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A fractional integral operator can preserve an image edge and texture details as a denoising filter. Recently, a newly defined
fractional-order integral, Atangana–Baleanu derivatives (ABC), has been used successfully in image denoising. However, de-
termining the appropriate order requires numerous experiments, and different image regions using the same order may cause too
much smoothing or insufficient denoising. -us, we propose an adaptive fractional integral operator based on the Atanga-
na–Baleanu derivatives. Edge intensity, global entropy, local entropy, and local variance weights are used to construct an adaptive
order function that can adapt to changes in different regions of an image.-en, we use the adaptive order function to improve the
masks based on the Grumwald–Letnikov scheme (GL_ABC) and Toufik–Atangana scheme (TA_ABC), namely, Ada_GL_ABC
and Ada_TA_ABC, respectively. Finally, multiple evaluation indicators are used to assess the proposed masks. -e experimental
results demonstrate that the proposed adaptive operator can better preserve texture details when denoising than other similar
operators. Furthermore, the image processed by the Ada_TA_ABC operator has less noise and more detail, which means the
proposed adaptive function has universality.

1. Introduction

-e theory of fractional-order derivatives has been applied in
many fields, such as physics, fluid mechanics, physiology,
medical science, and epidemic diseases [1–4]. With the de-
velopment of information science, fractional operators have
gained incomparable advantages over integral operators in
many fields. A fractional derivative recurrent neural network
can effectively improve estimation accuracy in parameter
identification [5]. Complex behaviors in fractional-order fi-
nancial systems can provide theoretical basis for the gov-
ernment [6]. Fractional-order control systems perform more
accurately and elegantly than traditional systems [7]. In signal
processing, the characteristics of fractional differential op-
erators, such as “nonlocality,” “memorability,” and “weak
derivatives,” are also applied [8–10]. -ese properties can
improve the high frequency of an image while preserving the
performance of the low and medium frequencies. In other
words, methods based on fractional calculus for enhanced

images can enhance the texture details while preserving the
texture details of the smooth region in images [11, 12].
-erefore, many scholars are engaged in research on the
application of fractional operators in image enhancement and
denoising. -e most representative scholar is Y.F. Pu, who,
with his team, constructed image enhancement and denoising
operators by fractional calculus [10, 13]. Based on the
Grunwald–Letnikov (GL) approximation, a medical image
enhancement method was proposed by Guan et al. [14]. An
adaptive image enhancement operator based on fractional-
differential and image gradient feature was proposed by Lan
[15]. Arian Azarang inferred different structure mask to
image fusion [16]. An adaptive fractional-order integral filter
was presented for echocardiographic image denoising [17].

-e basic theory of abovementioned fractional operators
is mainly the definitions of GL and Riemann–Liouville (RL).
-e Caputo derivative is another definition of fractional
order that is widely studied and applied; it includes the
numerical solutions of fractional equations and the
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properties of systems [18, 19]. New fractional derivatives and
applications based on the frame of the Caputo derivative
have received much attention from experts. -e existence
and stability of Belouso–Zhabotinskii reaction systems with
Atangana–Baleanu fractional-order derivatives are dis-
cussed in [20]. In [21], the locally and globally asymptotically
stable of symbiosis system modelling by the Atanga-
na–Baleanu derivative are analyzed. With the development
of research, fractional-differential operators with nonlocal
and nonsingular kernels are used to image filters [22–24].
Furthermore, an AB-fractional differential mask based on
the Gaussian kernel has been introduced to detect blood
vessels in retinal images [25]. Behzad Ghanbari and Abdon
Atangana designed an ABC-fractional derivatives mask that
is used for image denoising. -e ABC-fractional derivatives
mask is computationally efficient and has excellent per-
formance in the denoising of nosy images [26]. In the
process of denoising, many experiments are required to
determine the order of the mask. Moreover, because using a
fixed order may lead to excess or deficiency for denoising
effect, an adaptive fractional operator based on Atanga-
na–Baleanu derivatives is proposed in this paper, which is
called Ada_GL_ABC.We consider the gradient of the image,
local entropy, global entropy, and local variance weights to
construct a function for solving the adaptive order. -e
starting point of this idea is removing the image noise while
preserving the edge and texture details of the image as much
as possible. -e adaptive function proposed by us is different
from that of other studies. We consider both global and local
information, the adaptive function contains more com-
prehensive information when determining the order, and
the order used for denoising is more appropriate. And, the
adaptive function designed by us has a certain generality.
-e function can be applied not only to GL_ABC mask but
also to TA_ABC mask, which is rarely seen in the previous
literature.

