
Research Article
A New Gauss Sum and Its Recursion Properties

Li Chen

School of Statistics, Xi’an University of Finance and Economics, Xi’an, Shaanxi, China

Correspondence should be addressed to Li Chen; chenli_0928@163.com

Received 25 August 2021; Accepted 14 September 2021; Published 27 September 2021

Academic Editor: Wenpeng Zhang

Copyright © 2021 Li Chen. +is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce a new Gauss sum, and then we use the elementary and analytic methods to study its various properties
and prove several interesting three-order linear recursion formulae for it.

1. Introduction

Let q> 1 be an integer. For any Dirichlet character χ modulo
q, the classical Gauss sums G(m, χ; q) is defined as follows:

G(m, χ; q) � 􏽘

q

a�1
χ(a)e

ma
q

􏼠 􏼡, (1)

where m is any integer, e(y) � e2πiy, and i2 � − 1.
For convenience, we write τ(χ) � G(1, χ; q). +e Gauss

sum plays a very important role in the study of elementary
number theory and analytic number theory, and many
number theory problems are closely related to it. Because of
this, many scholars have studied its various properties and
obtained a series of important results. For example, if
(m, q) � 1, then we have the identity (see [1, 2])

G(m, χ; q) � χ(m)G(1, χ; q) � χ(m)τ(χ). (2)

If χ is any primitive character modulo q, then one has
also G(m, χ; q) � χ(m)τ(χ) and the identity |τ(χ)| �

�
q

√ .
In addition, Zhang and Hu [3] (or Berndt and Evans [4])

studied the properties of some special Gauss sums and
obtained the following interesting results: let p be a prime
with p ≡ 1mod 3. +en for any third-order character λ
modulo p, one has the identity

τ3(λ) + τ3(λ) � dp, (3)

where d is uniquely determined by 4p � d2 + 27b2 and
d ≡ 1mod 3.

Chen and Zhang [5] studied the case of the fourth-order
character modulo p and obtained the following conclusion:
let p be a prime with p ≡ 1mod 4. +en for any four-order
character χ4 modulo p, we have the identity

τ2 χ4( 􏼁 + τ2 χ4( 􏼁 � 2
��
p

􏽰
· α, α �

1
2

􏽘

p− 1

a�1

a + a

p
􏼠 􏼡, (4)

where (∗/p) � χ2 denotes Legendre’s symbol modulo p.
+e constant α � α(p) in (4) has a special meaning. In

fact, we have the identity (For this, see+eorems 4–11 in [6])

p � α2 + β2 ≡
1
2

􏽘

p− 1

a�1

a + a

p
􏼠 􏼡⎛⎝ ⎞⎠

2

+
1
2

􏽘

p− 1

a�1

a + ra

p
􏼠 􏼡⎛⎝ ⎞⎠

2

,

(5)

where r is any quadratic nonresidue modulo p. +at is,
χ2(r) � − 1.

Some other results related to various Gauss sums and
their recursion properties can also be found in references
[7–10], and we will not list them all here.

In this paper, we introduce a new Gauss sum
A(m) � A(m, p), which is defined as follows: let p be an odd
prime. For any integer m with (m, p) � 1, we define

A(m) � 􏽘

p− 1

a�1
χ2(a) e

ma
3

p
􏼠 􏼡, Gn(p) � 􏽘

p− 1

m�1
A
2n

(m), (6)

where χ2 � (∗/p) denotes the Legendre’s symbol modulo p.
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It is clear that if (p − 1, 3) � 1, then note that χ32 � χ2;
from the properties of the reduced residue systemmodulo p,
we have

A(m) � 􏽘

p− 1

a�1
χ2 a

3
􏼐 􏼑e

ma3

p
􏼠 􏼡

� 􏽘

p− 1

a�1
χ2(a)e

ma
p

􏼠 􏼡 � χ2(m) · τ χ2( 􏼁.

(7)

So this time, A(m) � G(m, χ2; p) � χ2(m)τ(χ2) be-
comes the classical Gauss sum.

If p ≡ 1mod 3, then we only knew that A(m) is a real
number, if p ≡ 1mod 12; and A(m) is a pure imaginary
number, if p ≡ 7mod 12. In fact if p ≡ 1mod 12, then note
that χ2(− 1) � 1, and this time we have

A(m) � 􏽘

p− 1

a�1
χ2(a)e

− ma3

p
􏼠 􏼡

� 􏽘

p− 1

a�1
χ2(− a)e

m(− a)
3

p
􏼠 􏼡 � A(m).

