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In this paper, we perform a further investigation for a weighted average of Gauss sums. By making use of some properties of the
cotangent function and the Bernoulli polynomials, we explicitly evaluate the weighted average of Gauss sums in terms of the
special values of Dirichlet L-functions at positive integers.

1. Introduction

Let q be a positive integer, and let χ be a Dirichlet character
modulo q. *e Gauss sum associated with χ is defined for an
arbitrary integer n (see, e.g., Section 8.5 in [1]).

G(n, χ) � 

q

r�1
χ(r)e

(2πirn/q)
, (1)

where i is the imaginary unit. In particular, the case n � 1 in
(1) is usually denoted by

τ(χ) � 

q

r�1
χ(r)e

(2πir/q)
. (2)

It is well known that various properties and applications
of τ(χ) appear in many books and papers. For example, an
important result of τ(χ) is as follows (see, e.g., *eorem 8.15
in [1]):

|τ(χ)| �
�
q

√
, (3)

if χ is a primitive Dirichlet character modulo q. We here
mention [2–5] for further explorations of (3). Moreover, it is
also demonstrated that some weighted averages of τ(χ) have
good distribution properties when χ is a nonprimitive
Dirichlet character modulo q. For example, let k be a positive
integer and let m be a positive real number, and Yi and
Zhang [6] used the estimate for character sums and the

method of trigonometric sums to study the mean value of
|τ(χ)|m with the weight of the inversion of |L(1, χ)|2k, where
L(s, χ) denotes the Dirichlet L-functions defined for a
complex number s and a Dirichlet character χ modulo q by
the series as follows:

L(s, χ) � 
∞

n�1

χ(n)

n
s , (R(s)> 1), (4)

and gave a sharper asymptotic formula. After that Liu and
Zhang [7] used some properties of primitive Dirichlet
character and some mean value formulas of Dirichlet
L-functions to study the high-order mean value of products
of τ(χ) and the generalized Bernoulli numbers and obtained
an interesting asymptotic formula. We also refer to [8] for a
further investigation for the high-order mean value of
products of τ(χ) and the generalized Bernoulli numbers.
More recently, Alkan [9] used a special evaluation method
for Dirichlet L-functions to consider the following weighted
average of Gauss sums:

Aχ(ω) �
1
q



q

r�1
ω

r

q
 G(r, χ), (5)

where ω(·) is a real-valued function defined on the interval
[0, 1] and depicted that the weighted averages of Gauss sums
Aχ(ω) and iAχ(ω) and the character values χ(m) at positive
integers m can be well approximated by linear combinations
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of the algebraic parts of special values of Dirichlet
L-functions under correct parity conditions (see, e.g.,
*eorems 1, 2, and 3 in [9]). *e special evaluation method
for Dirichlet L-functions posed by Alkan (see *eorem 4 in
[9]) states that if ω(x) � xm for a positive integer m, then for
a nonprincipal even Dirichlet character χ modulo q,

Aχ(ω) �

C2,m

L(2, χ)

π2
+ C4,m

L(4, χ)

π4
+ · · · + Cm,m

L(m, χ)

πm , 2 | m,

C
×
2,m

L(2, χ)

π2
+ C

×
4,m

L(4, χ)

π4
+ · · · + C

×
m− 1,m

L(m − 1, χ)

πm− 1 , 2 ∤m,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

and for an odd Dirichlet character χ modulo q,

Aχ(ω) �

D1,m

L(1, χ)

π
+ D3,m

L(3, χ)

π3
+ · · · + Dm,m

L(m, χ)

πm , 2 ∤m,

D
×
1,m

L(1, χ)

π
+ D

×
3,m

L(3, χ)

π3
+ · · · + D

×
m− 1,m

L(m − 1, χ)

πm− 1 , 2 | m,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where the coefficients C2k,m, C×
2k,m ∈ Q for a positive integer

k with 2k≤m and the coefficients D2j+1,m, D×
2j+1,m ∈ iQ for a

nonnegative integer j with 2j + 1≤m can be computed
recursively by using the Bernoulli numbers.

Motivated and inspired by the work of Alkan [9], in this
paper, we use some properties of the cotangent function and
the Bernoulli polynomials to study the above weighted
average of Gauss sums and determine the coefficients
appearing in (6) and (7) which can be explicitly evaluated by
the binomial coefficients. *e precise statements of our
results are as follows.

