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The results of this paper provide two Hadamard-type inequalities for strongly (s,m)-convex functions via Riemann-Liouville
fractional integrals and error estimations of well-known fractional Hadamard inequalities. Their special cases are given and

connected with the results of some published papers.

1. Introduction

The most prominent inequality for convex functions is the
well-known Hadamard inequality stated in the following.

Theorem 1 (see [1]). Let f:ICR — R be a convex
function on the interval I, where x, y € I with x < y. Then, the
following inequality holds:

x+y 1 y fx)+ f(y)
1(557) 55 [0 20w

Convex functions are extended, generalized, and refined
in different ways to define new types of convex functions.
For instance, s-convex, m-convex, (s,m)-convex, strongly
convex, and strongly (s, m)-convex functions are extensions
of convex functions. The aim of this paper is to establish
integral inequalities by wusing the class of strongly
(s,m)-convex functions. We give definitions of
(s,m)-convex and strongly (s,m)-convex functions as
follows.

Definition 1 (see [2]). A function f: [0,00) — R is called
(s, m)-convex in the second sense, if the following inequality
holds:

fltx+m(1-t)y) <t f(x) +m(1=t) f (), (2)

for every x, y € [0,00), t € [0,1] and [s,m) € (0, 1] x [0, 1).

Definition 2 (see [3]). A function f: [0,00) — R is called
strongly (s,m)-convex in the second sense with modulus
C=>0, if the following inequality holds:

flx+mQ-t)y)<t f(x)+m(1-t)f(y)

3
~Cmt(1-1t)(y-x)’, @

for every x, y € [0,00), t € [0,1] and [s,m) € (0,1] x [0, 1).

By setting (s,m) = (s,1), (s,m) = (1,m), and (s,m) =
(1,1) in (2), we get s-convex [4], m-convex [5], and convex
functions, respectively, while by setting (s,m) = (s,1),
(s,m) = (1,m), and (s,m) = (1,1) in (3), we get strongly
s-convex [6], strongly m-convex [7], and strongly convex [6]
functions, respectively.

Next we give definition of Riemann-Liouville fractional
integrals . f and J§ f which are utilized to get the desired
results of this paper.

Definition 3 (see [8]). Let f €L,[x,y]. Then, Rie-
mann-Liouville fractional integral operators of order a>0
are given by
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o 1 “ a-1
Fef W =g | -0 0d wsx
(4)
4 1 4 a-1
]yff(u)=mju (t-w)™ f(dt, u<y,

where T'(a) = _[go e 't 1dt is the gamma function and

Jof @) =T f(u) = f(w).

The following special functions are also involved in the
findings of this paper.

Definition 4. The beta function, also referred to as first type
of Euler integral, is defined by

1
Bl = | #a-o7ar (5)
0
where Re («), Re(s) > 0.

Close association of the beta function to the gamma
function is an important factor of the beta function

Blas) = L@

T T(a+s) (6)

The beta function is symmetric, i.e., f(a,s) = (s, a). A
generalization of the beta function, called the incomplete
beta function, is defined by

b
mhmgzjﬂ”u—ﬁ*m, (7)
0
where Re(a),Re(s) >0 with 0<b< 1. The incomplete beta
tunction B (b;«,s) weakens to the ordinary f(a,s) (beta
function) by setting b = 1.
In [8], the Hadamard inequality is studied for Rie-

mann-Liouville fractional integrals which is stated in the
following theorem.

s=3
2s,lf<x+my>+2 Cmoc((x_y)2+
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Theorem 2. Let f: [x, y] — R be a positive function with
0<x<yand f € L [x,yl. If f is convex function on [x, y],
then the following inequality for fractional integrals holds:

x I'(a+1) r, 4 o
1(5) 250, e 0= N #0053 1) )

(®)
S@fW
LAY

with a> 0.

The inequality stated in the aforementioned theorem
motivates the researchers to work in this direction by
establishing other kinds of inequalities for Riemann-Liou-
ville fractional integrals. In the past decade, several classical
inequalities have been extended via different kinds of
fractional integral operators. The Hadamard inequality is
one of the most studied inequalities for fractional integral
operators. For some recent work, we refer the readers to
[3, 8-17].

This paper is organized as follows. In Section 2, two
versions of the Hadamard inequality for strongly
(s,m)-convex functions via Riemann-Liouville fractional
integrals are given. Their connection with the well-known
results is established in the form of corollaries and remarks.
In Section 3, the error estimations of Hadamard inequalities
for Riemann-Liouville fractional integrals are obtained by
using differentiable strongly (s,m)-convex functions.