(8)

If p ≡ 7mod 12, then note that χ2(− 1) � − 1, and this
time we have

A(m) � 􏽘

p− 1

a�1
χ2(a)e

− ma3

p
􏼠 􏼡

� − 􏽘

p− 1

a�1
χ2(− a)e

m(− a)
3

p
􏼠 􏼡 � − A(m).

(9)

But beyond these relatively simple properties, we do not
know anything else. In this paper, we shall focus on the cal-
culating problems of Gn(p). We shall use the analytic methods
to give an interesting three-order linear recursion formula for
Gn(p). +at is, we shall prove the following two results.

Theorem 1. Let p be an odd prime with p ≡ 7mod 12. 'en
for any integer n≥ 3, we have the recursion formula

Gn(p) � − 9pGn− 1(p) − 6p 4p − d
2

􏼐 􏼑Gn− 2(p)

− p 4p − d
2

􏼐 􏼑
2
Gn− 3(p),

(10)

where d is uniquely determined by 4p � d2 + 27b2 and
d ≡ 1mod 3, and the three initial values G0(p) � p − 1,
G1(p) � − 3(p − 1)p, and G2(p) � (p − 1)p(11p + 4d2).

Theorem 2. Let p be an odd prime with p ≡ 1mod 12. 'en
for any integer n≥ 3, we have the recursion formula

Gn(p) � 9pGn− 1(p) − 6p 4p − d
2

􏼐 􏼑Gn− 2(p)

+ p 4p − d
2

􏼐 􏼑
2
Gn− 3(p),

(11)

where d is the same as in 'eorem 1, and the three initial
values G0(p) � p − 1, G1(p) � 3(p − 1)p, and G2(p) �

(p − 1)p(11p + 4d2).

Of course, our theorems are also true for all integers
n< 0. In particular, we have the following conclusions:

Theorem 3. For any prime p with p ≡ 1mod 3, we have the
identities

􏽘

p− 1

m�1
|A(m)|

4
� (p − 1) · p · 11p + 4d

2
􏼐 􏼑,

􏽘

p− 1

m�1

1
|A(m)|

4 �
2
243

·
p − 1

b
4 ,

(12)

where b is the same as defined in (3), i.e., 4p � d2 + 27b2.

2. Several Lemmas

In this section, we first give several simple lemmas. Of
course, the proofs of these lemmas and theorems need some
knowledge of character sums and analytic number theory.
+ey can be found in many number theory books, such as
[1, 2, 6], here we do not need to list.

Lemma 1. Let p be a prime with p ≡ 1mod 6. 'en for any
six-order character ψmodp, we have the identity

τ3(ψ) + τ3(ψ) �
p
1/2

· d
2

− 2p􏼐 􏼑, ifp ≡ 1mod 12,

− i · p
1/2

· d
2

− 2p􏼐 􏼑, ifp ≡ 7mod 12,

⎧⎪⎨

⎪⎩

(13)

where i2 � − 1, d is uniquely determined by 4p � d2 + 27b2,
and d ≡ 1mod 3.

Proof. For this, refer the study of Chen [11]. □

Lemma 2. Let p be a prime with p ≡ 7mod 12, χ2 denote
Legendre’s symbol modulo p, and λ denote any three-order
Dirichlet character modulo p. 'en for any integer m with
(m, p) � 1, we have the identities

A(m) � χ2(m)τ χ2( 􏼁 + χ2(m) · λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑,

A
2
(m) � − p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑,

A
3
(m) � 3χ2(m)τ χ2( 􏼁A

2
(m) + χ2(m)τ χ2( 􏼁 4p − d

2
􏼐 􏼑.

(14)

2 Journal of Mathematics



Proof. It is clear that for any integer r with (r, p) � 1, from
the properties of the three-order character modulo p, we
have

1 + λ(r) + λ(r) �
3, if r is a 3rd residuemodulop,

0, otherwise.
􏼨

(15)

It is clear that χ2 � χ2 is a real character modulo p; from
(15) and the properties of the classical Gauss sums, we have

A(m) � 􏽘

p− 1

a�1
χ2 a

3
􏼐 􏼑e

ma
3

p
􏼠 􏼡 � 􏽘

p− 1

a�1
χ2(a)(1 + λ(a) + λ(a))e

ma

p
􏼠 􏼡

� 􏽘

p− 1

a�1
χ2(a)e

ma

p
􏼠 􏼡 + 􏽘

p− 1

a�1
χ2(a)λ(a)e

ma

p
􏼠 􏼡 + 􏽘

p− 1

a�1
χ2(a)λ(a)e

ma

p
􏼠 􏼡

� χ2(m)τ χ2( 􏼁 + χ2(m)λ(m)τ χ2λ( 􏼁 + χ2(m)λ(m)τ χ2λ􏼐 􏼑.

