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In this study, we introduce a property (P) and the generalized interpolative contractions of types I, II, III, and IV. We investigate
certain conditions for the existence of fixed points of generalized interpolative contractions. We derive several new results from
the main theorems. As an application, we resolve the Urysohn integral equation.

1. Introduction

Fixed-point theory is an outstanding example of a central
principle with multiple implementations. In diverse areas,
such as differential equations and artificial intelligence, it has
always been a significant theoretical method. Furthermore,
the development of accurate and efficient techniques for
computing fixed points has significantly increased the con-
cept’s utility for applications, making fixed-point methods a
major tool in the arsenal of the applied mathematician. (e
key element in the metric fixed-point theory is the Banach
contraction principle (BCP). It states that every contraction, in
the complete metric space, admits a unique fixed point. (is
principle has been generalized by many ways (see [1]). Re-
cently, Gordji et al. [2] presented a new generalization of the
BCP by defining the notion of orthogonal sets and hence
orthogonal metric spaces. (ey presented an example sup-
porting the fact that their main theorem is a real general-
ization of the BCP. Baghani et al. [3] extended the work of [2]
to F-contractions. Chandok et al. [4] extended the results
given in [3] to multivalued F-contractions.

On the contrary, Karapinar [5] introduced interpolative
contractions and presented a method to obtain fixed points
of such contractions. Karapinar et al. [6–9], in subsequent
papers, investigated Rus–Reich–Ćirić-type interpolative
contractions, Hardy–Rogers-type interpolative contractions,

Rus–Reich–Ćirić-type ω-interpolative contractions, and
Boyd–Wong- and Matkowski-type interpolative contrac-
tions to ensure the existence of fixed points in variant
(generalized) metric spaces. Gautam et al. [10] presented
some fixed-point results for Chatterjea and cyclic Chatterjea
interpolative contractions in complete quasi-partial b-metric
spaces. Debnath et al. [11] proved some fixed-point theo-
rems for Rus–Reich–Ćirić- and Hardy–Rogers-type inter-
polative contractions in b-metric spaces.

Boyd–Wong [12] generalized the well-known Banach
contraction principle (BCP) [13] by introducing a control
function Ψ: [0,∞)⟶ [0,∞), verifying the below condi-
tions for each J> 0:

(1) Ψ(J)<J
(2) limℓ⟶J+Ψ(ℓ)<J

(e related result of Boyd–Wong [12] is as follows.

Theorem 1. Let S: X⟶ X be a self-mapping on a complete
metric space (X, d) so that

d(Sℓ, SJ)≤Ψ(d(ℓ,J)), for all ℓ,J ∈ X, (1)

where Ψ: [0,∞)⟶ [0,∞) verifies (1)-(2). =en, S has a
unique fixed point in X (say, ρ) and the sequence (Snℓ) is
convergent to ρ, for each ℓ ∈ X.
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It is noted that (eorem 1 is an improvement of main
results of Rakotch [14] and Browder [15]. (e Boyd–Wong
idea has been generalized byMatkowski [16], Samet et al. [17],
Karapinar et al. [18], Pasicki [19], and Proinov [20], re-
spectively. Recently, Nazam et al. [21] introduced several
conditions on the newly introduced functions
Ψ,ϕ: (0,∞)⟶ R to generalize and improve the results in
[12, 16–20].

(e Banach contraction principle (BCP) and its gen-
eralization (GBCP) have been extensively applied to show
the existence of solutions to various mathematical models.
For instant, in [22–27], authors have applied GBCP to show
the existence of solution to a matrix equation:

X � D + 
m

i�1
W
∗
i XWi + 

m

i�1
G
∗
i XGi

⎛⎝ ⎞⎠, (2)

where D ∈ P(m) (set of m × m positive definite matrices) and
Wi andGi are arbitrary m × m matrices for each i and are
entries of block matrices given by

W �

W1

W2

W3

⋮
Wm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G �

G1

G2

G3

⋮
Gm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

Consider the system of fractional differential equations:

C
D

β
f(]) � K1(], f(])),

C
D

β
g(]) � K2(], g(])),

(4)

under boundary conditions,

f(0) � 0,

If(1) � f′(0),

g(0) � 0,

Ig(1) � g′(0),

(5)

where CD
β denotes CFD of order β defined by

C
D

β
f(]) �

1
Γ(n − β)


]

0
(] − η)

n− β− 1
f

n
(η)dη,

C
D

β
g(]) �

1
Γ(n − β)


]

0
(] − η)

n− β− 1
g

n
(η)dη.

(6)

(e existence of solutions of the above system has been
shown in [21] by using GBCP. In [28], authors have employed
the GBCP for the existence of solutions to a system of integral
equations:

u(t) � f(t) + 
t

a
K(t, x, S(u)(t))dx,

w(t) � f(t) + 
t

a
J(t, x, T(w)(t))dx,

(7)

for all u, w ∈ C([a, b]), x, t ∈ [a, b], and a> 0, where
f: M⟶ R is a continuous function, K, J: [a, b] × [a, b] ×

M⟶ R are lower semicontinuous operators, and
S, T:C([a, b])⟶ C([a, b]).