-e remainder of this paper is organized as follows: the
basic definitions of fractional derivatives and the structure of
fractional-masks are introduced in Section 2. In Section 3,
the function of the adaptive fractional-order integral op-
erator based on Atangana–Baleanu derivatives is described.
-e performance of the proposed adaptive operator is
discussed in Section 4. In Section 5, the conclusions are
elaborated.

2. Preliminaries

2.1. Definitions of the Fractional Derivatives. Many basic
definitions of fractional derivatives exist [27]. Recently, the

Mittag–Leffler function was introduced to compute frac-
tional derivatives. -is new definition is named the Atan-
gana–Baleanu fractional derivative; it is based on the
definition of Liouville–Caputo (ABC) and can be defined as
follows [28]:
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-e Atangana–Baleanu fractional integral with order β
can be depicted as
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where A(∗ ) is a normalization function, and this function
satisfies A(0)�A(1)� 1. It can be described by

A(c) � 1 − c +
c

Γ(c)
. (3)

-e ABC derivative inherits the memory of the Mit-
tag–Leffler function, which, with index c, is denoted as

Ec(t) � 􏽘
∞

k�0

t
k

Γ(ck + 1)
, c> 0. (4)

-eGL definition is one of the best-known definitions of
discrete fractional calculus and is widely applied to image
processing. Details of the GL definition are expounded in
Definition 1.

Definition 1. -e GL definition of fractional calculus for-
mula with α-order of [29] is described as

0D
α
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h⟶0

1
h
α 􏽘

[(b− a)/h]
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j
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where h is the step, [∗ ] represents the rounded operation,
β
j

􏼠 􏼡 � ((Γ(β + 1))/(j!Γ(β − j + 1))), and Γ(β) is Gamma

function.
Equation (5) can be further decomposed as follows:

D
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1
h
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2
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k!Γ(α − N + 1)
f(t − jh)􏼠 􏼡. (6)

We know that equation (6) is the fractional derivative
operator with α> 0, and it takes a part of the fractional

integral operator with α< 0. When α> 0, we set c � − α, and
the integral GL of order c using equation (6) is described as
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From the above discussion, the ABC-fractional integral
can be described by equation (7):
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In [26], the newly defined fractional order integral is
mentioned. It can be approximated to the following as t � tn:
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-e function f(τ) can be described by a two-step
Lagrange polynomial interpolation as follows:
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f tk( 􏼁

h
τ − tk− 1( 􏼁 +
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h
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Using equation (10), equation (9) can be discretized as
follows:
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2.2. 0e Mask Based on Grunwald–Letnikov (GL_ABC) and
Toufik–Atangana (TA-ABC). In an image, the distance
between two pixels can be assumed to be 1. -is distance is

the same as h in equation (7).-erefore, the GL integral with
fractional-order in the x and y directions [30] are described
by equations (12) and (13):
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-e TA_ABC integral with fractional-order [31] in the x
and y directions is presented as equations (14) and (15):
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with equations (12)–(15), the 5∗ 5 fractional integral mask
can be constructed as follows:

-is 5∗ 5 mask is used in image denoising as the filter.
-e mask is rotation-invariant mainly because it is obtained
by superimposition of fractional integral in eight directions.
-us, we can use different fractional-order integrals for
airspace filtering to denoise images. -erefore, the coeffi-
cients of GL_ABC and TA_ABC mask are described by
equations (16) and (17), respectively (Table 1).
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3. Adaptive Fractional Operators Based on
Atangana–Baleanu Derivatives