(16)

Note that p ≡ 3mod 4, χ2(− 1) � − 1, λ(− 1) � 1,
τ(χ2) � i ·

��
p

√ , λ2 � λ, and the identity τ(χ2λ)τ(χ2λ) �

χ2(− 1)τ(χ2λ)τ(χ2λ) � − p; from (16), we also have

A
2
(m) � χ2(m)τ χ2( 􏼁 + χ2(m)λ(m)τ χ2λ( 􏼁 + χ2(m)λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑

2

� − p + 2τ χ2( 􏼁 λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑 + λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑
2

� − 3p + 2τ χ2( 􏼁 χ2(m)A(m) − τ χ2( 􏼁( 􏼁 + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑

� − p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑.

(17)

From (16) and (17) and Lemma 1, we have

A
3
(m) � χ2(m)τ χ2( 􏼁 + χ2(m)λ(m)τ χ2λ( 􏼁 + χ2(m)λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑

× − p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

� − pA(m) + 2χ2(m)τ χ2( 􏼁A
2
(m) + χ2(m)τ χ2( 􏼁 λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

+ χ2(m) τ3 χ2λ( 􏼁 + τ3 χ2λ􏼐 􏼑􏼐 􏼑 − p A(m) − χ2(m)τ χ2( 􏼁( 􏼁

� 2χ2(m)τ χ2( 􏼁A
2
(m) + χ2(m)τ χ2( 􏼁 A

2
(m) + p − 2χ2(m)τ χ2( 􏼁A(m)􏼐 􏼑

− 2pA(m) + χ2(m)τ χ2( 􏼁p − χ2(m)τ χ2( 􏼁 d
2

− 2p􏼐 􏼑

� 3χ2(m)τ χ2( 􏼁A
2
(m) + χ2(m)τ χ2( 􏼁 4p − d

2
􏼐 􏼑.

(18)
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Now Lemma 2 follows from (16)–(18). □ Lemma 3. Let p be an odd prime with p ≡ 1mod 12. 'en
for any m with (m, p) � 1, we have the identities

A(m) � χ2(m)τ χ2( 􏼁 + χ2(m) · λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑,

A
2
(m) � p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑,

A
3
(m) � 3χ2(m)

��
p

􏽰
A
2
(m) − χ2(m)

��
p

􏽰
4p − d

2
􏼐 􏼑.

(19)

Proof. Note that p ≡ 1 modulo 4, χ2(− 1) � 1, τ(χ2) �
��
p

√ ,
λ2 � λ, and τ(χ2λ)τ(χ2λ) � p; from (16) and the methods of
proving Lemma 2, we also have

A(m) � χ2(m)τ χ2( 􏼁 + χ2(m)λ(m)τ χ2λ( 􏼁 + χ2(m)λ(m)τ χ2λ􏼐 􏼑. (20)

A
2
(m) � χ2(m)τ χ2( 􏼁 + χ2(m)λ(m)τ χ2λ( 􏼁 + χ2(m)λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑

2

� p + 2τ χ2( 􏼁 λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑 + λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑
2

� 3p + 2τ χ2( 􏼁 χ2(m)A(m) − τ χ2( 􏼁( 􏼁 + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑

� p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑.

(21)

A
3
(m) � χ2(m)τ χ2( 􏼁 + χ2(m)λ(m)τ χ2λ( 􏼁 + χ2(m)λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑

× p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

� pA(m) + 2χ2(m)τ χ2( 􏼁A
2
(m) + χ2(m)τ χ2( 􏼁 λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

+ χ2(m) τ3 χ2λ( 􏼁 + τ3 χ2λ􏼐 􏼑􏼐 􏼑 + p A(m) − χ2(m)τ χ2( 􏼁( 􏼁

� 2χ2(m)τ χ2( 􏼁A
2
(m) + χ2(m)τ χ2( 􏼁 A

2
(m) − p − 2χ2(m)τ χ2( 􏼁A(m)􏼐 􏼑

+ 2pA(m) + χ2(m)τ χ2( 􏼁p + χ2(m)τ χ2( 􏼁 d
2

− 2p􏼐 􏼑

� 3χ2(m)
��
p

􏽰
A

2
(m) − χ2(m)

��
p

􏽰
4p − d

2
􏼐 􏼑.