In this paper, motivated by the interpolation notion of
contractions and the applications of GBCP, we investigate
different conditions on the functions Ψ,Φ to show the
existence of fixed points of generalized interpolative con-
tractions (a new GBCP) of type I, II, III, and IV and hence,
we apply GBCP of type I to resolve the Urysohn integral
equation.

2. Preliminaries

Before stating our main results, we need to define some basic
notions for better understanding of readers.

Definition 1 (see [2]). Let ⊥ be a binary relation defined on a
nonempty set A (i.e., ⊥ ⊂ A × A) verifying the property
(O). (en, (A,⊥) is called an orthogonal set (in short,
O-set):

(O): there is a ∈ A such that either a⊥J orJ⊥a, ∀J ∈ A.

(8)

Example 1. LetA be the set of integers. Consider a⊥θ if and
only if a ≡ 1(mod θ). (en, (A,⊥) is an O-set. Indeed, 1⊥θ
for each θ.

Definition 2 (see [2]). A sequence Zn: n is a positive integer 

is said to be an O-sequence if either Zn⊥Zn+1 or Zn+1⊥Zn, for
all n.

Definition 3 (see [2]). (e O-set (A,⊥) endowed with a
metric d is called an O-metric space (in short, OMS) denoted
by (A,⊥, d).

Definition 4 (see [2]). (e O-sequence Zn  ⊂ A is said to be
O-Cauchy if limn,m⟶∞d(Zn, Zm) � 0. If each O-Cauchy
sequence converges in A, then A is called O-complete.

Remark 1. Each complete metric space is O-complete, but
the converse is not true in general (see [2], for details).

Lemma 1. Let (X,⊥, d) be an OMS and ın  ⊂ X be an
O-sequence, verifying limn⟶∞d(ın, ın+1) � 0. If the sequence
ın  is not Cauchy, then there are ınk , ımk

 , and ξ > 0 such
that

lim
k⟶∞

d lnk+1, lmk+1  � ξ+, (9)

lim
k⟶∞

d lnk
, lmk

  � d lnk+1, lmk
  � d lnk

, lmk+1  � ξ. (10)
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(e proof of this lemma has the same arguments that are
given in [20]. We omit details.

Definition 5. Let T:A⟶ A be a self-mapping. An element
υ ∈ A is said to be a fixed point of T if υ � Tυ.

Definition 6 (see [3]). Let (A,⊥, d) be an OMS and⊥ ⊂ A ×

A be a binary relation. A is called ⊥-regular if, for each
sequence ın  ⊂ A so that ın⊥ın+1 for each n≥ 0 and ın⟶ ı
as n⟶∞, we have either ın⊥ı, or ı⊥ın, for all n≥ 0.

Definition 7 (see [2]). A mapping T:A⟶ A is said to be
asymptotically regular at a point υ of X if

lim
ı⟶∞

d T
ıυ, T

ı+1υ  � 0. (11)

If T is asymptotically regular at each point inA, then it is
named as an asymptotically regular mapping.

3. (Ψ,Φ)⊥-Interpolative Contractions and
Related Fixed-Point Results

In this section, we initiate the notion of (Ψ,Φ)⊥-interpo-
lative contractions. We consider various conditions on
control functionsΨ,Φ to ensure the existence of fixed points
of (Ψ,Φ)⊥-interpolative contractions. In the following, we
develop the strategy towards main results.

Let Λ � (a, υ) ∈ A × A: a⊥υ{ }.

Definition 8. A mapping f:A × A⟶ [1,∞) is said to be
strictly ⊥-admissible if f(a, θ)> 1, for all a, θ ∈ A, with a⊥θ
and f(a, θ) � 1 otherwise.

Example 2. Let A � [0, 1), and we define the relation
⊥ ⊂ A × A by

a⊥θ if aθ ∈ a, θ{ } ⊂ A. (12)

(en, A is O-set. Define f:A × A⟶ [1,∞) by

f(a, θ) �

a +
2

1 + θ
, if a⊥θ,

1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

(en, f is ⊥-admissible.

Definition 9. Let T:A⟶ A and ⊥ ⊂ A × A be a binary
relation. Such T is called ⊥-preserving if, for each q ∈ A and
p � T(q) such that q⊥p or p⊥q, there is ω � T(p) such that
p⊥ω or ω⊥p.

Example 3. Let A � [0, 1), and we define the relation
⊥ ⊂ A × A by

a⊥θ if aθ ∈ a, θ{ } ⊂ A. (14)

(en, A is an O-set. We define S:A⟶ A by

S(a) �

a + 1
7

, if a ∈ Q∩A,

0, if a ∈ Qc ∩A.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

(en, S is ⊥-preserving. Indeed, for a � 0, there is θ �

S(0) � 1/7 such that either a⊥θ or θ⊥a, and then, there is
ℓ � S(θ) such that either ℓ⊥θ or θ⊥ℓ.

