
Research Article
OnNumerical Thermal Transport Analysis of Three-Dimensional
Bioconvective Nanofluid Flow

Jifeng Cui ,1 Shahzad Munir,2 Umer Farooq ,2 Mohammed Elamin Ahmed Rabie,3

Taseer Muhammad ,4 and Raheela Razzaq2

1College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
2Department of Mathematics, COMSATS University Islamabad, Islamabad Campus, Islamabad 44000, Chak Shehzad, Pakistan
3Department of Mathematics, Faculty of Science and Humanities, Shaqra University, Afif, Saudi Arabia
4Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia

Correspondence should be addressed to Jifeng Cui; cjf@imut.edu.cn and Taseer Muhammad; taseer_qau@yahoo.com

Received 29 May 2021; Accepted 19 July 2021; Published 28 July 2021

Academic Editor: M. M. Bhatti

Copyright © 2021 Jifeng Cui et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a numerical study is presented for the 3D mathematical model of bioconvective boundary layer flow having
nanoparticles and motile microorganisms on a curved sheet under isothermal conditions. Using an appropriate choice of
similarity transformations, the problem reduces to coupled ordinary nonlinear equations, and this system is then treated with
bvp4c (a MATLAB-based solver) to get the desired solution with good accuracy. )e repercussion of distinct important di-
mensionless numbers such as thermophoresis, buoyancy ratio, Lewis number, and Brownian number on the velocity, tem-
perature, and volume fraction of nanoparticles is presented graphically and is discussed in context with their importance on flow
dynamics. Moreover, the physical impact of various parameters on motile microorganism density, the local Sherwood number,
the local Nusselt number, and the local skin friction coefficients is analyzed and presented in tables. Qualitative analysis also
reveals that the Brownian motion parameter, Peclet number, and Schmidt number have an inverse impact on the
density microorganisms.

1. Introduction

A fluid containing nanoparticles in a basic fluid called
nanofluid. )e diameter of nanoparticles varies from 1 to
100 nm and is generally made of nitrides, carbides, oxides,
metals, or nonmetals. )ese have an ability to improve heat
transfer properties such as viscosity, thermal conductivity,
and diffusivity in fluids, for example, ethylene glycol, oils,
and water. Choi and Eastman [1] proposed “nanofluids” as a
new innovative class of heat transfer fluids to enhance high
thermal conductivities. )eir theoretical study on these
nanofluids resulted in reduction in heat exchanger pumping
power. Nanofluids have broad range of implementations in
mechanical, chemical engineering, civil, thermal energy
storage devices, ground water structure, electronic cooling,
heat loss from piping, boilers, crude oil extraction, etc.