(22)

It is clear that Lemma 3 follows from (20)–(22). □

3. Proofs of the Theorems

Now we shall complete the proofs of our all results. First we
prove +eorem 1. Let p be an odd prime with p ≡ 7mod 12,

and then note that τ2(χ2) � − p; from Lemma 2 and the
properties of the character sums modulo p, we have

􏽘

p− 1

m�1
A
2
(m) � 􏽘

p− 1

m�1
− p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

� − p(p − 1) + 2 􏽘

p− 1

m�1
τ χ2( 􏼁 τ χ2( 􏼁 + λ(m)τ χ2λ( 􏼁 + λ(m)τ χ2λ􏼐 􏼑􏼐 􏼑

� − (p − 1)p + 2 􏽘

p− 1

m�1
τ2 χ2( 􏼁 � − 3(p − 1)p.

(23)
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From (23) and Lemmas 1 and 2, we have

􏽘

p− 1

m�1
A
4
(m) � 􏽘

p− 1

m�1
− p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

2

� (p − 1)p
2

− 4p 􏽘

p− 1

m�1
χ2(m)τ χ2( 􏼁A(m) − 4p 􏽘

p− 1

m�1
A
2
(m) + 2(p − 1)p

2

+ 4 􏽘

p− 1

m�1
χ2(m)τ χ2( 􏼁 λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑A(m)

� 19(p − 1)p
2

+ 4(p − 1)τ χ2( 􏼁 τ3 χ2λ( 􏼁 + τ3 χ2λ􏼐 􏼑􏼐 􏼑

� 19(p − 1)p
2

+ 4(p − 1)p d
2

− 2p􏼐 􏼑 � (p − 1) 11p + 4d
2

􏼐 􏼑p.

(24)

If n≥ 3, then 2n≥ 6, from Lemma 2, we have

A
6
(m) � − 9pA

4
(m) − 6p 4p − d

2
􏼐 􏼑A

2
(m) − p 4p − d

2
􏼐 􏼑

2
,

(25)

A
2n

(m) � − 9pA
2n− 2

(m) − 6p 4p − d
2

􏼐 􏼑A
2n− 4

(m)

− p 4p − d
2

􏼐 􏼑
2
A
2n− 6

(m).
(26)

From (23)–(26) and the definition of Gn(p), we may
immediately deduce the three-order linear recursion
formula

Gn(p) � − 9pGn− 1(p) − 6p 4p − d
2

􏼐 􏼑Gn− 2(p)

− p 4p − d
2

􏼐 􏼑
2
Gn− 3(p),

(27)

with the three initial values G0(p) � p − 1, G1(p) �

− 3(p − 1)p, and

G2(p) � (p − 1) 11p + 4d
2

􏼐 􏼑p. (28)

+is proves +eorem 1.
Now we prove +eorem 2. If p be an odd prime with

p ≡ 1mod 12, then note that χ2(− 1) � 1 and τ(χ2) �
��
p

√ ;
from Lemma 3, we have

A
6
(m) � 9pA

4
(m) − 6p 4p − d

2
􏼐 􏼑A

2
(m) + p 4p − d

2
􏼐 􏼑

2
,

(29)

A
2n

(m) � 9pA
2n− 2

(m) − 6p 4p − d
2

􏼐 􏼑A
2n− 4

(m)

+ p 4p − d
2

􏼐 􏼑
2
A
2n− 6

(m).
(30)

It is clear that from Lemmas 1 and 3, we have

G1(p) � 􏽘

p− 1

m�1
A
2
(m) � p · 􏽘

p− 1

m�1
1 + 2 􏽘

p− 1

m�1
χ2(m)τ χ2( 􏼁A(m) � 3(p − 1)p. (31)

􏽘

p− 1

m�1
A
4
(m) � 􏽘

p− 1

m�1
p + 2χ2(m)τ χ2( 􏼁A(m) + λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

2

� (p − 1)p
2

+ 4(p − 1)p
2

+ 4p 􏽘

p− 1

m�1
A
2
(m) + 2(p − 1)p

2

+ 4
��
p

􏽰
􏽘

p− 1

m�1
χ2(m)A(m) λ(m)τ2 χ2λ( 􏼁 + λ(m)τ2 χ2λ􏼐 􏼑􏼐 􏼑

� 19(p − 1)p
2

+ 4(p − 1)
��
p

􏽰
τ3 χ2λ( 􏼁 + τ3 χ2λ􏼐 􏼑􏼐 􏼑

� 19(p − 1)p
2

+ 4(p − 1)p d
2

− 2p􏼐 􏼑 � (p − 1)p 4d
2

+ 11p􏼐 􏼑.