Let (A, d) be a metric space. For a mapping S:A⟶ A

and positive real numbers a, b, c, we define the mappings
�F1,

�F2,
�F3,

�F4:A × A⟶ [0,∞) by

�F1(ℓ,J) � d(ℓ,J)[d(ℓ, Sℓ)]1/(a− b)(a− c)
[d(J, SJ)]

1/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
1/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]1/(c− a)(c− b)
,

�F2(ℓ,J) � d(ℓ,J)[d(ℓ, Sℓ)]a/(a− b)(a− c)
[d(J, SJ)]

a/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
b/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]c/(c− a)(c− b)
,

�F3(ℓ,J) � max

d(ℓ,J), [d(ℓ, Sℓ)]a2/(a− b)(a− c)
[d(J, SJ)]

a2/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
b2/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

�F4(ℓ,J) � d(ℓ,J)
a3/(a− b)(a− c)

d(J, SJ)
a3/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
b3/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]c3/(c− a)(c− b)
.

(16)

It is important to note that, despite a, b, c> 0, some
exponents are negative; for example, if a> b, a> c, and b> c,
then 1/(b − a)(b − c)< 0. If any one of a, b, c goes to∞, then

�F1(ℓ,J) � d(ℓ,J). Moreover, we have the following in-
teresting facts about the exponents that can be proved by
using basic algebraic tools:
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1
(a − b)(a − c)

+
1

(b − a)(b − c)
+

1
(c − a)(c − b)

� 0,

a

(a − b)(a − c)
+

b

(b − a)(b − c)
+

c

(c − a)(c − b)
� 0,

a
2

(a − b)(a − c)
+

b
2

(b − a)(b − c)
+

c
2

(c − a)(c − b)
� 1,

a
3

(a − b)(a − c)
+

b
3

(b − a)(b − c)
+

c
3

(c − a)(c − b)
� a + b + c.

(17)

(e following observations are essential for the proofs of
main theorems.

Observation 1. (e following inequality holds for all a, b≥ 2
and r≥ 1:

(a + b)
r ≤ (ab)

r
. (18)

Proof. We note that the equality holds for a � b � 2. We can
assume that a≥ b; then, a � ηb, η≥ 1. Let b � t so that a � ηt,
t≥ 2. Define the function f: [2,∞)⟶ (− ∞,∞) by

f(t) � ηt
2

 
r

− (ηt + t)
r
, ∀t ∈ [2,∞). (19)

(is implies that

f
′
(t) �

d
dt

(f(t)) �
rt

r− 1

(η + 1)
r 2t

r η
η + 1

 

r

− 1 . (20)

Since 2tr(η/η + 1)r > 1 (otherwise t< 1), we have f′(t)

> 0. (is implies that f(t)≥ 0; hence, (ηt2)r − (ηt + t)r ≥ 0,
that is, (a + b)r ≤ (ab)r. □

Observation 2. Let K≥ 2. For any nonempty setA, we define
the mapping d:A × A⟶ [0,∞) by

d(u, v) �
K, if u≠ v,

0, if u � v.
 (21)

(en, the pair (A, d) is a metric space.

Definition 10. Let (A, d) be a metric space. A mapping
T:A⟶ A is said to have property P if, for any real number
r, it satisfies the following inequality:

d(ℓ, T(ℓ)) + d T(ℓ), T
2
(ℓ)  

r

≤ d(ℓ, T(ℓ))d T(ℓ), T
2
(ℓ)  

r
, ∀ℓ ∈ A.

(22)

Example 4. Let A � [1,∞) and consider the metric d de-
fined by d(u, v) � |u − v| for all u, v ∈ A. (e mapping
T:A⟶ A defined by T(ℓ) � Kℓ, for all ℓ ∈ A and
K≥ (5/2), satisfies the property P. Indeed,

d(ℓ, T(ℓ)) + d T(ℓ), T
2
(ℓ)  

r

� [(K − 1)|ℓ| +(K − 1)|Kℓ|]r

≤ [(K − 1)(K + 1)|ℓ|]r ≤ (K − 1)
2
K|ℓ|2 

r

� d(ℓ, T(ℓ))d T(ℓ), T
2
(ℓ)  

r
.

(23)

Example 5. Every identity mapping satisfies the property P.
(e constant mapping does not satisfy the property P. (e
mapping T:A⟶ A is defined by T(ℓ) � 0 for all ℓ ∈ A
which satisfies the property P only for ℓ � 0.

Example 6. Let A � (− ∞,∞). (e mapping T:A⟶ A

defined by T(ℓ) � 2 − 3ℓ for all ℓ ∈ A satisfies the property
P. In fact, the mapping T:A⟶ A defined by
T(ℓ) � a − bℓ, for all ℓ ∈ A, for b> a, satisfies the property P.

Example 7. Let A � [2.5,∞). (e mapping T:A⟶ A

defined by T(ℓ) � 2 − 3ℓ for all ℓ ∈ A satisfies the property P.

