
Research Article
A Class of New Permutation Polynomials over F2n

Qian Liu ,1,2 Ximeng Liu ,1,2 and Jian Zou 1,2

1College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China
2Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350116, China

Correspondence should be addressed to Qian Liu; lqmova@foxmail.com

Received 14 August 2021; Accepted 15 October 2021; Published 15 November 2021

Academic Editor: Li Guo

Copyright © 2021Qian Liu et al.)is is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, according to the known results of some normalized permutation polynomials with degree 5 over F2n , we determine
sufficient and necessary conditions on the coefficients (b1, b2) ∈ F22n such that f(x) � x3x2 + b1x

2x + b2x permutes F2n .
Meanwhile, we obtain a class of complete permutation binomials over F2n .

1. Introduction

Denote Fq as a finite field with q elements, where q is a prime
power; then, F∗q is its multiplicative group.)e bijectivity of the
associated polynomialmapping(s)f: x⟼f(x) from Fq into
itself (and f(x) + x) makes a polynomial f(x) ∈ Fq[x] as a
(complete) permutation polynomial [1]. Research interests in
(complete) permutation polynomials over finite fields have
been aroused due to their widespread applications in cryp-
tography [2, 3], combinatorial designs [4], design theory [1, 5],
coding theory [6], and other areas of mathematics and engi-
neering [1, 7]. Readers could refer to [1, 8] for a comprehensive
survey about (complete) permutation polynomials. So, it is
important to realize that there is significance in discovering
new methods to construct permutation polynomials. Readers
can find recent progress in [9, 10].

Few-term permutation polynomials, especially bino-
mials and trinomials, have not only simple algebraic form
but excellent properties. )e following form over F2n from
Niho exponents has drawn much attention:

f(x) � x
r 1 + b1x

s 2m− 1( )
+ b2x

t 2m− 1( )
􏼐 􏼑, (1)

where n � 2m, r, s, t ∈ Z, b1, b2 ∈ F2n . Note that (s, t) can be
viewed as modulo 2m + 1. It is a hard problem to find
necessary and sufficient conditions on (b1, b2) for (1) being a
permutation polynomial over F2n with given (r, s, t). In most
known cases, the coefficients are assumed to be trivial, such
as (b1, b2) � (1, 1); some pairs (r, s, t) in (1) were made in

[10–15]. For (r, s, t) � (1, 1, 2), Hou [16] completely char-
acterized all non-trivial (b1, b2) over Fq2 through the Her-
mite criterion. After that, Tu et al. [17] studied the case over
Fq2 where (r, s, t) � (1, 2m, 2) by solving low-degree equa-
tions with variable in the unit circle. )e latter only obtained
the sufficient conditions but conjectured their necessity
based on numerical experiments, which were then proved by
Bartoli [18] and Hou [19], respectively, using algebraic
curves over finite fields and the Hasse–Weil bound. In 2018,
Tu and Zeng [20] determined all (b1, b2) with (r, s, t) �

(1, 2m− 1, 2n− 1) and gave sufficient conditions for (r, s, t) �

(1, 3 · 22m− 2, 22m− 2) over F2n , the necessity of which was later
proved by Hou [21], using a similar method described in
[19]. Recently, Zheng et al. [22] claimed sufficient conditions
for both (r, s, t) � (1, 1, (2k(2mk − 1)/((2k − 1)(2m − 1))))

and (r, s, t) � (1, (2k/(2k − 1)), (−1/(2k − 1))) over F2n .
Furthermore, they conjectured the necessity of the former
based on numerical experiments. Very recently, by making
use of the similar approach in [18], Bartoli and Timpanella
[23] provided necessary conditions for
(r, s, t) � (n + m, m, n) over finite fields with characteristic 2.