(32)

From (30)–(32) and the definition of Gn(p), we have the
three-order linear recursion formula

Gn(p) � 9pGn− 1(p) − 6p 4p − d
2

􏼐 􏼑Gn− 2(p)

+ p 4p − d
2

􏼐 􏼑
2
Gn− 3(p), n≥ 3,

(33)
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where the three initial values G0(p) � p − 1, G1(p) � 3
(p − 1)p, and G2(p) � (p − 1)p(11p + 4d2).

+is proves +eorem 2.
Now we prove +eorem 3. First for any integer m with

(m, p) � 1, we have A(m)≠ 0. In fact if A(m) � 0; then from
(25), we have

A
6
(m) � − 9pA

4
(m) − 6p 4p − d

2
􏼐 􏼑A

2
(m) − p 4p − d

2
􏼐 􏼑

2

� − p · 27b
2

􏼐 􏼑
2

� 0.

(34)

+is is impossible. So we have A(m)≠ 0.
On the contrary, if p ≡ 7mod 12, then from (25), we

have

􏽘

p− 1

m�1
A
4
(m) � − 9p 􏽘

p− 1

m�1
A
2
(m) − 6p 4p − d

2
􏼐 􏼑(p − 1)

− p 4p − d
2

􏼐 􏼑
2

􏽘

p− 1

m�1

1
A

2
(m)

.

(35)

Combining (23), (24), and (35), we have

(p − 1) 11p + 4d
2

􏼐 􏼑p � 27p
2
(p − 1) − 6p(4p − d)

2
(p − 1)

− p 4p − d
2

􏼐 􏼑
2

􏽘

p− 1

m�1

1
A

2
(m)

,

(36)

or

􏽘

p− 1

m�1

1
A
2
(m)

� −
2(p − 1)

4p − d
2 . (37)

From (23), (24), and (37), we also have

􏽘

p− 1

m�1
A
2
(m) � − 9p(p − 1) − 6p 4p − d

2
􏼐 􏼑 􏽘

p− 1

m�1

1
A

2
(m)

− p 4p − d
2

􏼐 􏼑
2

􏽘

p− 1

m�1

1
A

4
(m)

,

(38)

or

􏽘

p− 1

m�1

1
A
4
(m)

�
6(p − 1)

4p − d
2

􏼐 􏼑
2. (39)

Similarly, if p ≡ 1mod 12, then from (31), (35), Lemma
3, and the methods of proving (39), we can also deduce that

􏽘

p− 1

m�1

1
A
4
(m)

�
6(p − 1)

4p − d
2

􏼐 􏼑
2. (40)

If p ≡ 1mod 12, then A(m) is a real number, so this time
we have

A
4
(m) � |A(m)|

4
. (41)

If p ≡ 7mod 12, then A(m) is a pure imaginary number;
this time we also have

|A(m)|
4

� A
2
(m) · A(m)

2
� A

2
(m) · (− A(m))

2
� A

4
(m).

(42)

It is clear that from (24), (32), (41), and (42), we can
deduce the identity

􏽘

p− 1

m�1
|A(m)|

4
� (p − 1) · p · 11p + 4d

2
􏼐 􏼑, p ≡ 1mod 3.

(43)

From (39)–(42) and noting that 4p � d2 + 27b2, we can
also deduce

􏽘

p− 1

m�1

1
|A(m)|

4 �
2
243

·
p − 1

b
4 , p ≡ 1mod 3. (44)

+is completes the proofs of our all results.

4. Conclusion

+e main result of this paper is to prove a three-order linear
recursion formula for one kind new Gauss sums. As an
application of this result, we obtained following conclusion:
for any prime p with p ≡ 1mod 3, we have the identities

􏽘

p− 1

m�1
|A(m)|

4
� (p − 1) · p · 11p + 4d

2
􏼐 􏼑,

􏽘

p− 1

m�1

1
|A(m)|

4 �
2
243

·
p − 1

b
4 .

(45)

+ese results not only gave the exact values for the fourth
power mean and its inverse fourth power mean of a new
Gauss sums, they are also some new contribution to research
in related fields.
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