Example 8. Let A � [1,∞). (e mapping T:A⟶ A de-
fined by T(ℓ) � 1/ℓ2 for all ℓ ∈ A satisfies the property P.

Remark 2. (e proof of (eorem 2 depends largely on the
use of either “Observations 1 and 2” or “Property P.”

We proceed with the property P.

Definition 11. Let (A,⊥, d) be an OMS. A mapping
S:A⟶ A is said to be a (Ψ,Φ)⊥-interpolative fractional
contraction of types I, II, III, and IV, for i � 1, 2, 3, 4, re-
spectively, if there exist a strictly ⊥-admissible mapping f

and a, b, c ∈ (0,∞], for i � 1, and a, b, c ∈ (0,∞), for
i � 2, 3, 4, such that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤Φ �Fi(ℓ,J)( , (24)

for all ℓ,J ∈ Λ and d(Sℓ, SJ)> 0.
If either a �∞ or b �∞ or c �∞ in (Ψ,Φ)⊥-inter-

polative fractional contraction of type I, we receive the re-
cently announced (ψ, ϕ)-contraction by Proinov [20] which
provided ℓ,J ∉ Λ.

We also note that, forΦ(ℓ) � Ψ(ℓ) − τ andΨ(ℓ) � ln(ℓ),
for all ℓ ∈ (0,∞), τ > 0, contraction (24) (i � 1) can be
written as follows:

τ + ln(f(ℓ,J)d(Sℓ, SJ))≤ ln(d(ℓ,J)) +
1

(a − b)(a − c)
ln(d(ℓ, Sℓ))

+
1

(a − b)(a − c)
ln(d(J, SJ)) +

1
(a − b)(a − c)

ln[d(ℓ, Sℓ) + d(J, SJ)]

+
1

(a − b)(a − c)
ln[d(ℓ, SJ) + d(J, Sℓ)],

(25)
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and then, we have

τ + Ψ(f(ℓ,J)d(Sℓ, SJ))≤Ψ(d(ℓ,J)) +
1

(a − b)(a − c)
Ψ(d(ℓ, Sℓ))

+
1

(a − b)(a − c)
Ψ(d(J, SJ)) +

1
(a − b)(a − c)

Ψ[d(ℓ, Sℓ) + d(J, SJ)]

+
1

(a − b)(a − c)
Ψ[d(ℓ, SJ) + d(J, Sℓ)].

(26)

(is represents a general version of the contraction
introduced by Wardowski [29], and if either a �∞ or b �

∞ or c �∞ and ℓ,J ∉ Λ, then type I represents an
F-contraction [29].

Remark 3. It is very important to note that the set of self-
mappings satisfying property P and contraction (24) is not
empty. For example, the mappings S(ℓ) � 2 − 3ℓ, for all
ℓ ∈ (∞,∞), and S(ℓ) � 2ℓ − 1, for all ℓ ∈ [2.5,∞), satisfy
both the property P and contraction (24) with
Φ(ℓ) � Ψ(ℓ) − τ and Ψ(ℓ) � ln(ℓ), for all ℓ ∈ (0,∞), where
τ > 0.

In the next result, we give a set of conditions that
guarantee the existence of a fixed point of a self-mapping S.

Theorem 2. Let (A,⊥, d) be an ⊥-regular O-complete
metric space (in short, OCMS). Let S:A⟶ A be an
⊥-preserving mapping verifying (24) for i � 1 and property P.
Suppose the relation ⊥ is transitive and the functions
Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z1⊥Z0
or Z0⊥Z1

(ii) Ψ,Φ are nondecreasing and Φ(J)<Ψ(J), for all
J> 0

(iii) lim supJ⟶δ+Φ(J)<Ψ(δ+), for all δ > 0
(iv) lim supa⟶0Φ(a)≤ liminfa⟶ξ+Ψ(a)

=en, S admits a fixed point in A.

Proof. Step 1: simplification of �F1(Zn− 1, Zn):

�F1 Zn− 1, Zn(  � d Zn− 1, Zn( d Zn− 1, SZn− 1( 
1/(a− b)(a− c)

d Zn, SZn( 
1/(a− b)(a− c)

d Zn− 1, SZn− 1(  + d Zn, SZn(  
1/(b− a)(b− c)

d Zn− 1, SZn(  + d Zn, SZn− 1(  
1/(c− a)(c− b)

≤d Zn− 1, Zn( d Zn− 1, Zn( 
1/(a− b)(a− c)

d Zn, Zn+1( 
1/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
1/(b− a)(b− c)

d Zn− 1, Zn+1(  + d Zn, Zn(  
1/(c− a)(c− b)

≤d Zn− 1, Zn( d Zn− 1, Zn( 
1/(a− b)(a− c)

d Zn, Zn+1( 
1/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
1/(b− a)(b− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
1/(c− a)(c− b)

� d Zn− 1, Zn( d Zn− 1, Zn( 
1/(a− b)(a− c)

d Zn, Zn+1( 
1/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
1/(b− a)(b− c)+1/(c− a)(c− b)