2. Main Results

Theorem 3. Let f € L,[x, y] be a positive function with
0<x<y. If f is strongly (s, m)-convex function on [x,my]
with modulus C>0, m#0,0<s<1, then the following
fractional integral inequality holds:

2(my - (x/m))2 . 2(x—y)(my — (x/m))

(a+1) )

2 o+2 a(a+1)
r(‘x‘l'l) o at+l ya X oc(f(x)+mf(y))
SZ(my— x)“ [Ix*f(my)ij Uif(%)] < 2(a+s) (9)

N mapf(a, s + 1)(f(y) + mf(x/mz)) B Cmoc( (y—x)7+ m()’ _(x/mz))2>

2

with a> 0.

Proof. Since f is strongly (s,m)-convex function, for
u,v € [x, y], we have

f<u+mv>sf(u)+smf(v)_C7m

—_—t 10
5 5 4Iu V| (10)

By setting u=xt+m(1—-t)y and v=yt+ (1-t)(x/m),
we have

>

2(a+1)(a+2)

FE) <L ot a0+ g r1-0%)

2

—%lt(x— y)+(1- t)<my —%)

(11)

By multiplying inequality (11) with t*°! on both sides
and then integrating over the interval [0, 1], we get
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f(w>J t“‘ldtgisj Flt+m(1 -0y de
2 0 2" Jo
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0

By change of variables, we will get

o 2 )25 (my — x)" | T(a) Jmy

lf(x+my>< I'(a) [ 1 r (my — )™ £ (w)du +

}

at+l

m
(@

t(x—y)+(1 —t)<my—%)

2 1
t*dt.

(x/m 4 a+2

Further, the above inequality takes the following form:

x+my>< T(a+1)

s—1
2 f( 2 " 2(my - x)

<[ fomyemirs 1(5)]

~ 2 'Cma ( (x—y)? . 2(my - (x/m))* . 2(x - y) (my — (x/m))

4

From the definition of strongly (s,m)-convex function
with modulus C, for t € [0,1], we have the following
inequality:

a+2 ala+1)(a+2)

Flex+m( —t)y)+mf<yt+(1 —t)%)

(a+1)(ax+2) )

<E(f(x)+mf(y) +m(1 —t)s(f(y) +mf(7:2>>

-Cmt (1 —t)((y—x)2 +m(y—%>2>.

By multiplying inequality (15) with t*°! on both sides
and then integrating over the interval [0, 1], we get

! a—1 ! X\ a-1
Jof(tx+m(1—t)y)t dt+mjof<yt+(1—t)a>t dt

! sta—1 X ! a—1 s
S(f(x)+mf(y))J0t dt+m<f(y)+mf(?))jot (1-1)de

_Cm((y—x)2+m<y—%>2) J;t“(l —t)dt.

(a+1)(a+2)

y x\* 1 Cm (x—y)2 2(my—(x/m))2 2(x—y)(my — (x/m))
J )<V_E) f(v)dv]_( a(a+1)(a+2) )

(12)

(13)

(14)

(15)

(16)



(i) For s=1 in (9), we have the result for strongly
m-convex function [18].

(ii) For m =1 and s = 1 in (9), we have the result for
strongly convex function.

(iii) Form =1, s = 1, and C = 0, we get [[16], Theorem
2]

(iv) For m=1, s=1, a=1, and C=0, we get the
classical Hadamard inequality.

(v) For m=1 and C = 0, we get [[17], Theorem 3].

25 lf(x + my)

4 Journal of Mathematics
By change of variables, we will get
T'(a) 1 (* m*t oy x\o1
G 3 oy 0 5 [ (o) e
(17)
Cm( (y-x)"+ m(y —(x/mz))2
f ) +mf(y) x B (
< P +m| f(y)+mf ! B(s+1,a) @iD@r2) .
Further, the above inequality takes the following form: Corollary 1. For m =1, we have the result for Rie-
—Liouville fractional integrals of strongly s-convex
T(a+1) [ il o (x)] rann
2my—x)° []ﬁf(my) +m ] f - functions:
5 lf(x+y> 71C0c(y—x)2(0c2—oc+2)
_oc(f(x)+mf(y)) maf ey )+mf Bls+1,0) 4(a+1)(a+2)
2(a+s) -
+ [ (4
<)+ f ()]
2 2\)2 2(y-x) 7
Cm(x( (y—x) +m(y—(x/m )) )
- 2(a+1)(a+2) : SO+ (@ T+ DI+DY Ca(y-x)
(18) - 2 a+s T(a+s+1) (a+1)(a+2)
19
From inequalities (14) and (18), one can get inequality (19)
9). O
Corollary 2. For « =1 and m = 1, the following inequality
Remark 1 holds for strongly s-convex function:

w1 /x+y\ 27'Cly-x)
() N
20
1 f(x)+f(y) _Cly- x)