Theorem 1. Let ω(x) � xm for a positive integer m. 0en, for
a nonprincipal even Dirichlet character χ modulo q,

Aχ(ω) � −
1

m + 1


⌊m/2⌋

j�1

m + 1

2j

⎛⎝ ⎞⎠(− 1)
j(2j)! · L(2j, χ)

π2j
· 22j− 1 ,

(8)

and for an odd Dirichlet character χ modulo q,

Aχ(ω) � −
i

m + 1


⌊(m− 1/2)⌋

j�0

m + 1

2j + 1
⎛⎝ ⎞⎠(− 1)

j(2j + 1)! · L(2j + 1, χ)

π2j+1
· 22j

,

(9)

where ⌊x⌋ denotes the greatest integer less than or equal to real
number x, and the sum on the right hand side of (8) vanishes
when m � 1.

It becomes obvious that *eorem 1 gives the following
explicit evaluations of the coefficients appearing in Alkan’s
[9] formulas (6) and (7).

Corollary 1. Let k andm be positive integers, and let j be a
nonnegative integer. Suppose that C2k,m andC×

2k,m are the
same as those in (6) and D2j+1,m, D×

2j+1,m are the same as those
in (7). 0en,

C2k,m � C
×
2k,m � −

(− 1)
k

m + 1

m + 1

2k

⎛⎝ ⎞⎠
(2k)!

22k− 1 ,

D2j+1,m � D
×
2j+1,m � − i

(− 1)
j

m + 1

m + 1

2j + 1
⎛⎝ ⎞⎠

(2j + 1)!

22j
.

(10)

*is paper is organized as follows. In the second section,
we present some auxiliary results. *e third section con-
centrates on the features that have contributions to the proof
of *eorem 1.

2. Some Auxiliary Results

Before giving the proof of *eorem 1, we need the following
auxiliary results.

Lemma 1. Let q and n be positive integers with q≥ 2, and let χ
be a nonprincipal Dirichlet character modulo q. 0en,



q− 1

r�1
χ(r)cotn

πr

q
  � 

n

k�1

q
k
A(n, k)

πk
L(k, χ)

+ χ(− 1) 
n

k�1
(− 1)

kq
k
A(n, k)

πk
L(k, χ),

(11)

where A(n, k) is given for positive integers n, k with 1≤ k≤ n

by

A(n, k) � i
n− k(k − 1)!

2k


n

l�k

n

l

⎛⎝ ⎞⎠
2l

s(l, k)

(l − 1)!
, (12)

with s(l, k) being the Stirling numbers of the first kind.

Proof. (see *eorem 2.2 in [10] for details). □

Remark 1. It is worth noticing that the finite trigonometric
sum on the left hand side of (11) was also studied by Zhang
and Lin [11], where a nice connection between the Dirichlet
L-functions at even positive integers and the finite trigo-
nometric sum on the left hand side of (11) is established, and
some interesting identities involving finite trigonometric
sums are deduced, and a new proof for the mean square
value formula of Dirichlet L-functions showed in [12, 13] is
also presented.

Lemma 2. Let n be a positive integer, and let θr be a real
function defined on a positive integer r. 0en,

z
n− 1

za
n− 1(cot(πa))|a� θr/q( ) �

δ1,n

i
+ 2nπn− 1

i
n− 2

F
θr

q
, 1 − n ,

(13)

where δ1,n is the Kronecker delta given by δ1,n � 1 or 0
according to n � 1 or n≠ 1, respectively, and F(a, s) is the
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periodic zeta function given for a real number a and a
complex number s by

F(a, s) � 
∞

n�1

e
2πina

n
s , (R(s)> 1). (14)

Proof. (see Equation (2.28) in [10] for details). □

Lemma 3. Let q be a positive integer. 0en, if χ is an even
Dirichlet character modulo q, then for a positive integer n,

L(2n, χ) � (− 1)
n− 1π

2n
· 22n− 1

q · (2n)!


q

r�1
B2n

r

q
 G(r, χ), (15)

and if χ is an odd Dirichlet character modulo q, then for a
nonnegative integer n,

L(2n + 1, χ) � (− 1)
n
i
π2n+1

· 22n

q · (2n + 1)!


q

r�1
B2n+1

r

q
 G(r, χ),

(16)

where Bn(x) are the Bernoulli polynomials defined by the
generating function (see, e.g., [1, 14])

te
xt

e
t

− 1
� 
∞

n�0
Bn(x)

t
n

n!
, (|t|< 2π). (17)

Proof. It is obvious from (4) to see that

L(s, χ) � 
∞

m�0


q

l�1

χ(qm + l)

(qm + l)
s

�
1
q

s 

q

l�1
χ(l)ζ s,

l

q
 ,

(18)

where ζ(s, x) is the Hurwitz zeta function given with a real
number x> 0 and a complex number s by

ζ(s, x) � 
∞

n�0

1
(n + x)

s, (R(s)> 1). (19)

By taking s � n in (18), we get that for a positive integer n,

L(n, χ) �
1
q

n 

q

l�1
χ(l)ζ n,

l

q
 

�
χ(− 1)

q
n 

q

l�1
χ(l)ζ n, 1 −

l

q
 .