To our knowledge, only above seven different pairs
(r, s, t) had been characterized completely. However, the
exponents of f(x) in (1) are also Niho exponents. )is
motivates us to explore new permutation polynomials with
general coefficients (b1, b2) from non-Niho exponents with
even characteristics. By transforming the problem into
studying some normalized permutation polynomials with
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degree 5 over even characteristics, we determine the coef-
ficients (b1, b2) for f(x) � x3x2 + b1x

2x + b2x being a
permutation over F2n .

)e rest of this paper is arranged as follows. Some
notations and useful results are presented in Section 2. In
Section 3, the sufficient and necessary conditions are shown
to determine the coefficients of a class of permutation
polynomials over F2n . Finally, Section 4 provides some
concluding remarks.

2. Preliminaries

Let m and n be two positive integers with m|n and F2n be a
finite field with 2n elements; the trace function from F2n to
F2m is denoted by Trn

m(·), where

Trn
m(x) � x + x

2m

+ x
22m

+ · · · + x
2(n/(m−1))m

. (2)

If the usual complex conjugation of any x ∈ F22m is
defined as x � x2m , the following relations hold.

(i) For all x ∈ F22m , x + x ∈ F2m , xx ∈ F2m .
(ii) For all x, y ∈ F22m , x + y � x + y, xy � xy.

U2m+1 denotes the unit circle of F22m as

U2m+1 � x ∈ F22m : x
2m+1

� xx � 1􏽮 􏽯. (3)

Lemma 1 (see [24]). f(x) ∈ Fq[x] with f(0) � 0 is a
permutation polynomial over Fq iff f: x⟼f(x) from F∗q
into itself is a bijection.

Hereinafter, we claim that f(x) is a permutation
polynomial over F∗q upon the bijectivity of f(x) from F∗q to
F∗q , which is the only case we consider.

Lemma 2 (see [1]). -e irreducibility of f(x) ∈ Fq[x] with
degree n remains over Fpm iff gcd(m, n) � 1.

Definition 1 (see [25]). A permutation polynomial
f(x) ∈ Fq[x] of degree n is said to be normalized if the
following properties hold:

(i) f(x) is monic and the value of f(x) at 0 is equal to 0.
(ii) )e coefficient of xn− 1 equals 0 if p∤n, where p is the

characteristic of Fq.

Remark 1. Let b, c ∈ Fq and a ∈ F∗q ; for any permutation
polynomial f(x) ∈ Fq[x], there exists a unique normalized
form provided by g(x) � af(x + b) + c.

Theorem 1 (Hermite’s criterion) (see [1]). Let p be the
characteristic of Fq. -us, f(x) ∈ Fq[x] is a permutation
polynomial over Fq iff

(i) f(x) has exactly one solution over Fq.
(ii) ∀t ∈ Z, where 1≤ t≤ q − 2, t≠ 0(modp), the degree

of the reduction of f(x)t(modxq − x) is no greater
than q − 2.

From Hermite’s criterion, the characterization of all
normalized permutation polynomials with degree no greater
than 5 in Fq is due to ([1], Section 7.2), and they are listed in
Table 1.

3. A Class of Permutation Polynomials over F2n

In this section, we consider the coefficients b1, b2 ∈ F2n such
that the polynomial f(x) � x3x2 + b1x

2x + b2x permutes
over F2n .

)e main results in this paper are given in the following
theorems.

Theorem 2. For two positive integers m and n with n � 2m,
let b1, b2 ∈ F2n . Define g(z) � z5 + z3(b1b1 + b2 + b2)

+z2[(b1 + b1)(b1b1 + b2 + b2) + b1b2 + b1b2]+

z[(b1 + b1)
4 + (b1 + b1)

2(b1b1 + b2 + b2) + b2b2] ∈ F2m [z].
-en, the polynomial

f(x) � x
3
x
2

+ b1x
2
x + b2x (4)

permutes F2n iff one of the following two cases holds:

(1) If m ≡ 2(mod4), g(x) � x5 permutes F2m .
(2) If m is odd, g(x) � x5 + ax3 + 5− 1a2x permutes F2m .