For an image with noise of different intensities and in
different regions, one fixed order in the fractional integral
operator is insufficient to achieve a good denoising effect.
-erefore, this paper proposes an adaptive fractional op-
erator for image denoising. -e edge intensity coefficient,
image entropy, local entropy, and local variance weight are
used to construct the expression of the adaptive fractional

order. -e image gradient represents the image edge in-
tensity information. In this paper, -e Kirsch algorithm is
applied to calculate the image edge intensity. However, the
Kirsch algorithm can suppress image noise [32].

G[I(x, y)] � max 1,max 5rk − 3sk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, k � 0, 1, . . . , 7􏽮 􏽯􏽮 􏽯.

(18)

Here, rk � Wk + Wk− (π/4) + Wk− (π/2); sk � Wk− (3π/4)+

Wk− π + Wk− (5π/4) + Wk− (3π/2) + Wk− (7π/4). Moreover, when
k � (0, (π/4), (π/2), (3π/4), π, (5π/4), (3π/2), (7π/4)), the
eight directions of masks are depicted as follows:
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(19)

Image entropy determines how much information an
image contains. -e smaller the entropy is, the more in-
formation it contains [31].

El � − 􏽘

255

L�1
P Ij,k􏼐 􏼑log2 P Ij,k􏼐 􏼑, (20)

P is the probability that an image pixel will appear. -e local
variance weight can not only measure the local gray change
of an image but also reflect the importance of the image local
change rate in the whole image. -e larger the difference in
partial pixel values is, the greater the local variance weight.
Conversely, the smaller the changes are, the smaller the value
of the local variance weight [33].

St(h) �
1

Num
􏽘

Num

i�1

σ2I(h′)
σ2I(h)

, (21)

where Num represents the number of image pixels, I is the
image to be processed, h is the local pixel, h’ is the local pixel
of the current window, and σ2I(h′) is the variance in the pixel
value in the current window.

-e function established in this paper takes the global
entropy of the image as a measure of the overall image
characteristics. -e order value should be small to maintain
the texture details. We consider taking the product of three
measures of frequency information, to ensure that the
fractional-order is inversely proportional to high frequency
information such as edges and texture details. -e adaptive
order function is as follows:

a dav � Et ∗ ε − G∗ St∗El, (22)

where Et represents the entropy of the whole image, ε is the
coefficient of Et and take 0.22 in the experiment, and
G∗ St∗El is the product of the local information entropy,
local gradient, and local variance. -en, the entropy of the
global image is subtracted from the product. -e results are
small in the region of the edge and texture and high in the
region of smoothness. According to this equation, the orders

of different local textures of the image vary. As shown in
Figure 1, the order used in the edge and texture details is
relatively small, while the order used in the smooth area is
larger. In this way, the obtained orders are reduced in the
edge and texture detail region and enhanced in the smooth
region so that the edge and texture detail information can be
preserved as much as possible while denoising.

4. Numerical Examples

In this paper, the peak signal-to-noise ratio (PSNR), entropy,
and structural similarity index measurement (SSIM) are
used to assess the performance of the proposed operator.-e
PSNR is the most popular assessment criterion to evaluate
the performance of denoising algorithms. In general, the
value of the PSNR is higher when the image quality is better.
-e PSNR is defined as follows [34]:

PSNR � 10lg
2552

MSE
, (23)

MSE �
1

M∗N
􏽘

M

j�1
􏽘

N

k�1
[I′(j, k) − I(j, k)]

2
, (24)

whereM andN are the size dimensions of the original image.
I(j, k) and I′(j, k) are the original and denoised images,
respectively. -e SSIM is also a well-known criterion among
image quality assessment metrics [35] defined as