≤d Zn− 1, Zn( d Zn− 1, Zn( 
1/(a− b)(a− c)

d Zn, Zn+1( 
1/(a− b)(a− c)

d Zn− 1, Zn( d Zn, Zn+1(  
1/(b− a)(b− c)+1/(c− a)(c− b) by propertyP

� d Zn− 1, Zn( 
1+1/(a− b)(a− c)+1/(b− a)(b− c)+1/(c− a)(c− b)

d Zn, Zn+1( 
1/(a− b)(a− c)+1/(b− a)(b− c)+1/(c− a)(c− b)

� d Zn− 1, Zn( ,

(27)
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Step 2: by (i), for an arbitrary Z0 ∈ A, there is Z1 � S(Z0)

such that Z0⊥Z1 or Z1⊥Z0. It is assumed that S is an
⊥-preserving mapping, so there is Z2 � S(Z1) such that
Z1⊥Z2 or Z2⊥Z1, and then, there is Z3 � S(Z2) such that
Z2⊥Z3 or Z3⊥Z2. In general, there is Zn+1 � S(Zn) such that
Zn⊥Zn+1 or Zn+1⊥Zn for all. Hence, f(Zn, Zn+1)> 1, for all
n≥ 0. Note that if Zn � S(Zn), then Zn is a fixed point of S, for
all n≥ 0. We assume that Zn ≠ S(Zn), for all n≥ 0. (us,
d(SZn− 1, SZn)> 0, for each n≠ 1 (otherwise, Zn � SZn, for
some n). Let hn � d(Zn, Zn+1), for all n≥ 0. By the first part of
(ii) and (24) ( i� 1), we have

Ψ hn( <Ψ f Zn− 1, Zn( d S Zn− 1( , S Zn( ( ( ≤Φ �F1 Zn− 1, Zn( ( 

≤Φ hn− 1( .

(28)

In view of second part of (ii), we write

Ψ hn( ≤Φ hn− 1( <Ψ hn− 1( . (29)

Since Ψ is nondecreasing, one gets hn < hn− 1, for each
n≥ 1. (is shows that the sequence hn  is decreasing, so

there is L≥ 0 such that limn⟶∞hn � L+. If L> 0, by (29), one
obtains

Ψ(L+) � lim
n⟶∞
Ψ hn( ≤ lim

n⟶∞
supΦ hn− 1( ≤ lim

a⟶L+
supΦ(a).

(30)

(is contradicts (iii), so L � 0, i.e., S is an asymptotically
regular mapping.

Step 3: we claim that Zn  is a Cauchy sequence. If not,
then, by Lemma 1, there are Znk

  and Zmk
  of Zn  and ξ > 0

such that (9) and (10) hold. By (9), we infer that
d(Znk+1, Zmk+1)> ξ. Since Zn⊥Zn+1, for all n≥ 0, by transitivity
of⊥, we have Znk

⊥Zmk
and hence, f(Znk

, Zmk
)> 1 for all k≥ 1.

Letting ℓ � Znk
and J � Zmk

in (24) (i � 1), we have, for each
k≥ 1,

Ψ d Znk+1, Zmk+1  ≤Ψ f Znk
, Zmk

 d SZnk
, SZmk

  

≤Φ �F1 Znk
, Zmk

  .
(31)

We note that

�F1 Znk
, Zmk

  � d Znk
, Zmk

 d Znk
, SZnk

 
1/(a− b)(a− c)

d Zmk
, SZmk

 
1/(a− b)(a− c)

d Znk
, SZnk

  + d Zmk
, SZmk

  
1/(b− a)(b− c)

d Znk
, SZmk

  + d Zmk
, SZnk

  
1/(c− a)(c− b)

≤ d Znk
, Zmk

 d Znk
, Znk+1 

1/(a− b)(a− c)
d Zmk

, Zmk+1 
1/(a− b)(a− c)

d Znk
, Znk+1  + d Zmk

, Zmk+1  
1/(b− a)(b− c)

d Znk
, Zmk+1  + d Zmk

, Znk+1  
1/(c− a)(c− b)

� Bk.

(32)

If Zk � d(Znk+1, Zmk+1), we have

Ψ Zk( ≤Φ Bk( , for all k≥ 1. (33)

By (9), we have limk⟶∞Zk � ξ+, and (33) implies

liminf
a⟶ξ+
Ψ(a)≤ liminf

k⟶∞
Ψ Zk( ≤ limsup

k⟶∞
Φ Bk( ≤ limsup

a⟶0
Φ(a).