Detailed discussion related to nanofluids can be found in
[2–6]. Using the Buongiorno [7] model of nanofluids,
Kuznetsov and Nield [8] carried out a study to analyze
natural convection in nanofluid flow over a vertical smooth
surface. Bachok et al. [9] inspected heat transfer effects for a
steady 3D stagnation flow of nanofluids to explore the
impacts of the ratio of gradient of velocities and the
nanoparticles volume fraction. In another study, Bachok
et al. [10] examined nanofluid flow on top of an expanding
and contracting plate in two dimensions. Alsaedi et al. [11]
implored the significance of heat absorption and generation
on a permeable and linear stretching plate of the nanofluid
stagnation point flow. Razzaq et al. [12] studied the mag-
netized flow of non-Newtonian Maxwell nanofluid over an
exponentially stretching sheet by utilizing the local non-
similarity method.
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Microorganism particles have been widely utilized to
construct commercial and industrial material such as bio
fuel derived from waste/biomass, fertilizers, ethanol, and
many more. )ese products are also employed in dairy
products, steroid production, and water treatment plants.
)ese microorganisms are a cause of a renewable energy
origin named as hydrogen gas and biodiesel. )at is the
reason of research need to explore the mass transmission
and swimming path properties of the microorganisms so
that usage of the organisms might be more appealing and
profitable for the welfare of the human being. Bioconvection
is evolution of distinct kind of random fluid design at the
microscopic label due to the spontaneous swimming of self-
propelled microorganisms which are adjacent in the water
and in the other liquids denser than water. Bioconvection
have wide applications in the bio-microsystems, biomedical
sciences, biotechnology, gas-containing sedimentary basin,
and modeling oil [13]. A quantitative explanation of bio-
convection flow patterns by using Rayleigh–Taylor insta-
bility is presented by Milton and Plesset [14]. Childress et al.
[15] and Levandowsky et al. [16] established the first
mathematical model for bioconvective flows in which they
take stress-free and rigid upper boundary containing a
suspension in which entirely upward swimming cells exis-
ted. Pedley et al. [17] described a gyrotactic bioconvection
continuum model using a uniform diffusivity for finite and
infinite depth of layers. Furthermore, Pedley and Kessler [18]
extended this model in an entirely consistent mode. Bees
[19] investigated the stochastic nature of the microorganism
swimming direction using surface spherical harmonics. Bees
and Hill [20] carried out bioconvection analysis in a realistic
geometry by developing a systematic model that primarily
predict and calculate the irregular swimming motion in an
analytical way. Ghorai et al. [21–23] used finite-difference
technique to observe the formation and solidity of gyrotactic
plumes in two-dimensional large, thin chambers for periodic
sidewalls and stress-free sidewalls. Furthermore, Ghorai and
Hill [24] investigated the stability and structure of plume in a
deep cell, using the gyrotactic bioconvection model equa-
tions of Pedley et al. [17]. Kuznetsov investigated the mo-
bility of the suspension of moveable microorganisms
[25–27]. Geng et al. analyzed the composition of nano-
particles, and further, they concluded that this addition
makes the nanofluid model more stable [28–30]. Lately,
Zaimi et al. [31] scrutinized the addition of gyrotactic mi-
croorganisms on the heat changes for stagnation flow of
nanofluids towards an expanding/contracting smooth
medium.

)e 3D boundary layer flow on an isothermal medium is
the topic of immense interest in recent past. Howarth [32]
and Davey and Schofield [33] did the pioneer work by
providing the first 3D boundary layer solutions of stagnation

point flow. Poots [34] expressed the equation of the
boundary layer on a curved isothermal medium for the 3D
free convection flow. Slaouti et al. [35] analyzed a three-
dimensional heated body with unsteady and free convection
effects to describe the boundary layer properties of the fluid
flow. Harris et al. [36] identified and studied the evolution of
boundary layer for a compressible fluid over a cylindrical
object. Xu et al. [37] provided HAM-based series solutions of
3D free convection flow on a curved smooth surface with
isothermal properties. Singh et al. [38] continued the re-
search of Xu et al. [37] by considering the transfer effects of
mass. Admon et al. [39] worked on three-dimensional
unsteady boundary layer stagnation flow with free con-
vection effects for an ambient fluid.

In this study, we have explored by considering the
gyrotactic motile microorganisms in the flow model of
Farooq and Xu [40] and assumed viscous, steady, incom-
pressible, laminar, and free convection nanofluid flow with
gyrotactic motile microorganisms and nanoparticles. )e
governing Navier–Stokes, energy conservation, concentra-
tion of nanoparticle, and microorganisms’ density equations
are changed into nonlinear ODEs along with the boundary
conditions by applying an appropriate similarity transfor-
mation. )e system of ODEs is numerically simulated by
using a MATLAB routine bvp4c and examined the influ-
ences of distinct physical parameters on microorganisms’
density, velocity, nanoparticles concentration, and tem-
perature. )e influence of that physical parameter on local
microorganism’s density, local Sherwood number, and local
Nusselt number are also examined to comprehend the
overall flow dynamics and importance of physical param-
eters on flow physics.