Proof. Based on Lemma 1, in order to prove that f(x) is a
permutation polynomial in F∗2n , we only consider that for any
c ∈ F∗2n , the equation

x
3
x
2

+ b1x
2
x + b2x � c (5)

has exactly one root in F∗2n .
Let x � λy, where λ ∈ U2m+1 and y ∈ F2m . )en, equation

(5) becomes

λy
5

+ b1λy
3

+ b2λy � c. (6)

Raising both sides of equation (6) to the power 2m leads
to

y
5

+ b1y
3

+ b2y � λc. (7)

Since c ∈ F∗2n , we can let c � de, where d ∈ F∗2m and
e ∈ U2m+1 . )en, equation (7) can be rewritten as

y
5

+ b1y
3

+ b2y � λ de
− 1

. (8)

Raising both sides of equation (8) to the power 2m yields

y
5

+ b1y
3

+ b2y � λ− 1
de . (9)

Multiplying equations (8) and (9), we can obtain

y
10

+ y
8

b1 + b1􏼐 􏼑 + y
6

b1b1 + b2 + b2􏼐 􏼑

+ y
4

b1b2 + b1b2􏼐 􏼑 + y
2
b2b2 � d

2
.

(10)

)e substitution of y2 with y in equation (10) leads to

y
5

+ y
4

b1 + b1􏼐 􏼑 + y
3

b1b1 + b2 + b2􏼐 􏼑

+ y
2

b1b2 + b1b2􏼐 􏼑 + yb2b2 � d
2
.

(11)

Let y � z + (b1 + b1), and we can get
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z
5

+ z
3

b1b1 + b2 + b2􏼐 􏼑

+ z
2

b1 + b1􏼐 􏼑 b1b1 + b2 + b2􏼐 􏼑 + b1b2 + b1b2􏽨 􏽩

+ z b1 + b1􏼐 􏼑
4

+ b1 + b1􏼐 􏼑
2

b1b1 + b2 + b2􏼐 􏼑 + b2b2􏼔 􏼕

� constant,
(12)

where constant � b1b1(b31 + b1
3
) + (b1 + b1)

2(b1b2 + b1b2) +

(b1 + b1)(b2b2 + b21b1
2
) + d2 and constant ∈ F2m .

From the above discussion, we can deduce
f(x) � x3x2 + b1x

2x + b2x permutes F2n iff
g(z) � z5 + z3(b1b1 + b2 + b2) + z2[(b1 + b1)

(b1b1 + b2 + b2) +b1b2 + b1b2] +z[(b1 + b1)
4

+(b1 + b1)
2(b1b1 + b2 + b2) + b2b2] permutes F2m .

Based on Table 1, we know that if g(z) is a normalized
permutation polynomial of degree 5 over Fq (q � 2m), then it
must have the following forms:

(1) z5, q≢1(mod5).
(2) z5 + az3 + 5− 1a2z (a arbitrary), q ≡ ± 2(mod5).

When q≢1(mod5), we have 4∤m, which includes that
m ≡ 2(mod4) and m is odd. When m is odd, that is,
q � ± 2(mod5), we mainly study the permutation poly-
nomial of z5 + az3 + 5− 1a2z (a arbitrary). When
m ≡ 2(mod4), we consider the permutation polynomial of
z5. Hence, g(z) permutes F2m iff one of the following two
cases holds:

(1) If m ≡ 2(mod4), g(z) � z5 permutes F2m .
(2) If m is odd, g(z) � z5 + az3 + 5− 1a2z permutes F2m .

In conclusion, we deduce that the polynomial

f(x) � x
3
x
2

+ b1x
2
x + b2x (13)

permutes F2n iff the following two cases are satisfied:

(1) If m ≡ 2(mod4), g(x) � x5 permutes F2m .
(2) If m is odd, g(x) � x5 + ax3 + 5− 1a2x permutes

F2m . □

Remark 2. When b1 and b2 are both 0, if 4∤m, then
gcd(2m+1 + 3, 2n − 1) � 1, so we achieve that the monomial
f(x) � x3x2 permutes F2n . If b1, b2 ∈ F2n are not both 0, then
f(x) is binomial or trinomial in F2n . We will investigate the
permutation behavior of those polynomials in the sequel.