Sy—x,[ f(wydu< +1 6

In the next theorem, we give another version of the
Hadamard inequality.

Theorem 4. Under the assumptions of Theorem 3, the fol-
lowing fractional integral inequality holds:

(my — (?C/m))z((’é2 +5a + 8) (x = y)(my — (x/m)) (a + 3)

. Cma [(x - y)2

(a+1)(a+2) :|

2(a+2) 20(a+1)(a+2)
2T (a+1) [, whl [ ra x
= lmy— " [(f (eemprn £) )+ 1 (T f )(;)] (21)
(f (x) (y) e 1
m +2 lmoc<f(y)+mf<nj2>>ﬁ<2;s+1,0()

Cmoc( (y- x)+ m(y —(x/mz))z) (a+3)

8(a+1)(a+2)

>
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with a> 0. Proof. Let t € [0,1]. Using strong (s,m)-convexity of
function f for u=x(t/2)+m((2-1)/2)y and v= ((2
—1)/2) (x/m) + y(t/2) in inequality (10), we have

1(552) 5 (5 0) 55 )5 03)

(22)
_Cmpt )+;f<m _i)z
4 12 Y 2 Y m
By multiplying (22) with t*~! on both sides and making
integration over [0, 1], we get
) sy [ (S em(5 )
f< )| e aess | (egem(S5 )y ) e
m (b //2-t\x A
m i RNV P 23
+25J0f<< 2 >m+y2>t dt (23)
Cm ('t 2t X\|? a1
- JO E(x—y)+—2 (my—a> 7 de.
By using change of variables and computing the last
integral, from (23), we get
2° _(x+my
el < 2 )
20T (“) 1 j ((x+my)/2) 1 ma+1 j ((ym+x)/2m) < x >zx—1 :|
<— == my —u u)du + v-— v)dv
(my = x) [F(a) A m) T (24)
2°Cm | (x - y)2 (my — (x/m))z(“z +5a + 8) (x — y)(my — (x/m)) (a + 3)
- + +
4 |4(a+2) da(a+1)(a+2) 2(a+1)(a+2)
Further, it takes the following form:
a—1
w1 (x+my\ 27 T(a+1)[, 4 wtlf X
2 f( ) ) < (my — x)zx [(]((x+my)/2)*f) (ym) +m (I((ym+x)/2m)’ f)(;)]
o (25)
2 'Cma [ (x - y)2 (my — (x/m)) (‘X + 50 + 8) (x — y)(my — (x/m)) (a + 3)
- + +
4 4(a+2) doa(a+1)(a+2) 2(a+1)(a+2)
The first inequality of (21) can be seen in (25). Now we (s, m)-convex function and t € [0, 1], we have the following

prove the second inequality of (21). Since f is strongly  inequality:
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el () )= o o

+m<?>s(f(y)+mf(%>)_%[(y—x)2+m<y—%)z].

By multiplying inequality (26) with t*~! on both sides
and making integration over [0, 1], we get

(26)

j:f<x%+m<?)y>t“—ldt+mJ;f<<¥>%+y§)ta—1dt
Szl () rmf ) J; £t +¥(f()/) + mf(%)) J; (2-1)t* 'dt 27)

Cm 2 X la
—T[(y—x) +m<y—;)”ot (2 -1t)dt.

