many factors that affect the dynamic
properties of the chemical reaction system. In this paper, we
only consider the influence of delay parameters on the
system, and there are many works worth study, such as
considering the influence of the concentration of reactants in
the chemical reaction process, diffusion, and other factors on
the dynamic properties of the chemical reaction system and
analyzing the global Hopf bifurcation of the model. Fur-
thermore, due to the discrete nature of chemical reactions,
the study of discrete systems is meaningful and interesting,
and there are opportunities to further consider the dynamic
properties of discrete systems with multiple delays in the
future.
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