(20)

Since the Hurwitz zeta function at positive integers
satisfies the reflection formula (see, e.g., Section 4 in [15] or
equation (25) in [16]),

ζ(n, a) +(− 1)
nζ(n, 1 − a) �

(− 1)
n− 1π

(n − 1)!
·

z
n− 1

za
n− 1 cot(πa), (n≥ 2).

(21)

From (20) and (21), we obtain that for a positive integer
n≥ 2, if χ(− 1) � (− 1)n, then

L(n, χ) �
(− 1)

n− 1π
2q

n
· (n − 1)!



q

l�1
χ(l)

z
n− 1

za
n− 1cot(πa)|a�(1/q). (22)

Applying Lemma 2 to the right side of (22), we claim that
for a positive integer n≥ 2, if χ(− 1) � (− 1)n, then

L(n, χ) � i
n− 2(− 1)

n− 1πn
· 2n− 1

q
n

· (n − 1)!


q

l�1
χ(l)F

l

q
, 1 − n . (23)

We know from *eorem 12.13 in [1] that for a non-
negative integer n,

ζ(− n, x) � −
Bn+1(x)

n + 1
, (24)

which implies

F
l

q
, 1 − n  � 

∞

j�0


q

r�1

e
(2πi(qj+r)l/q)

(qj + r)
1− n

� −
1

nq
1− n



q

r�1
e

(2πirl/q)
Bn

r

q
 .

(25)

Hence, by inserting (25) into (23), in view of (1), we get
that for a positive integer n≥ 2, if χ(− 1) � (− 1)n, then

L(n, χ) � i
n− 2(− 1)

nπn
· 2n− 1

q · n!


q

r�1
Bn

r

q
 G(r, χ). (26)

It follows from (26) that (15) and (16) hold true for a
positive integer n. We next prove that the case n � 0 in (16) is
complete. In fact, since B1(x) � x − (1/2) (see, e.g., p. 266 in
[1]), by the familiar geometric sum stated in *eorem 8.1 in
[1] and the property of character sums described in*eorem
6.10 in [1], we discover that for an odd Dirichlet character χ
modulo q,



q

r�1
B1

r

q
 G(r, χ) � 

q− 1

l�1
χ(l) 

q

r�1

r

q
−
1
2

 e
(2πirl/q)

�
1
q



q− 1

l�1
χ(l) 

q− 1

r�1
re

(2πirl/q)

� 

q− 1

l�1
χ(l)

1
e

(2πil/q)
− 1

�
1
2



q− 1

l�1
χ(l)

e
(πil/q)

+ e
− (πil/q)

e
(πil/q)

− e
− (πil/q)

− 1 

�
1
2i



q− 1

l�1
χ(l)cot

πl

q
 .

(27)

On the other hand, by taking n � 1 in Lemma 1, in light
of s(n, n) � 1 for a nonnegative integer n (see, e.g., p. 214 in
[17]), we obtain that for an odd Dirichlet character χmodulo
q,
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q− 1

r�1
χ(r)cot

πr

q
  �

2q

π
L(1, χ). (28)

*us, combing (27) and (28) gives that for an odd
Dirichlet character χ modulo q,



q

r�1
B1

r

q
 G(r, χ) �

q

πi
L(1, χ), (29)

which means (16) holds true for the case n � 0. *is com-
pletes the proof of Lemma 3. □

Remark 2. Since the Bernoulli polynomials can be expressed
by the Bernoulli numbers in the following way (see, e.g.,
*eorem 12.12 in [1]),

Bn(x) � 
n

k�0

n

k
 Bkx

n− k
, (n≥ 0), (30)

where Bk is the k-th Bernoulli number; by applying (30) to
Lemma 3, one can easily get that if n is a positive integer and
r ∈ 0, 1{ } such that r and n have the same parity, and if
χ(− 1) � (− 1)r,

L(n, χ) � (− 1)
r+1

i
nπ

n
· 2n− 1

q · n!


2⌊(n/2)⌋

k�0

n

k

⎛⎝ ⎞⎠BkS(n − k, χ),

(31)

where S(m, χ) is given for a nonnegative integer m by

S(m, χ) � 

q

r�1

r

q
 

m

G(r, χ). (32)

Formula (31) was firstly discovered by Alkan *eorem 1
in [18] using the Fourier expansions of the Bernoulli peri-
odic functions and some properties of character sums and is
also a key ingredient for the proofs of formulas (6) and (7).
We here refer to *eorem 2 in [19] for an extension of (31).
For a different proof of Lemma 3, one can consult to
*eorem 1.3 in [20], where the author used the function
equation for the Hurwitz zeta function to give the proof.