SSIM �
2φpφq + ρ1􏼐 􏼑 2σpq + ρ2􏼐 􏼑

φ2
p + φ2

q + ρ1􏼐 􏼑 σ2p + σ2b + ρ2􏼐 􏼑
, (25)

where p and q represent different images; φp and φq rep-
resent the mean of images p and q; σ2p and σ2b represent the
variances of p and q, respectively; σpq is the covariance of p
and q; and ρ1 and ρ2 are constants added to maintain sta-
bility. -e value of the SSIM represents how similar two
images are. When the SSIM value is higher, the pixel values
of the two images are closer. -e range of this index is [0, 1].
If the value of this index is closer to one, the two images are
more approximate.

In the experiments, we employed five grayscale images to
test the proposed mask: “Lena,” “Elaine,” “Goldhill,”
“Peppers,” and “Cameraman,” with 512∗ 512 pixels each.
We use the proposed adaptive function to improve the
TA_ABC and GL_ABC mask. -e improved mask “Ada_-
TA_ABC” and “Ada_GL_ABC” compare the “GL_ABC
mask” [31], “TA_ABCmask” [30], and the method proposed
in [36]. -e orders c in “GL_ABC mask” and “TA_ABC
mask” are from literature [30]. In the experiments, we added
noise with different variances σ ∈ 15, 20, 25{ } to the test
images, respectively. Figures 2–16 show the results for image
denoising by the different methods. Tables 2–7 show the
PSNR, SSIM and entropy of these test images for the dif-
ferent algorithms. From Figures 1–16, we find that the test
images lost image details when TA_ABC mask was applied.
-e method proposed by [36] has a poor denoising ability.
-e Ada_TA_ABC mask performs better than the TA_ABC
mask, the order of which is determined by our proposed

Table 1: 5∗5 mask.
H2 0 H2 0 H2
0 H1 H1 H1 0
H2 H1 8 H0 H1 H2
0 H1 H1 H1 0
H2 0 H2 0 H2

Journal of Mathematics 5



method, as depicted by equation (15). -e test images
processed by the GL_ABC mask and Ada_GL_ABC mask
contain less noise and more details. -e Ada_GL_ABCmask
is better than the GL_ABC mask. From another perspective,
this result shows that the adaptive function proposed by us
has certain universality. -is result is verified in Tables 2–6.
-e PNSR of images proposed by the Ada_GL_ABC mask is

higher than that of the other methods. -is outcome means
that the quality of images processed by the Ada_GL_ABC
mask is better than that delivered by other methods.
Meanwhile, the images processed by the Ada_GL_ABC
mask are closer to the original images. -is conclusion can
be confirmed by the higher SSIM, which indicates the
similarity between two images. Additionally, we calculated

(a) (b)

Figure 1: A map of the adaptive order. (a) Lena. (b) Peppers.

(a) (b) (c)

(d) (e) (f )

Figure 2: Comparison of different operators on “Lena” under Gaussian noise with variance σ � 15.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Comparison of different operators on “Lena” under Gaussian noise with variance σ � 20.

(a) (b) (c)

(d) (e) (f )

Figure 4: Comparison of different operators on “Lena” under Gaussian noise with variance σ � 25.

Journal of Mathematics 7



(a) (b) (c)

(d) (e) (f )

Figure 5: Comparison of different operators on “Elaine” under Gaussian noise with variance σ � 15.

(a) (b) (c)

(d) (e) (f )

Figure 6: Comparison of different operators on “Elaine” under Gaussian noise with variance σ � 20.
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(a) (b) (c)

(d) (e) (f )

Figure 7: Comparison of different operators on “Elaine” under Gaussian noise with variance σ � 25.

(a) (b) (c)

(d) (e) (f )

Figure 8: Comparison of different operators on “Goldhill” under Gaussian noise with variance σ � 15.
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(a) (b) (c)

(d) (e) (f )

Figure 9: Comparison of different operators on “Goldhill” under Gaussian noise with variance σ � 20.