Theorem 3. For two positive integers m and n with n � 2m

and m being even, let b1, b2 ∈ F2n which are not both 0. -en,
the polynomial

f(x) � x
3
x
2

+ b1x
2
x + b2x (14)

permutes F2n iff m ≡ 2(mod4), b1 � θb2, and b2 is a root of
x2 + θ− 2ωx + θ− 4ω � 0, where θ ∈ F∗2m and ω ∈ F∗2m is a
primitive third root of unity.

Proof. Based on )eorem 2, we deduce that f(x) � x3x2 +

b1x
2x + b2x permutes F2n iff

g(x) � x5 + x3(b1b1 + b2 + b2) + x2[(b1 + b1)(b1b1 + b2 +

b2) + b1b2 + b1b2] + x[(b1 + b1)
4 + (b1 + b1)

2(b1b1 + b2 +

b2) + b2b2] permutes F2m . When m ≡ 2(mod4), we get that
f(x) permutes F2n iff g(x) � x5 permutes F2m .

“⇒” Comparing the coefficients of g(x) and x5, we have

b1b1 + b2 + b2 � 0, (15)

b1b2 + b1b2 � 0, (16)

b1 + b1􏼐 􏼑4 + b2b2 � 0. (17)

From equation (16), we can directly obtain that
(b1/b2) � (b1/b2), i.e., (b1/b2) ∈ F2m . Hence, there exists
some element θ ∈ F∗2m such that b1 � θb2.

Plugging b1 � θb2 into equation (15), we have

θ2b2b2 + b2 + b2 � 0. (18)

By substituting b1 with θb2 in equation (17), we obtain

θ4 b2 + b2􏼐 􏼑
4

+ b2b2 � 0. (19)

Combining equations (18) and (19), we know that
θ12(b2b2)

3 � 1. )is means that b2b2 � θ− 4ω and
b2 + b2 � θ− 2ω, where ω ∈ F∗2m is a primitive third root of
unity.

)erefore, we conclude that b2 and b2 are exactly two
roots of the equation

x
2

+ θ− 2ωx + θ− 4ω � 0. (20)

Hence, the above analysis shows that for m ≡ 2(mod4),
if f(x) permutes F2n , then b1 � θb2 and b2 is a root of
x2 + θ− 2ωx + θ− 4ω � 0, where θ ∈ F∗2m and ω ∈ F∗2m is a
primitive third root of unity.

In what follows, we will proceed to prove the necessity.
“⇐” For some θ ∈ F∗2m , let b1 � θb2, and then we know

(b1/b2) ∈ F∗2m , and this is equivalent to (b1/b2) � (b1/b2),
which implies that b1b2 + b1b2 � 0.

Suppose that b2 and b2 are two different roots of equation
(20) in F2n \F2m ; then, we have b2b2 � θ− 4ω and
b2 + b2 � θ− 2ω. Recall that b1 � θb2, and we have

Table 1: Normalized permutation polynomials with degree no
greater than 5 in Fq.

Normalized permutation polynomial q

x All q

x2 Even q

x3 q≢ 1(mod3)

x3 − ax (a is not a square of Fq ) 3|q

x4 ± 3x q � 7
x4 + a1x

2 + a2x (0 is a unique solution in Fq) Even q

x5 q≢ 1(mod5)

x5 − ax (a is not a fourth power of Fq ) 5|q

x5 + ax (a2 � 2) q � 9
x5 ± 2x2 q � 7
x5 + ax3 ± x2 + 3a2x (a is not a square of Fq ) q � 7
x5 + ax3 + 5− 1a2x (all a) q ≡ ± 2(mod5)