(34)

It is a contradiction to (iv), so Zn  is a Cauchy sequence
in the OCMS (A,⊥, d); hence, there is a∗ ∈ A so that
Zn⟶ a∗ as n⟶∞, and the ⊥-regularity of (A,⊥, d)

yields that Zn⊥a∗ or a∗⊥Zn. (us, f(Zn, a∗)> 1. We claim
that d(a∗, S(a∗)) � 0. Assume that d(Zn+1, S(a∗))> 0 for
infinitely many values of n. By (24) (i � 1),

Ψ d Zn+1, S a
∗

( ( ( ≤Ψ f Zn, a
∗

( d S Zn( , S a
∗

( ( ( 

≤Φ �F1 Zn, a
∗

( ( .
(35)

By the first part of (ii), we get d(Zn+1, S(a∗))< �F1(Zn,

a∗). Applying limit n⟶∞, we obtain d(a∗, S(a∗))≤ 0.
(is implies that d(a∗, S(a∗)) � 0; hence, a∗ � S(a∗). □

Next result gives an idea on conditions ensuring the
existence of fixed points of S verifying (24) (i � 1).

Theorem 3. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24)
(i � 1) and property P. Assume the relation⊥ is transitive and
the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞) are such that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1
or Z1⊥Z0

(ii) Φ(J)<Ψ(J), for all J> 0
(iii) infa>ξ>0Ψ(a)> − ∞
(iv) If Ψ(Zn)  and Φ(Zn)  are converging to the same

limit and Ψ(Zn)  is strictly decreasing, then
limn⟶∞Zn � 0

(v) limsupa⟶0Φ(a)< liminfa⟶ξ+Ψ(a), for all ξ > 0
(vi) limsupa⟶0Φ(a)< liminfa⟶ξΨ(a), for all ξ > 0

=en, S possesses a fixed point in A.

Proof. Note that we need (i)-(iv) to show that S is an as-
ymptotically regular. Condition (v) is needed to establish
that Zn  is Cauchy and (vi) is useful to ensure that the
mapping S has a fixed point.

By (i), for an arbitrary Z0 ∈ A, there is Z1 � S(Z0) so that
Z0⊥Z1 or Z1⊥Z0. Since S is ⊥-preserving, there is Z2 � S(Z1)

so that Z1⊥Z2 or Z2⊥Z1, and then, Z3 � S(Z2) so that Z2⊥Z3
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or Z3⊥Z2. In general, there is Zn+1 � S(Zn) in order that
Zn⊥Zn+1 or Zn+1⊥Zn, for all n≥ 0. Hence, f(Zn, Zn+1)> 1.
Note that if Zn � S(Zn), then Zn is a fixed point of S. Suppose
that Zn ≠ S(Zn), for all n≥ 0. (us, d(SZn− 1, SZn)> 0 (oth-
erwise Zn � SZn). Since f(Zn, Zn+1)> 1, by (ii) and (24)
(i � 1), we write

Ψ d Zn, Zn+1( ( ≤Ψ f Zn− 1, Zn( d S Zn− 1( , S Zn( ( ( 

≤Φ �F1 Zn− 1, Zn( ( 

≤Ψ d Zn− 1, Zn( ( .

(36)

Inequality (36) shows that Ψ(d(Zn− 1, Zn))  is strictly
decreasing. If it is not bounded below, in view of (iii), we get

inf
d(Zn− 1 ,Zn)> ξ

Ψ(d(Zn− 1, Zn))> − ∞. (is implies that

lim inf
d Zn− 1 ,Zn( )⟶ ξ+

Ψ d Zn− 1, Zn( ( > − ∞. (37)

(us, limn⟶∞d(Zn− 1, Zn) � 0; otherwise, we have

lim inf
d Zn− 1 ,Zn( )⟶ ξ+

Ψ d Zn− 1, Zn( (  � − ∞, (38)

(i.e., a contradiction to (iii)). If it is bounded below, then
Ψ(d(Zn− 1, Zn))  is a convergent sequence, and by (36),
Φ(d(Zn− 1, Zn))  also converges and both have the same
limit. (us, by (iv), one gets limn⟶∞d(Zn− 1, Zn) � 0. Hence,
S is asymptotically regular.

Now, we claim that Zn  is a Cauchy sequence. If Zn  is
not a Cauchy sequence, so, by Lemma 1, there exist Znk

  and
Zmk

  and ξ > 0 such that (9) and (10) hold. By (9), we infer
that d(Znk+1, Zmk+1)> ξ. Since Zn⊥Zn+1, for all n≥ 0, so, by
transitivity of ⊥, we have Znk

⊥Zmk
, and hence, f(Znk

, Zmk
)> 1

for all k≥ 1. Letting x � Znk
and y � Zmk

in (24), one writes,
for all k≥ 1,

Ψ d Znk+1, Zmk+1  ≤Ψ f Znk
, Zmk

 d SZnk
, SZmk

  

≤Φ �F1 Znk
, Zmk

   .
(39)

We note that

�F1 Znk
, Zmk

  � d Znk
, Zmk

 d Znk
, SZnk

 
1/(a− b)(a− c)

d Zmk
, SZmk

 
1/(a− b)(a− c)

d Znk
, SZnk

  + d Zmk
, SZmk

  
1/(b− a)(b− c)

d Znk
, SZmk

  + d Zmk
, SZnk

  
1/(c− a)(c− b)

≤ d Znk
, Zmk

 d Znk
, Znk+1 

1/(a− b)(a− c)
d Zmk

, Zmk+1 
1/(a− b)(a− c)

d Znk
, Znk+1  + d Zmk

, Zmk+1  
1/(b− a)(b− c)

d Znk
, Zmk+1  + d Zmk

, Znk+1  
1/(c− a)(c− b)

� Bk.