By using change of variables and computing the last
integral, from (27), we get

2“1“(06) 1 ((x+my)/2) - mzx+1 ((my+x)/2m) o1
(m}’ - X)a [m me (m)/ - 14) f(u)du " F(OC) J(x/m) <V - ;> f(V)dV:|
JG)+mf(y) o x 1

Cm< (y - x)+ m(y —(x/mz))2> (a+3)
B 4(a+1)(a+2) ‘

Further, it takes the following form:

2T (a+ 1)
(my — x)*

sa(f(:fl) +mf () +2"‘"1moc(f(y) +mf(iz>>/5<%’ s+ 1,0c> (29)
m

27 (a+s)

[(] ?(x+my)/2)*f ) (ym) + m* (] ?(x+ym)/zm)* f )( > )]

m

Cmoc( (y - x)?+ m(y —(x/mz))2> (a+3)
8(a+1)(a+2) '
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From inequalities (25) and (29), we have inequality (21). O (iii) For m=1, s=1, a=1, and C=0, we get the
classical Hadamard inequality.
Remark 2

(i) For s=1 in (21), we get the result for strongly Corollary 3. Form =1 ands =1 in (21), we have the result
m-convex function [18]. for Riemann-Liouville fractional integrals of strongly convex

(i) Form = 1,5 = 1,and C = 0, we get [[16], Theorem 2] function:

x+y C(y—x)2
f( 2 >+2(¢x+1)(¢x+2)
SZ“_lf((x+1)

TR (U 1))+ Uleryr £) )] (30)

S+ f(»)_ Caly-x)(a+3)
- 2 4(a+1)(a+2)

Corollary 4. For m =1 in (21), we get the result for Rie-
mann-Liouville fractional integrals of strongly s-convex
function:

(2)

25C(x—y)2 2T (a+1) [ 4 "

a1l Coc(y—x)z(oc+3)
+2 ﬁ(i’s“’“))_ Aa+D(a+2)

1
Sa(f(x)+ f()’))(m

Corollary 5. For m =1 and C =0 in (21), we get the result
for Riemann-Liouville fractional integrals of s-convex
function:

. + 2T (a+1) (g «
2 1f<x > y) G _ax)« (ko £) )+ (T £) )]

(32)

1 a-1 1
SOC(f(X)+f()/))<2H1(OHS)+2 [3(2,s+1,o¢)>.

Corollary 6. For m=1 and a=1 in (1), we have the 3, Error Estimations of Riemann-Liouville
Hadamard inequality for strongly s-convex function: Fractional Integral Inequalities

s ) ) The following two lemmas are very useful to obtain the
2s—1f<x 12L )’) . 2 C(;C4— ) < 1 I £ (w)du results of this section.
y—x

X

33
(33) Lemma 1 (see [8]). Let f: [x, y] — R be a differentiable

2
Sf(X) +fO) _Cly-x : mapping on (x, y) with x<y. If f' € E[x,y], then the fol-
s+1 6 lowing fractional integral equality holds:
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T(a+1)
f(x);rf(y)_z((ywx) (U5 £) ) +(T5- £) ()]

(34)

X Jl[(l -0 —t*] f' (tx + (1 - t)y)dt.
2 0

Lemma 2 (see [10]). Let f: [x, y] — IR be a differentiable
mapping on (x,y) with x<y. If f' € [x,myl,m € (0,1],
then the following equality for fractional integrals holds:

2T (a+1)
(my — x)*

) e (5] @

e [ o2 (5) 2]

Theorem 5. Let f: [x, y] — R be a differentiable mapping  function on [x,my] with modulus C>0,m#0, and 0<s<1,
on (x,y) with x<y. If |f'| is a strongly (s,m)-convex  then the following fractional integral inequality holds:

[(] (ermpay £) () + 15 (Fioyomy | )<£>]

If+f() F(oc+1)
| 2 2(y -

[If (x)|(< ““5“) ﬁ<2;5+1,a+1>+%)

[(]x+f ) +(75 f) ()]

(36)
(O p(~ )-A(% ) 1-02)™
+m‘f <m)‘<[$<2,oc+1,s+1 B 2,s+1,oc+1 sl
2Cm((y/m)—x)2 1_0c+4
(a+2)(ax+3) 2012
with a> 0. Proof. Since |f'| is strongly (s,m)-convex function on

[x, y], for t € [0, 1], we have

< )‘ Cmt (1 —t)( )2. (37)

|f' (tx+ (L=t)y)| <E|f" ()| + m(1 - 1)°
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By using Lemma 1 and (37), we have

[f()+f() F(oc+l)

e U5 D)+ (75 ) )]

| 2 2(y-
gy;x J;|(1 _pE g '<tx+m(1 —t)%)’dt
< _xJ:|(l—t)“ |( 1 @) +ma =o' (2 )‘ Cmt(l—t)(a—x)z)dt
sy;x“:m)((l-t) t)(tlf G +ma o] (2 )‘ Cme(1-0)(2 - )2)dt (38)