x5 + ax3 + 3a2x (a is not a square of Fq ) q � 13
x5 − 2ax3 + a2x (a is not a square of Fq ) 5|q
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b1b1 � θ2b2b2 � θ− 2ω,

b1 + b1 � θ b2 + b2􏼐 􏼑 � θ− 1ω,
(21)

which implies that

b1b1 + b2 + b2 � θ− 2ω + θ− 2ω � 0,

b1 + b1􏼐 􏼑
4

+ b2b2 � θ− 4ω4
+ θ− 4

� 0,
(22)

where ω ∈ F∗2m is a primitive third root of unity.
)erefore, equations (15)–(17) are satisfied. Further-

more, we know that if m ≡ 2(mod4), b1 � θb2 and b2 is a
root of x2 + θ− 2ωx + θ− 4ω � 0, where θ ∈ F∗2m and ω ∈ F∗2m is
a primitive third root of unity, and thus f(x) is a permu-
tation polynomial over F2n .

To summarize, we conclude that the polynomial

f(x) � x
3
x
2

+ b1x
2
x + b2x (23)

permutes F2n iff m ≡ 2(mod4), b1 � θb2, and b2 is a root of
x2 + θ− 2ωx + θ− 4ω � 0, where θ ∈ F∗2m and ω ∈ F∗2m is a
primitive third root of unity. □

Theorem 4. For two positive integers m and n with n � 2m

and m being odd, let b1, b2 ∈ F2n which are not both 0. -en,
the polynomial

f(x) � x
3
x
2

+ b1x
2
x + b2x (24)

permutes F2n iff one of the following two cases holds:

(1) b1 � 0, b2 � θω or b2 � θω2, where θ ∈ F∗2m and
ω ∈ F2n is a primitive third root of unity.

(2) b1 � θω or b1 � θω2, b2 � θ2 + θηω2 or
b2 � θ2 + θηω, where θ ∈ F∗2m , η ∈ F2m , and ω ∈ F2n is
a primitive third root of unity.

Proof. Based on)eorem 2, if m is odd, then f(x) permutes
F2n iff g(x) � x5 + ax3 + 5− 1a2x permutes F2m , where
g(x) � x5 + x3(b1b1 + b2 + b2)+

x2[(b1 + b1)(b1b1 + b2 + b2) + b1b2 + b1b2] + x[(b1 + b1)
4 +

(b1 + b1)
2 (b1b1 + b2 + b2) + b2b2].

Since gcd(2, m) � 1, x2 + x + 1 is a irreducible polyno-
mial in F2, and we deduce that x2 + x + 1 also remains ir-
reducible over F2m by Lemma 2. Let ω be one of the roots of
h(x) � x2 + x + 1 in F2n ; then, ω2 + ω + 1 � 0 and ω is a
primitive third root of unity. Furthermore, we can view 1
and ω as a basis of vector space F2n upon F2m .

“⇒” Comparing the coefficients of g(x) and
x5 + ax3 + 5− 1a2x, we have

b1 + b1􏼐 􏼑 b1b1 + b2 + b2􏼐 􏼑 + b1b2 + b1b2 � 0, (25)

5− 1
b1b1 + b2 + b2􏼐 􏼑2 � b1 + b1􏼐 􏼑4

+ b1 + b1􏼐 􏼑2 b1b1 + b2 + b2􏼐 􏼑

+ b2b2.

(26)

From equation (26), we know that

b1b1 + b2 + b2􏼐 􏼑
2

+ b1 + b1􏼐 􏼑
4

+ b1 + b1􏼐 􏼑
2

b1b1 + b2 + b2􏼐 􏼑

+ b2b2 � 0.

(27)

)en, we can discuss the solutions of g(x) � 0. as
follows. □

Case 1. b1 � 0. )en, equation (27) turns to

b2 + b2􏼐 􏼑
2

� b2b2. (28)

Since 1 and ω are basis of vector space F2n upon F2m , for
any element b2 ∈ F2n , we can set b2 � λ + θω with
λ ∈ F2m , θ ∈ F∗2m .