(a) (b) (c)

(d) (e) (f )

Figure 10: Comparison of different operators on “Goldhill” under Gaussian noise with variance σ � 25.
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(a) (b) (c)

(d) (e) (f )

Figure 11: Comparison of different operators on “Pepper” under Gaussian noise with variance σ � 15.

(a) (b) (c)

(d) (e) (f)

Figure 12: Comparison of different operators on “Pepper” under Gaussian noise with variance σ � 20.

Journal of Mathematics 11



(a) (b) (c)

(d) (e) (f )

Figure 13: Comparison of different operators on “Pepper” under Gaussian noise with variance σ � 25.

(a) (b) (c)

(d) (e) (f )

Figure 14: Comparison of different operators on “Cameraman” under Gaussian noise with variance σ � 15.
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(a) (b) (c)

(d) (e) (f )

Figure 15: Comparison of different operators on “Cameraman” under Gaussian noise with variance σ � 20.

(a) (b) (c)

(d) (e) (f )

Figure 16: Comparison of different operators on “Cameraman” under Gaussian noise with variance σ � 25. (a) Noisy image, (b) TA_ABC,
(c) GL_ABC, (d) Method in [38], (e) Ada_TA_ABC, (f ) Ada_GL_ABC.
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Table 2: Comparison of the effectiveness of different fractional operators for the Lena image.

Noisy image Method in [36] TA_ABC Ada_TA_ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6047 25.8887 26.6857 28.3095 30.6827 31.2764
SSIM 0.4466 0.498 0.6325 0.7147 0.7498 0.8126

σ � 20 PSNR 22.1006 23.6471 26.0032 27.6077 29.2995 29.9716
SSIM 0.3392 0.3953 0.556 0.6524 0.6924 0.7482

σ � 25 PSNR 20.1839 22.0718 25.3131 27.0041 28.3211 28.7544
SSIM 0.2682 0.3296 0.4895 0.5979 0.6516 0.6845

Table 3: Comparison of the effectiveness of different fractional operators for the Elaine image.

Noisy image Method in [38] TA_ABC Ada_TA GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.602 25.8 29.1284 30.5185 31.5693 32.5138
SSIM 0.4239 0.4754 0.6484 0.7174 0.7575 0.8033

σ � 20 PSNR 22.1297 23.4999 28.0504 29.5162 30.4062 30.8692
SSIM 0.3101 0.363 0.574 0.66 0.714 0.739

σ � 25 PSNR 20.1507 21.7676 26.9874 28.542 28.8114 29.3865
SSIM 0.233 0.2867 0.5048 0.6024 0.6385 0.6719

Table 4: Comparison of the effectiveness of different fractional operators for the Goldhill image.

Noisy image Method in [38] TA_ABC Ada_TA_ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6053 25.5984 25.8959 26.7892 29.265 29.8402
SSIM 0.5246 0.562 0.5339 0.6021 0.7312 0.7831

σ � 20 PSNR 22.0996 23.2623 25.2557 26.3092 28.5353 28.9227
SSIM 0.4058 0.449 0.4725 0.5579 0.7035 0.7343

σ � 25 PSNR 20.1693 21.6197 24.6607 25.8326 27.6622 27.9387
SSIM 0.3205 0.3707 0.4226 0.5176 0.6634 0.6823

Table 5: Comparison of the effectiveness of different fractional operators for the Pepper image.

Noisy image Method in [38] TA_ABC Ada_TA_ ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6089 25.5672 26.6575 27.508 29.9746 30.3144
SSIM 0.4525 0.4913 0.6472 0.7039 0.7407 0.7979

σ � 20 PSNR 22.1164 23.3792 26.0054 27.0188 28.8524 29.3238
SSIM 0.3451 0.3904 0.576 0.6504 0.6927 0.7383

σ � 25 PSNR 20.1598 21.6034 25.2919 26.4364 27.72 28.2121
SSIM 0.2723 0.3178 0.5095 0.5944 0.6326 0.6733

Table 6: Comparison of the effectiveness of different fractional operators for the Cameraman image.