3. The Proof of Theorem 1

We are now in a position to provide the detailed proof of
*eorem 1. It is well known that the Bernoulli polynomials
satisfy the following difference equation (see, e.g., *eorem
12.14 in [1]):

Bn(x + 1) − Bn(x) � nx
n− 1

, (n≥ 1), (33)

and the following addition formula (see, e.g., p. 275 in [1]):

Bn(x + y) � 
n

k�0

n

k
 Bk(x)y

n− k
, (n≥ 0). (34)

Hence, we obtain from (33) and (34) that for a positive
integer m,

x
m

�
Bm+1(x + 1) − Bm+1(x)

m + 1

�
1

m + 1


m+1

j�0

m + 1

j

⎛⎝ ⎞⎠Bj(x) − Bm+1(x)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

�
1

m + 1


m

j�0

m + 1

j

⎛⎝ ⎞⎠Bj(x).

(35)

It follows from (1), (35), and B0(x) � 1 (see, e.g., p. 266
[1]) that



q

r�1

r

q
 

m

G(r, χ) �
1

m + 1


m

j�0

m + 1

j

⎛⎝ ⎞⎠ 

q

r�1
Bj

r

q
  

q

l�1
χ(l)e

(2πilr/q)

�
1

m + 1


m

j�1

m + 1

j

⎛⎝ ⎞⎠ 

q

r�1
Bj

r

q
  

q

l�1
χ(l)e

(2πilr/q)

+
1

m + 1


q

l�1
χ(l) 

q

r�1
e

(2πilr/q)
.

(36)

Since G( ± q, χ) � 0 for a nonprincipal Dirichlet char-
acter χ modulo q, if χ is a nonprincipal Dirichlet character
modulo q, we have



q

r�1
Bj

r

q
  

q

l�1
χ(l)e

(2πilr/q)
� 

q− 1

r�1
Bj

r

q
  

q

l�1
χ(l)e

(2πilr/q)

� 

q− 1

r�1
Bj 1 −

r

q
  

q

l�1
χ(l)e

(2πil(q− r)/q)

� (− 1)
jχ(− 1) 

q

r�1
Bj

r

q
  

q

l�1
χ(l)e

(2πilr/q)
,

(37)

where we used the symmetric relation of the Bernoulli
polynomials (see, e.g., p. 274 [1]) as follows:

Bn(1 − x) � (− 1)
n
Bn(x), (n≥ 0). (38)

Moreover, the familiar geometric sum implies that



q

l�1
χ(l) 

q

r�1
e

(2πilr/q)
� 0. (39)

It follows from (1), (36), (37), and (39) that if χ is a
nonprincipal even Dirichlet character modulo q, then



q

r�1

r

q
 

m

G(r, χ) �
1

m + 1


m

j�1
2|j

m + 1

j

⎛⎜⎜⎝ ⎞⎟⎟⎠ 

q

r�1
Bj

r

q
 G(r, χ)

�
1

m + 1


⌊(m/2)⌋

j�1

m + 1

2j

⎛⎜⎜⎝ ⎞⎟⎟⎠ 

q

r�1
B2j

r

q
 G(r, χ),

(40)
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and if χ is an odd Dirichlet character modulo q, then



q

r�1

r

q
 

m

G(r, χ) �
1

m + 1


m

j�1
2∤j

m + 1

j

⎛⎝ ⎞⎠ 

q

r�1
Bj

r

q
 G(r, χ)

�
1

m + 1


⌊(m− 1/2)⌋

j�0

m + 1

2j + 1
⎛⎝ ⎞⎠ 

q

r�1
B2j+1

r

q
 G(r, χ).

(41)

Applying Lemma 3 to the right hand sides of (40) and
(41), we get that if χ is a nonprincipal even Dirichlet
character modulo q, then



q

r�1

r

q
 

m

G(r, χ) � −
q

m + 1


⌊(m/2)⌋

j�1

m + 1

2j

⎛⎝ ⎞⎠(− 1)
j(2j)! · L(2j, χ)

π2j
· 22j− 1 ,

(42)

and if χ is an odd Dirichlet character modulo q, then



q

r�1

r

q
 

m

G(r, χ) � −
qi

m + 1


⌊(m− 1/2)⌋

j�0

m + 1

2j + 1
⎛⎝ ⎞⎠(− 1)

j(2j + 1)! · L(2j + 1, χ)

π2j+1
· 22j

.

(43)

Now, (8) and (9) follow from (42) and (43), respectively.
*is concludes the proof of *eorem 1.
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de0éorie des Nombres de Bordeaux, vol. 8, pp. 429–442, 1996.

[14] N. E. Nörlund, Vorlesungen über Differenzenrechnung,
Springer, Berlin, Germany, 1924.
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