(40)

If Zk � d(Znk+1, Zmk+1), we have

Ψ Zk( ≤Φ Bk( , for all k≥ 1. (41)

By (9), we have limk⟶∞Zk � ξ+ and (41) implies

lim inf
a⟶ξ+
Ψ(a)≤ liminf

k⟶∞
Ψ Zk( ≤ limsup

k⟶∞
Φ Bk( ≤ limsup

a⟶0
Φ(a).

(42)

It contradicts (v), so Zn  is a Cauchy sequence in the
OCMSA. Hence, there is a∗ ∈ A in order that Zn⟶ a∗ as
n⟶∞.

To show that Sa∗ � a∗, we have two cases:

Case 1: if d(Zn+1, Sa∗) � 0, for some n≥ 0, then, since

d a
∗
, Sa
∗

( ≤ d a
∗
, Zn+1(  + d Zn+1, Sa

∗
(  � d a

∗
, Zn+1( ,

(43)

taking limit n⟶∞ on both sides, we have
d(a∗, Sa∗)≤ 0. (is implies d(a∗, S(a∗)) � 0; thus,
a∗ � S(a∗).

Case 2: if, for all n≥ 0, d(Zn+1, Sa∗)> 0, then by
⊥-regularity of A, we find Zn⊥a∗ or a∗⊥Zn, so
f(Zn, a∗)> 1. By (24) (i � 1), one writes

Ψ d Zn+1, Sa
∗

( ( ≤Ψ f Zn, a
∗

( d SZn, Sa
∗

( ( 

≤Φ �F1 Zn, a
∗

( (  for all n≥ 0.
(44)

By taking Hn � d(Zn+1, Sa∗) and bn � �F1(Zn, a∗), one
writes

Ψ Hn( ≤Φ bn(  for all n≥ 0. (45)

Take ξ � d(a∗, Sa∗). Note that Hn⟶ ξ and bn⟶ 0 as
n⟶∞. Applying limits on (45), we have

lim inf
a⟶ξ
Ψ(a)≤ lim inf

n⟶∞
Ψ Hn( ≤ lim sup

n⟶∞
Φ bn( 

≤ lim inf
a⟶0
Φ(a).

(46)

(is contradicts (vi) if ξ > 0.(us, we have d(a∗, Sa∗) � 0,
i.e., a∗ � Sa∗, that is, a∗ is a fixed point of S. □
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Remark 4. Observe that

�F2 Zn− 1, Zn(  � d Zn− 1, Zn( d Zn− 1, SZn− 1( 
a/(a− b)(a− c)

d Zn, SZn( 
a/(a− b)(a− c)

d Zn− 1, SZn− 1(  + d Zn, SZn(  
b/(b− a)(b− c)

d Zn− 1, SZn(  + d Zn, SZn− 1(  
c/(c− a)(c− b)

≤d Zn− 1, Zn( d Zn− 1, Zn( 
a/(a− b)(a− c)

d Zn, Zn+1( 
a/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
b/(b− a)(b− c)

d Zn− 1, Zn+1(  + d Zn, Zn(  
c/(c− a)(c− b)

≤d Zn− 1, Zn( d Zn− 1, Zn( 
a/(a− b)(a− c)

d Zn, Zn+1( 
a/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
b/(b− a)(b− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
c/(c− a)(c− b)

� d Zn− 1, Zn( d Zn− 1, Zn( 
a/(a− b)(a− c)

d Zn, Zn+1( 
a/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
b/(b− a)(b− c)+c/(c− a)(c− b)

≤d Zn− 1, Zn( d Zn− 1, Zn( 
a/(a− b)(a− c)

d Zn, Zn+1( 
a/(a− b)(a− c)

d Zn− 1, Zn( d Zn, Zn+1(  
b/(b− a)(b− c)+c/(c− a)(c− b) by property P

� d Zn− 1, Zn( 
1+a/(a− b)(a− c)+b/(b− a)(b− c)+c/(c− a)(c− b)

d Zn, Zn+1( 
a/(a− b)(a− c)+b/(b− a)(b− c)+c/(c− a)(c− b)

� d Zn− 1, Zn( ,

�F3 Zn− 1, Zn(  � max

d Zn− 1, Zn( , d Zn− 1, SZn− 1( 
a2/(a− b)(a− c)

d Zn, SZn( 
a2/(a− b)(a− c)

d Zn− 1, SZn− 1(  + d Zn, SZn(  
b2/(b− a)(b− c)

d Zn− 1, SZn(  + d Zn, SZn− 1(  
c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