+

jl (t*~(1-1) )(t|f ()] +m(1 -ty

(1/2)

(2 )l Cme(1-0(2-x) )dt]
[|f( )I( ( oc+ls+1) ﬁ(%;s+1,a+1>+%s/i)ojs)+m|f'(%>‘

1 1 1-(1/2)"  2Cm((ylm) - x)* [ a+4
~<ﬁ<5,(x+1,s+1>—/3<§,s+1,(x+1>+ oc+s+1) (a+2)(a+3) (1 2‘“2)]'

After simplifying the last inequality of (38), we get (ii) By setting s =1 in inequality (36), we get [[18],
(36). O Theorem 8].
Remark 3

Corollary 7. By taking m =1 in (36), we have the result for
(i) By setting C = 0 in inequality (36), one can get result ~ Riemann-Liouville fractional integrals of strongly s-convex
for (s,m)-convex function. function:

|f(x)+f(y) F(oc+1)
| 2 2(y

Loy Ay

= U5 N0 +(5- £) 0]

1 1-(1/2)"" 3%
|f (y)l( ( (X+1S+1) ﬂ<5;5+1,(x+1>+m)
B 2C(y—x)2 1_oc+4
(+2)(ax+3) 272 )]
Corollary 8. By takingm = 1 and s = 1 in inequality (36), we
have the result for Riemann-Liouville fractional integrals of
strongly convex function:
If)+f(y) T(at 1)
(40)

y - —(1/2)° 2C(y—x)2 a+4
ST (0£+1) (lf( )| If (y)l) (“+2)(“+3)(1_2¢x+2):|‘
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Corollary 9. By taking m=s=1 and a =1 in inequality
(36), we get the following inequality:

— , C
(17 ]+l ) - S (@

f@+f( 1
| 2 y—x

Jy F(wdu| <2

Inequality (41) provides the refinement of [[19], Theo-  Theorem 6. Let f: [x, y] — R be a differentiable mapping
rem 2.2]. on (x,y) with x<y. If |f'|1 is strongly (s,m)-convex on
[x,my] with modulus C>0, (s,m) € (0, 112 for q=1, then

the following inequality for fractional integrals holds:

%[U ey L) )+ (T gy oy | )(%)]
S em 5 e
(A
(L (2 o) e 0
Proof. By applying Lemma 2 and strong (s, m)-convexity of
|f'], we have
B o e D) A E22)
e
J tf(< )m ‘dt] my4—x[(if’(x)l;lf’(wl)L‘Jt@mdt
(43)

/(3)

.Jlta+l(2_t)dt:|:my—x[<|f s(x)|+|f (y)l) o (If )] +
0

)j;t“(z—t)sclt—%”((y—x)z +<%—y>2>
)

4 2’ (a+s+1)

1 Cm(a+4) 2 X 2
'ﬁ<575+1,0€+1>—m<()}—x) +<ﬁ_y> >:|

)
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Now, for strong (s,m)-convexity of |f'|%, g>1, using
power mean inequality, we get

11

|2Hr(a Y [(] [ ) (my) + ’”M(I Cermyyamy | )(%)] - % [f (%)

24

(my — x)

(= () ()

2m

(s

! q
(—lf(zf)lq J:t"‘“dnimlfzs(y)' JO t* (2 —t)'dt -

my — x

(1/9)
S2-t\x t \|2
f(( 2 )ZJrEy)‘ dt) ]S4(a+1)<1/p)

1 Cm(y - x)*

1 (1/9)
| - t)dt) (44)

4 0

L O 1 sy ]l XN ey neae Cn((em®) = p) [0 e (10

L Mmy-x |f' ()
T4(a+ )Y\ 25 (a+s+1)

(el (G

Hence, we have inequality (42). O

Remark 4

(i) For s =1 in inequality (42), we have the result for
strongly m-convex function [18].

(ii) Fors = 1,m = 1,and C = 0 in inequality (42), we get
[[16], Theorem 5].

24

(y—-x)

: K|f’ )| @+ 1) +[f )| (a+3) -

1
+ 2“+1m|f' (y)lqﬁ<5;s+ Lo+ 1) -

2 T(a+1) [, N
2 el [(]((x+y)/2)+f) ) +(]((x+y)/2)’ f) (x)] - f< >

Cm(y —x)2(a+4) e
4(a+2)(a+3)

_Cm ((x/m?) - y)2 B+ 4)) a
4(B+2)(B+3) '

(iii) Fors = 1,m = 1,C = 0, and « = 1 in inequality (42),
we get the inequality proved by Kirmaci in [20].