2. Mathematical Model

Consider a 3D viscous, steady, laminar, and incompressible
free convection nanofluid flow with gyrotactic motile mi-
croorganisms and nanoparticles. In Figure 1, the schematic
diagram of the physical fluid flow is presented. )e 3D
rectangular system along with three velocity components is
shown, where x− and y− axes are along the body surface, and
the flow is taken along z− axis, which is orthogonal to the
surface of the body.

Cw is the concentration of nanoparticle, Tw is temper-
ature, and Nw is the microorganisms density. For the case of
ambient fluid these are C∞, T∞ , and N∞, respectively, and
g is the gravitational force. Furthermore, it is supposed that
the concentration of nanoparticles is not concentrated and
uses Oberbeck–Boussinesq approximation. Based on the
abovementioned assumptions and according to Buongiorno
[7] and Kuznetsov and Nield [8] models, the governing
equations in the scalar form are
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Here, the velocity component u is along x− axis, v is
along y-axis, and s is along z− axis. ] is the fluid kinematic
viscosity and 􏽥] is the standard swim velocity of the gyro-
tactic microorganisms defined as follows:

􏽥] �
􏽥bWc

ΔC
􏼠 􏼡

zC

zz
. (7)

)e boundary conditions for equations (1)–(6) are

u � v � s � 0, T � Tw, C � Cw, N � Nw, at z � 0, u⟶ 0, v⟶ 0,

· C⟶ C∞, T⟶ T∞, N⟶ 0, as z⟶∞.
(8)
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Figure 1: Physical flow configuration.
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)e following similarity transformations are introduced:

η � Gr1/4az,

u � ]a
2Gr1/2xf′,

v � ]a
2Gr1/2cyh′,

s � − ]aGr1/4(f + ch),

θ(η) �
T − T∞

Tw − T∞
,

ϕ(η) �
C − C∞

Cw − C∞
,

w(η) �
N − N∞

Nw − N∞
.

(9)

Substituting (9) into equations (1)–(6) and (8), we get
ODE’s (10)–(14) and boundary conditions (15) as follows:

f
‴

+(f + ch)f″ − f′( 􏼁
2

+ θ −
Nr

PrGr

􏼠 􏼡ϕ −
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f(0) � 0,

f′(0) � 1,
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h(∞) � 0,

h′(∞) � 0,

θ(0) � 1,
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ϕ(0) � 1,

ϕ(∞) � 0,

w(0) � 1.

(15)

In the equation (16), nondimensional physical param-
eters, mixed convection parameter (Rb), Prandtl number
(Pr), Brownian parameter (Nb), the buoyancy parameter
(Nr), Schmidt number (Sc), the thermophoresis parameter
(Nt), microoganisms’ concentration difference parameter
(σ), Peclet number (Pe), Lewis number (Le), and Grashof
number (Gr) are defined by
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where α is the thermal diffusivity. To physically describe the
flow dynamics, the important flow quantities such as the
skin friction Cfx and Cfy, the Nusselt number Nux and Nuy,
the microorganisms’ density Qnxand Qny, and wall mass flux
Qmx and Qmy in x− and y− directions are defined as follows:
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Substituting (9) in (17), we obtain

Re1/2x Cfx � f″(0),

Re1/2y Cfy � h″(0),

Re(− 1/2)
x Nux � Re− ,(1/2)

y Nuy � − θ′(0),

Re(− 1/2)
x Qmx � Re− 1/2

y Qmy � − ϕ′(0),

Re(− 1/2)
x Qnx � Re− 1/2

y Qny � − w′(0).

(19)

Here, the Reynolds number Rex � uxx/] is along
x− coordinate and Rey � uyx/] is along y− coordinates.

3. Results and Discussion

)e system of ODEs (10)–(14) along with the boundary
condition (15) is coupled and nonlinear. To solve this system
numerically, we used MATLAB-based routine bvp4c. For
this purpose, we convert the nonlinear ODEs into 1st order
differential equations. For this, we suppose

f � f1,
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f″ � f3,

f
‴

� f3′,
h � f4,

h′ � f5,

h″ � f6,

h
‴

� f6′,
θ � f7,

θ′ � f8,

θ″ � f8′,
ϕ � f9,

ϕ′ � f10,

ϕ″ � f10′ ,
w � f11,

w′ � f12,

w″ � f12′ .