By plugging b2 � λ + θω into equation (28), we obtain

θ2(ω + ω)
2

� (λ + θω)(λ + θω). (29)

Since m is odd, we know that ω � ω2m

� ω2. )en,
equation (29) can be written as

λ2 + λθ � 0, (30)

which implies that λ � 0 or λ � θ. Consequently, we con-
clude that b2 � θω or b2 � θω2.

)e above analysis indicates that if f(x) permutes F2n

and m is odd, then b1 � 0, b2 � θω or b2 � θω2, where
θ ∈ F∗2m and ω ∈ F2n is a primitive third root of unity.

Case 2. b1 ≠ 0. )us, equation (25) becomes

b1b2 + b1b2 � b1b1 b1 + b1􏼐 􏼑, (31)

and this is equivalent to

b1 +
b2

b1
� b1 +

b2

b1
. (32)

From equation (32), we can directly obtain that
b1 + (b2/b1) ∈ F2m . Hence, there exists some element η ∈ F2m

such that b1 + (b2/b1) � η, i.e., b2 � b1(b1 + η).
Plugging b2 � b1(b1 + η) into equation (27) gives

b1 +b1􏼐 􏼑
2
η2 +b1b1 b1 +b1􏼐 􏼑η+ b1 +b1􏼐 􏼑

4
� b1b1η

2
+ b1+b1􏼐 􏼑

3
η

+b1b1 b1 +b1􏼐 􏼑
2
.

(33)

Comparing the coefficients on both sides of equation
(33), we have

b1 + b1􏼐 􏼑
2

� b1b1. (34)

Discussion similar to that in Case 1 shows that b1 � θω
or b1 � θω2. Meanwhile, we obtain b2 � θ2 + θηω2 or
b2 � θ2 + θηω, which follows from b2 � b1(b1 + η).

)erefore, the above analysis demonstrates that if f(x)

permutes F2n and m is odd, then b1 � θω or b1 � θω2, b2 �

θ2 + θηω2 or b2 � θ2 + θηω, where θ ∈ F∗2m , η ∈ F2m , and
ω ∈ F2n is a primitive third root of unity.
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All in all, when m is odd, if the polynomial f(x) per-
mutes F2n , then one of the following two cases is satisfied:

(1) b1 � 0, b2 � θω or b2 � θω2, where θ ∈ F∗2m and
ω ∈ F 2n is a primitive third root of unity.

(2) b1 � θω or b1 � θω2, b2 � θ2 + θηω2 or
b2 � θ2 + θηω, where θ ∈ F∗2m , η ∈ F2m , and ω ∈ F2n is
a primitive third root of unity.

Next, we will continue to prove the necessity.
“⇐” If b1 � 0, b2 � θω or b2 � θω2, then

(b1b1 + b2 + b2)(b1 + b1) + b1b2 + b1b2 � 0, which means

that equation (25) is satisfied. Since ω ∈ F2n is a primitive
third root of unity and ω2 + ω + 1 � 0, we can calculate that
b2 + b2 � θ and b2b2 � θ2, and thus the left-hand side of
equation (27) turns to (b2 + b2)

2 + b2b2 � θ2 + θ2 � 0, which
implies that equation (27) is satisfied. )erefore, when m is
odd, we conclude that if b1 � 0, b2 � θω, or b2 � θω2,
(θ ∈ F∗2m and ω ∈ F2n is a primitive third root of unity), the
polynomial f(x) is a permutation polynomial over F2n .