Corollary 10. For s =1 and m =1 in inequality (42), we
have the result for Riemann-Liouville fractional integrals of

strongly convex function:

X+y y—x
)5 W)
4(a+1)2a +4)

(45)

Cly-x)P(a+ 1)((x+4))(”‘1’

2(ax+3)

+<|f’ O (a+ 1) +|f ()| (a+3) -

Cly-x)(a+1)(a+ 4))(”‘1’}

2(ax+3)
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Corollary 11. For m =1 in inequality (42), we have the
result for Riemann-Liouville fractional integrals of strongly
s-convex function:

2 T(a+1) [ a x +
oo [Ty £) ) +(T ey £) (0] = f(%)‘
y-x |f' ()| arl) o1, a1 Cly-x)*(a+4) (e
S4((x+1)(1/p) [(25(06+s+1)+2 Ol ﬁ<575+1’“+1>_ 4(a+2)(a+3) (46)

" q 2 (1/q)
+( /" )] +2a+1|fr(x)lq/5<%;s+l’“+1>_C(y—x) <a+4)> }

25(a+s+1) 4(a+2)(a+3)

Theorem 7. Let f: [x, y] — R be a differentiable mapping ~ on [x,my] with modulus C>0, (s,m) € (0,1]* for g>1,
on (x, y) with x < y. If | f'|1 is strongly (s, m)-convex function  then the following fractional integral inequality holds:

% [(] ormyay £) ) + 15 (T gy oy )<£>] - % [f (w)

m 2

) 1 (1/p)-1 .
enf ()| <D (@ )

+|f’ | (47)

25Cm (s +61)(y_x)2)(1/¢1) +< o+ ‘f

2°Cm (s + 1) ((x/m?) - y)2 () (my x)(2°(s+ 1)) ) ,
6 4(ap+1)"P “f SR

e[ (3 ) 22 ()

Proof. By applying Lemma 2 and then using Hélder in-
equality and strong (s, m)-convexity of | f'|9, we get

where a> 0.

l% (Ticesmpr £) 1)+ 08" (oo f)<%>] - % [f<x . my)

+mf(x ;;ny)]l Smy4— x(J-(l) ﬂ’“dt)w |:(J-; f’(x% + m(%)y)‘th)
(O30l e) e (Gm) ror G
P

o O [ (35 a0 s a) " (1 o [ (5

S

t
2
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Cm ((x/m?) - y)*

a(l /2 f\S
J (57 -
o\ 2 4

X
+m‘f’<ﬁ

(17 cor ol o 1) -2,

2Cm(s+1)(y - x)z)l/q

+ £ |-

(2 )(|f )|+

()

We have used A+ B7< (A + B)4, for A>0,B>0. This
completes the proof. O

Remark 5

(i) For s =1 in inequality (47), we get [[18], Theorem
10].

(y-x)(2° (s+1))(1/P

2°Cm (s + 1) ((x/m?) - y)z) ]
‘ <

13
1/q Wp)-1
(my —x)(s+1)
J t(2- t)dt) }_2—5((1/‘0 ((xp+1)(”P
X 1 s+
SETHE ()
(my —x)(2°(s+ 1)) ,
tapa @ @O
’ 2
)_ZCmi(s-l-l)((y_x)z_'—(%_y) )]
(48)

(ii) For s = 1 and C = 0 in inequality (47), we get [[10],
Theorem 2.7].

(iii) For s = 1,m = 1,and C = 0 in inequality (47), we get
[[16], Theorem 6].

Corollary 12. For « =1 and m =1, we have the result for
s-convex function:

e 2

4(p+1)WP

. |:<|f' | +(2 -

S (CREDIAEE

(y x)(2°(s+ 1))( /p)

! q
DIf o) - .

25C(s+1)(y—x)2)l/q

(49)
+f |7 -

2°C(s + 1)(y—x)2)”q]
6

4(p+ 1P

Corollary 13. For a« =1 and m = q = 1, we have

e [ (57)

C 1
jsﬁ)[ (I 1 o) - S 0y 2|
(50)
Corollary 14. For a =1 and m = q =s = 1, we have
| e X+y
Iy—xjxf(”)d”_f( 2 )’
(51)

<L 0 @1l o) - Sor- 02|

2”1(|f’ @] +[f ) -

25C(?s’+ 1)(y_x)2].
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