(20)

Replacing the above assumption into equations
(10)–(14), we obtain
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which subjected to the given conditions:

f1(0) � 1,

f2(0) � 0,

f2(∞) � 0,

f4(0) � 0,

f5(0) � 0,

f5(∞) � 0,

f7(0) � 1,

f7(∞) � 0,

f9(0) � 1,

f9(∞) � 0,

f11(0) � 1,

f11(∞) � 0.

(22)

Due to the abovementioned efforts, the ODEs (10)–(14)
with corresponding conditions (15) are numerically solved
by MATLAB package bvp4c. It is noticed that the results
obtained from bvp4c have an error less than 1 × 10− 8.

In the following discussion, we have analyzed the influ-
ences of different physical numbers such as Nt, Le, Nb, Sc, Pe,
and Nr on the temperature, velocity, microorganisms’ den-
sity, and nanoparticles’ concentration graphically. Similarly,
how the parameters influenced physically designed measures
such as skin friction, Nusselt number, motilemicroorganism’s
density, and wall mass flux are also discussed in detail and
presented in tables.

)e buoyancy coefficient Nr effects on fluid velocity are
described in Figures 2 and 3. )e buoyancy parameter in-
creases due to increase in the density difference; therefore,
fluid flow decreases; however, the difference in density
becomes zero when there is no buoyancy resulting in
maximum fluid flow. Figures 4 and 5 present the behaviour
of dimensionless concentration and temperature profiles for
various values of Le for buoyancy backed flow Tw >T∞. )e
temperature is maximum on the wall, but, as soon as we walk
away from the wall, the temperature starts to decrease, and it
approaches to the free stream temperature asymptotically.
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Note that an inverse relation is found between concentration
and temperature profiles against Lewis number, as they
decrease for high Lewis number, Le. )at is why, the
boundary layer thickness reduces for high Lewis number,
but the impact of Le on concentration profile is more no-
ticeable. )e mass diffusivity decreases for high Lewis
number, resulting in low transfer of mass across the fluid.

Figures 6 and 7 describe the thermophoresis Nt impact
on nanoparticles’ concentration profile and temperature
profile. An enhancement in the nanoparticles concentra-
tion and temperature graph of the fluid is observed for high
values of Nt ; therefore, the nanoparticles increase the mass
and heat transmission. It is also remarked that Nt effec-
tively influences the concentration portray. It can be ob-
served that the negative value of Nt specifies a hot surface,

but positive values of Nt specifies a cold surface. In case of
the warm surface, Nt declines the nanoparticle volume
fraction boundary layer apart from the exterior since a hot
top repulse the submicron-sized particles from it, thereby
establishing a comparatively particle-free film close to the
surface. As an outcome, the thermal, momentum, and
diffusion boundary profiles are organized just outside.
Specifically, the impact of enhancing Nt is restricted to
moderately declining the wall slope of the nanoparticle
volume fraction portray but expanding the nanoparticle
volume fraction. It is justified for smaller Lewis number Le
for which the Brownian diffusion Nb impacts are greater
analogous to the convection influences. Although, for
higher Le, the diffusion impact is minimal than convection
impacts; hence, Nt is expected to change the nanoparticle
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volume fraction boundary layer remarkably. However,
thermophoresis impact is crucial in mixed convection of
nanofluids, and there are other parameters that may be
assumed and have impacts. Such influences incorporate
decline in essential kinematic viscosity of nanofluid due to
the existence of nanoparticles and density alteration cause
of variant volume fraction with heat capacity of the
nanofluid. Contrarily, it is presented that the separation
element for ordinary nanofluids is positive, and density
alteration by cause of modified volume fraction of nano-
particles, known as particulate buoyancy force, assists
nanofluid to have higher convective heat transmission.