If b1 ≠ 0, recall that b1 � θω or b1 � θω2, b2 � θ2 + θηω2

or b2 � θ2 + θηω, and we have

b1b1 � θω(θω) � θ2ω3
� θ2,

b1 + b1 � θω + θω2
� θ,

b2 + b2 � θ2 + θηω2
+ θ2 + θηω2

� θηω2
+ θηω � θη,

b2b2 � θ2 + θηω2
􏼐 􏼑 θ2 + θηω􏼐 􏼑 � θ4 + θ3ηω + θ3ηω2

� θ2η2,

b1b2 � θω θ2 + θηω2
􏼐 􏼑 � θω2 θ2 + θηω2

􏼐 􏼑 � θ3ω2
+ θ2ηω,

b1b2 � θω θ2 + θηω2
􏼐 􏼑 � θω θ2 + θηω􏼐 􏼑 � θ3ω + θ2ηω2

,

(35)

which implies that

b1b1 + b2 + b2􏼐 􏼑 b1 + b1􏼐 􏼑 + b1b2 + b1b2

� θ2 + θη􏼐 􏼑θ + θ3ω2
+ θ2ηω + θ3ω + θ2ηω2

� θ3 + θ2η 1 + ω + ω2
􏼐 􏼑 + θ3 ω + ω2

􏼐 􏼑

� θ3 + θ3

� 0,

(36)

where the third equation holds only if ω2 + ω + 1 � 0.
Consequently, we conclude that equation (25) is satisfied.

Next we consider

b1b1 + b2 + b2􏼐 􏼑
2

+ b1 + b1􏼐 􏼑
4

+ b1 + b1􏼐 􏼑
2

b1b1 + b2 + b2􏼐 􏼑 + b2b2

� θ2 + θη􏼐 􏼑
2

+ θ4 + θ2 + θη􏼐 􏼑θ2 + θ4 + θ3ηω + θ3ηω2
+ θ2η2

� θ3η 1 + ω + ω2
􏼐 􏼑

� 0,

(37)

where the second equation holds only if ω2 + ω + 1 � 0.
Hence, we can get that equation (27) is satisfied.

)erefore, the above analysis shows that for m is odd, if
b1 � θω or b1 � θω2, b2 � θ2 + θηω2 or b2 � θ2 + θηω, where

θ ∈ F∗2m , η ∈ F2m , and ω ∈ F2n is a primitive third root of
unity, then the polynomial f(x) permutes F2n .

All in all, for m is odd, we know thatf(x) permutes F2n if
one of the following two cases is satisfied:
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(1) b1 � 0, b2 � θω or b2 � θω2, where θ ∈ F∗2m and
ω ∈ F 2n is a primitive third root of unity.

(2) b1 � θω or b1 � θω2, b2 � θ2 + θηω2 or
b2 � θ2 + θηω, where θ ∈ F∗2m , η ∈ F2m , and ω ∈ F2n is
a primitive third root of unity.

In conclusion, we deduce that the polynomial

f(x) � x
3
x
2

+ b1x
2
x + b2x (38)

permutes F2n iff one of the following two cases is met:

(1) b1 � 0, b2 � θω or b2 � θω2, where θ ∈ F∗2m and
ω ∈ F 2n is a primitive third root of unity.

(2) b1 � θω or b1 � θω2, b2 � θ2 + θηω2 or
b2 � θ2 + θηω, where θ ∈ F∗2m , η ∈ F2m , and ω ∈ F2n is
a primitive third root of unity.

Applying )eorem 4 to b1 � 0 and θ � 1, we have the
following.

Corollary 1. For two positive integers m and n satisfying n �

2m and m is odd, the binomial f(x) � x3x2 + ωx is a
complete permutation polynomial over F2n .

Remark 3. Observe that a complete permutation binomial
f(x) proposed in Corollary 1 is obtained by Zieve [26].
However, the approach we used to prove the permutation
property is different from that in [26].

4. Concluding Remarks

In this paper, by transforming the problem into studying
some normalized permutation polynomials of degree five
with even characteristics, we investigate the coefficient pairs
(b1, b2) making f(x) � x3x2 + b1x

2x + b2x to be a per-
mutation polynomial over F2n . )e sufficient and necessary
conditions are shown in )eorems 3 and 4. Furthermore, a
class of complete permutation binomials with the form
f(x) � x3x2 + ωx over F2n is obtained.
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