Noisy image Method in [38] TA_ABC Ada_TA_ ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6171 25.7532 25.724 28.3601 30.9423 31.5346
SSIM 0.4084 0.4524 0.6394 0.7668 0.7398 0.8214

σ � 20 PSNR 22.1178 23.6034 25.1439 27.7603 29.5537 30.0694
SSIM 0.3116 0.3615 0.5502 0.7002 0.6902 0.7429

σ � 25 PSNR 20.1543 21.7478 24.5397 26.8904 28.3857 28.7435
SSIM 0.2465 0.2923 0.4724 0.6241 0.635 0.6674

Table 7: Comparison of the entropy of different fractional operators for all images.

Lena Elaine Goldhill Peppers Cameraman
Σ 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25
Original
image 7.4456 7.5001 7.4778 7.5715 7.0480

Method in
[36] 7.6008 7.6512 7.6891 7.5873 7.6181 7.6525 7.6079 7.6478 7.6744 7.6767 7.6973 7.7121 7.3948 7.4416 7.4843

TA_ABC 7.44 7.4675 7.4989 7.4760 7.4874 7.5084 7.4494 7.4734 7.4956 7.6141 7.6268 7.6412 7.2339 7.2925 7.3342
Ada_TA_
ABC 7.4298 7.4515 7.4788 7.4734 7.4808 7.4979 7.4427 7.4621 7.4800 7.6071 7.6183 7.6302 7.1802 7.2381 7.2886

GL_ABC 7.4878 7.5028 7.5189 7.5118 7.5125 7.5303 7.5285 7.5197 7.5248 7.6269 7.6329 7.6444 7.2693 7.2965 7.3226
Ada_GL_ABC 7.4508 7.4744 7.5038 7.4944 7.5042 7.5205 7.7405 7.4901 7.5101 7.6101 7.6224 7.6365 7.2111 7.2674 7.3085
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the entropy of test images, as shown in Table 7. -e entropy
of images processed by the Ada_GL_ABC mask is closer to
that of the original images than that got by other masks, but
it is also higher than that of the original images. -e results
demonstrate that the detailed information of images is
preserved while denoising. For Figures 2–16, (e) and (f) are
clearer than the others by visual evaluation. TA_ABC and
GL_ABC have been improved by the proposed adaptive
function. According to the quantitative indicators shown in
the tables, the Ada_GL_ABC mask has better denoising and
detail-preserving ability than other masks. Furthermore,
Ada_GL_ABC and Ada_TA_ABC masks are robust for
different intensity noise by the analysis of the results. -e
effectiveness of our proposed adaptive operator can be
proved from the two aspects of vision and evaluation index.

5. Conclusions

In this paper, the adaptive denoisingmask is proposed based on
Atangana–Baleanu derivatives. -e key to this method is the
calculation of order.-e order is determined by the intensity of
the gradient, global entropy, local entropy, and local variance.
-ese variables represent the whole and local information of
the image. To protect the texture details, we design the adaptive
order integral operator considering global and local infor-
mation.-is operator can produce smaller orders in the image
edge and texture details while larger orders in the smooth
region.-e proposed function is used to improve the GL_ABC
mask and TA_ABCmask operator. We test the effectiveness of
our proposed algorithm on multiple images. From a visual
point of view, the denoising ability of Ada_TA_ABC and
Ada_GL_ABC are reliable. Compared with other operators by
the evaluation indicators, the Ada_GL_ABC operator works
better. And, the PSNR and the SSIM are all higher under
different intensities of noise. -e information entropy index of
the image processed by Ada_TA_ABC and Ada_GL_ABC
operators is closer to the original images.-e entropy of image
filtered by Ada_GL_ABC mask is slightly larger, which indi-
cates that Ada_GL_ABC mask can preserve texture details.
-ese experimental results confirm that GL_ABC and
TA_ABC have all been improved. And, the proposed adaptive
function has a certain degree of universality.
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