Figures 8 and 9 show the significant changes in the
temperature, and nanoparticles’ concentration graph
occurred due to changes in Brownian parameter Nb; when

there exists a temperature gradient in the flow region of
the propagation, tiny particles scatter rapidly in hotter
area and slower in colder domain. )e combined impact
of the differential distribution of the particles is their
movement from hotter to colder region of the fluid area.
)at is, in the existence of a temperature gradient, par-
ticles migrate on the mean average rate in opposition to
this gradient. )is average motion is called thermopho-
resis. )e fluid temperature increases when Nb increases
due to the rapid increase in heat transfer but concen-
tration profile decreases when Nb increases because the
mass transfer decreases due to the enhancement in Nb. In
Figures 10 and 11, the effect of thermophoresis and
Brownian parameter on microorganisms’ density w(η) is
evaluated. )e density of microorganisms increases
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Figure 9: Plot of ϕ(η) for variation in Nb when
Pr � Le � Gr � Sc � Pe � 1.0, c � 0.5, and Nt � Nr � 0.1.
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Figure 6: Plot of θ(η) for variation in Nt when
Pr � Le � Gr � Sc � Pe � 1.0, c � 0.5, and Nr � Nb � 0.1.
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continuously as Nt increases; however, it decreases as Nb

increases. )is behavior indicates that the addition of
nanoparticles with bioconvection can affect the distri-
bution and classification microorganisms’ density in the
fluid to a big scale. Figures 12 and 13, present the impact
of Peclet (Pe) and Schmidt number (Sc) on motile mi-
croorganisms. Pe is the remarkable fact to investigate the
microorganisms swimming in the fluid, and it can be
described as the ratio between maximum cell swimming
speed and diffusion of microorganisms. Diffusion hap-
pens when a material migrates from a region of higher
concentration to lower concentration. It explores the
tendency of the mass in the fluid. It is established that
diffusivity of microorganisms is declined when an ex-
pansion is occur inPe. As a consequence, the

microrotation diffusion deduces. Hence, the thickness of
boundary layer reduces for motile microorganisms.

Table 1 expresses the ranges of physical parameters for a
stable solution. Table 2 describes the impact of Prandtl
number and bouncy parameter on local skin friction coef-
ficients along x− and y-axes. It is clear that these two pa-
rameters have considerable effect on local skin friction.
Enlarging both Nr and Pr leads to decline in Cfx and Cfx. In
Table 3, the impact of Nt and Nb on Sherwood number and
local Nusselt number is presented. When Nb increases, the
Nusselt number reduces, but the Sherwood number in-
creases. In Table 4, the impact of Pe and Sc on microor-
ganisms density is discussed. )e quantitative data indicates
an increase in the density of microorganisms for higher
values of both Pe and. Sc
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Figure 10: Plot of w(η) for variation in Nt when
Pr � Gr � Le � Sc � Pe � 1.0, c � 0.5, and Nr � Nb � 0.1.
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Figure 11: Plot of w(η) for variation in Nb when
Pr � Gr � Le � Sc � Pe � 1.0, c � 0.5, and Nr � Nt � 0.1.

1

0.8

0.9

0.7

W
 (η

)

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4

η
5 6 7 8

Pe = 1
Pe = 3
Pe = 5

Figure 12: Plot of w(η) for variation in Pe when
Pr � Gr � Le � Sc � 1.0, c � 0.5, and Nr � Nt � Nb � 0.1.
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4. Conclusions

A detailed analysis of boundary layer steady flow with
nanoparticles and gyrotactic microorganisms is presented.
)e transformed boundary value problem is deal numeri-
cally with MATLAB bvp4c ODEs solver. )e influence of
different values of parameters Nb, Nr, Nb, and Le on the
fluid velocity, concentration of nanoparticles, temperature,
and motile microorganism density profiles are explained
qualitatively. Some important points obtained from the
results are as follows:

(i) )e flow enhances in both directions along x− and
y-axes as Nb and Le increase.

