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Abstract. 
In this paper, we initiate the concept of -multiplier on almost distributive lattices. We prove some useful results by using the notion of -multiplier and generalize the idea of multiplier on almost distributive lattices.

1. Introduction
A lattice is an advanced abstract structure that has been studied in abstract algebra during last few decades. Birkhoff introduced the concept of lattice theory in 1940 [1]. Lattice is generalization of Boolean and fuzzy algebras. Latter on Gratzer and Schmidt worked together and showed their interest in the development of lattice theory [2]. In 1955, Helgason introduced the concept of multiplier in Banach Algebra [3]. The idea of multiplier in lattice was given by Larsen [4] in 1971, and Cornish extended this concept of multiplier in distributive lattice [5].
In 1981, the idea of ADLs was initiated by Swamy and Rao [6]. An almost distributive lattice satisfies all the properties of distributive lattice except commutativity of  and  and right distributivity of  over . Recently, Kim has introduced the idea of a multiplier in ADLs [7] and discussed some fundamental properties of this notion. For detailed study of the subject, we refer to readers [8–10].
Now, we have generalized certain properties of -multiplier. The notion of -multiplier for an almost distributive lattice is introduced, and some related properties are investigated. Moreover, we introduced principle -multiplier and isotone -multiplier on almost distributive lattices.
2. Preliminaries
Definition 1. (see [6]). An algebra  is said to be an almost distributive lattice if it satisfies the following:(i)(ii)(iii)(iv)(v)(vi)(vii)(viii), , , 
Lemma 1. (see [6]). Let  be an almost distributive lattice. For any , , we have(i)(ii)(iii)(iv)(v)(vi)(vii)
Definition 2. (see [6]). For any , , we say that  if  or equivalently, .
Lemma 2. (see [6]). Let  be an almost distributive lattice. For any , , , , then the following identities hold:(i) and (ii) whenever (iii)(iv) and 
Definition 3. (see [6]). Let  be a lattice, and 0 is known as a zero element of a lattice  if .
Lemma 3. (see [6]). Let  be an almost distributive lattice. If  has 0, then for any , , the following identities hold:(i) and (ii)(iii) if and only if 
Definition 4. (see [6]). Let  be a nonempty subset of  which is called an ideal of  if  and  whenever ,  and .
If  is an ideal of  and , , then  if and only if .
Lemma 4. (see [6]). For any , , we have(i)(ii)(iii)
Definition 5. (see [7]). Let  be an almost distributive lattice and  be two self maps. We define  by .
Definition 6. (see [7]). Let  and  be two almost distributive lattices. Then,  is also an  with respect to the pointwise operation given by , 
Definition 7. (see [7]). Let  be an almost distributive lattice and  be a multiplier of . Define a set  by .
Definition 8. (see [7]). Let  be an almost distributive lattice. For any , define , where  is a principle multiplier induced by .
3. -Multiplier on Almost Distributive Lattices
Definition 9. Let  be an almost distributive lattice. A function  is called -multiplier if , , where  is a mapping on .
Example 1. Let  be an almost distributive lattice with . A function  defined by  is called zero -multiplier.
Proof. Let  be an almost distributive lattice with ; then, we have to prove that  is a zero -multiplier.
Let , . Hence,  is a zero -multiplier.
Lemma 5. Let  be -multiplier of . If  is homomorphism, then following conditions hold:(i)(ii), 
Proof. (i)Since , it implies that .(ii)Let , . We have to show that .. It implies .
Definition 10. Let  be an almost distributive lattice. A function  is defined by , where  is a homomorphism, then  is multiplier of , and such multiplier of  is called a principle multiplier of .
Definition 11. Let  be an almost distributive lattice and  be -multiplier on . For any , define , where  is a principle -multiplier induced by .
Lemma 6. Let  be an almost distributive lattice. A function  is defined by , where  is a homomorphism, then  is -multiplier of , and such -multiplier of  is called a principle -multiplier of .
Proof. Let , , , and  be an -multiplier; then, we have to prove that  is an -multiplier.. This implies that  is an -multiplier.
Definition 12. Let  be an almost distributive lattice and  be multiplier on , where  is a mapping on . If for  implies , then  is an isotone multiplier.
Proposition 1. Let  be an almost distributive lattice. If  is an increasing homomorphism, then , and  is an isotone -multiplier of .
Proof. Let  be an  and , with  such that , then we have . It implies . Hence,  is an isotone -multiplier.
Lemma 7. Let  be an almost distributive lattice and  be an -multiplier of  and  be an increasing homomorphism on . If  and , then .
Proof. Let ,  for . Since  is an increasing homomorphism, soBy using equation (3), we have  since  is an increasing homomorphism. It implies that .
Theorem 1. Let  be an almost distributive lattice and  be an -multiplier of  and  be an increasing homomorphism on . Then,  is an isotone -multiplier.
Proof. Suppose , . By using Lemma 5 (i), we haveSince , therefore, we have . By equations (4) and (5), we have . It implies . Hence,  is an -multiplier.
Proposition 2. Let  be an almost distributive lattice,  be an -multiplier of , and  be homomorphism on . Then, , , .
Proof. Let ,  and  be an -multiplier of ; then, we have to show that . By Definition 1, we have . By Definition 1, we have . It implies that .
Proposition 3. Let  be an almost distributive lattice and  and  be two -multipliers of . Then,  is also an -multiplier of .
Proof. Let  be an  and  and  be -multiplier such thatLet , , , and  be -multipliers of . Now, by Definition 5, we have . By Definitions 1 and 5, we have  which along with equation (6) implies that (. Hence,  is called -multiplier of .
Proposition 4. Let  and  be two almost distributive lattices with 0. A function  defined by  and  is a homomorphism. Then,  is -multiplier of  with pointwise operation.
Proof. Let  and  be two  with 0. We define a mapping  byThen, we have to show that  is an -multiplier with pointwise operation such thatLet . By Definition 6, . By using equation (7) and Definition 1, we have . By Definition 6 and equation (7), we have . This implies that  is an -multiplier with pointwise operation on .
Theorem 2. Let  be an almost distributive lattice and  be the set of all -multipliers of . Then,  under binary operations  and  is an almost distributive lattice, where for any , , .
Proof. Let , . Then, by equation (9), we have (. This implies that  is an -multiplier. Let , , and along with equation (9), we have . This implies that () is an -multiplier. Hence, (, , ) is closed under , . Hence, (, , ) is an .
Theorem 3. Let  be an almost distributive lattice and  be the set of all -multiplier on . Then, set of all principal -multiplier  is distributive lattice with the following operation  and   for all , .
Proof. Let , . Then, . For some , it implies that . Also . For any , it implies . Hence, (, , ) is closed, and so  is sub almost distributive lattice. Moreover, for any , . Thus, . Hence,  is a distributive lattice.
4. Conclusion
In this paper, we have generalized the idea of multiplier to -multiplier in almost distributive lattices and investigated some properties of ADLs. We have also explored some results by using the notion of principal -multiplier and isotone -multiplier. This generalized concept played a vital role in exploring different properties of almost distributive lattices.
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