(ii) )e velocity profile of fluid reduces as the values of
Nt and Nr enlarge.

(iii) Temperature of the fluid increases as the parame-
tersNb, Nt, and Nr increase but decrease as Le
increases.

(iv) )e nanoparticles volume fraction profile de-
creases for high values of Nb and Le. )e same
trend of nanoparticles profile is observed for Nt

and Nr.
(v) )e microorganisms’ density profile decreases for

increasing values of Nb, Pe , and Sc.

Nomenclature

Pr: Prandtl number
Sc: Bioconvection schmidt number
C: Nanofluid volume fraction [kmolm− 3]

T: Boundary layer temperature [K]

Cw: Wall nanoparticle volume fraction
Tw: Wall temperature [K]

C∞: Ambient nanoparticle volume fraction
T∞: Free stream temperature [K]

DB: Brownian diffusion coefficient
u, v: Velocity components [ms− 1]

DT: )ermophoretic diffusion coefficient
􏽥υ: Mean swimming velocity of microorganisms

[ms− 1]

Dn: Microorganisms’ diffusivity
υ: Velocity vector
Ec: Eckert number
Wc: Maximum speed of swimming cell
g: Gravitational constant [ms− 2]

x, y, z: Rectangular coordinates
Gr: Grash of number
ΔN: Characteristic motile microorganisms’ density

difference
Le: Lewis number
θ(η): Dimensionless temperature
N: Microorganisms’ concentration
ϕ(η): Dimensionless nanoparticle volume fraction
Nb: Brownian motion parameter
Rex: )ermophoresis diffusion coefficient
f, h, θ, ϕ, w: Dependent variables
]: Kinematic viscosity [m2s− 1]

Pe: Peclet number
ρf: Nanofluid density [kgm− 3]

Nt: )ermophoresis parameter
po: Stagnation pressure
p: Pressure [kPa]

Sh: Sherwood number
Cf: Skin friction coefficient
Rb: Bio convection Rayleigh number
Nr: Buoyancy parameter.
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Table 1: )e range of distinct parameters for a stable solution.

Pe Le Nb Nt Pr Gr
0–25 1.0 0.1 0.1 1.0 1.0
1.0 0.1–20 0.1 0.1 1.0 1.0
1.0 1.0 0.1–2 0.1 1.0 1.0
1.0 1.0 0.1 0.1–2 1.0 1.0
1.0 1.0 0.1 0.1 1–20 1.0
1.0 1.0 0.1 0.1 1.0 1–15
)e bold values indicate the ranges of physical parameters for stable
solution.

Table 2: Local skin frictionRe1/2x Cfx � f″(0) and Re1/2y Cfy �

h″(0) along x− and y− axes, respectively, corresponding to various
values of Nr and Pr.

Nr f″(0) h″(0) Pr f″(0) h″(0)

0.1 0.7023 0.7439 1 0.7023 07439
0.3 0.5556 0.5845 5 0.5743 0.5934
0.4 0.4765 0.4980 1 0.5072 0.5200

Table 3: Local Nusselt number in comparison with local Sherwood
number Re(− 1/2)

x Nux � Re(− 1/2)
y Nuy � − θ′(0) and Re− (1/2)

x Shx �

Re− (1/2)
y Shy � − ϕ′(0), for different Nt and Nb.

Nb − θ′(0) − ϕ′(0) Nt f″(0) h″(0)

0.1 0.4301 0.2703 0.1 0.4301 0.2703
0.8 0.3106 0.4233 0.3 0.3948 − 0.0738
1.5 0.2118 0.4914 0.4 0.3782 − 0.2223

Table 4: Density of motile microorganisms Re− (1/2)
x Qnx � − w(0),

for various values of Pe and Sc.

Pe − w′(0) Sc − w′(0)

1 0.7179 0.5 0.5727
3 1.1232 1.5 0.8206
5 1.5751 3 1.0311
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