� max

d Zn− 1, Zn( , d Zn− 1, Zn( 
a2/(a− b)(a− c)

d Zn, Zn+1( 
a2/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
b2/(b− a)(b− c)

d Zn− 1, Zn+1(  + d Zn, Zn(  
c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤max

d Zn− 1, Zn( , d Zn− 1, Zn( 
a2/(a− b)(a− c)

d Zn, Zn+1( 
a2/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
b2/(b− a)(b− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤max

d Zn− 1, Zn( , d Zn− 1, Zn( 
a2/(a− b)(a− c)

d Zn, Zn+1( 
a2/(a− b)(a− c)

d Zn− 1, Zn( d Zn, Zn+1(  
b2/(b− a)(b− c)

d Zn− 1, Zn( d Zn, Zn+1(  
c2/(c− a)(c− b) by property P

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

� max

d Zn− 1, Zn( ,

d Zn− 1, Zn( 
a2/(a− b)(a− c)+b2/(b− a)(b− c)+c2/(c− a)(c− b)

d Zn, Zn+1( 
a2/(a− b)(a− c)+b2/(b− a)(b− c)+c2/(c− a)(c− b)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� max d Zn− 1, Zn( , d Zn, Zn+1(  ,
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�F4 Zn− 1, Zn(  � d Zn− 1, Zn( 
a3/(a− b)(a− c)

d Zn, SZn( 
a3/(a− b)(a− c)

d Zn− 1, SZn− 1(  + d Zn, SZn(  
b3/(b− a)(b− c)

d Zn− 1, SZn(  + d Zn, SZn− 1(  
c3/(c− a)(c− b)

� d Zn− 1, Zn( 
a3/(a− b)(a− c)

d Zn, Zn+1( 
a3/(a− b)(a− c)

d Zn− 1, Zn(  + d Zn, Zn+1(  
b3/(b− a)(b− c)

d Zn− 1, Zn+1(  + d Zn, Zn(  
c3/(c− a)(c− b)

≤ d Zn− 1, Zn( 
a3/(a− b)(a− c)

d Zn, Zn+1( 
a3/(a− b)(a− c)

d Zn− 1, Zn( d Zn, Zn+1(  
b3/(b− a)(b− c)

d Zn− 1, Zn( d Zn, Zn+1(  
c3/(c− a)(c− b)

� d Zn− 1, Zn( d Zn, Zn+1(  
a3/(a− b)(a− c)+b3/(b− a)(b− c)+c3/(c− a)(c− b)

� d Zn− 1, Zn( d Zn, Zn+1(  
(a+b+c)

≤max d Zn− 1, Zn( , d Zn, Zn+1(  . (47)

(e next two results address the (Ψ,Φ)⊥-interpolative
fractional contractions of types II and III.

Theorem 4. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24) for
i � 2, 3 and property P. Suppose the relation ⊥ is transitive,
and the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z1⊥Z0
or Z0⊥Z1

(ii) Ψ,Φ are nondecreasing and Φ(J)<Ψ(J), for all
J> 0

(iii) lim supJ⟶δ+Φ(J)<Ψ(δ+), for all δ > 0
(iv) limsupa⟶0Φ(a)≤ liminfa⟶ξ+Ψ(a)

=en, S has a fixed point in A.

Proof. Keeping in view the simplifications for �F2(Zn− 1, Zn)

and �F3(Zn− 1, Zn) given in Remark 4 with the fact that
d(Zn− 1, Zn)> d(Zn, Zn+1) and following the proof of(eorem
2, we assert that S admits a fixed point in A. If
d(Zn− 1, Zn)< d(Zn, Zn+1), then we have a contradiction to the
definition of function Ψ. □

Theorem 5. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24)
(i � 2, 3) and property P. Assume the relation ⊥ is transitive,
and the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1
or Z1⊥Z0

(ii) Φ(J)<Ψ(J), for all J> 0
(iii) infa>ξ>0Ψ(a)> − ∞
(iv) If Ψ(Zn)  and Φ(Zn)  are converging to the same

limit and Ψ(Zn)  is strictly decreasing, then
limn⟶∞Zn � 0

(v) limsupa⟶0Φ(a)< liminfa⟶ξ+Ψ(a), for all ξ > 0
(vi) limsupa⟶0Φ(a)< liminfa⟶ξΨ(a), for all ξ > 0

=en, S possesses a fixed point in A.

Proof. Keeping in view the simplifications for �F2(Zn− 1, Zn)

and �F3(Zn− 1, Zn) given in Remark 4 with the fact that

d(Zn− 1, Zn)>d(Zn, Zn+1) and following the proof of(eorem
2, we assert that S admits a fixed point in A. If
d(Zn− 1, Zn)<d(Zn, Zn+1), then we have a contradiction to the
definition of function Ψ. □

(e next two results address the (Ψ,Φ)⊥-interpolative
fractional contraction of type IV.

Theorem 6. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24) for
i � 4 with a + b + c< 0.5 and property P. Suppose the relation
⊥ is transitive and the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞)

are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z1⊥Z0
or Z0⊥Z1

(ii) Ψ,Φ are nondecreasing and Φ(J)<Ψ(J), for all
J> 0

(iii) lim supJ⟶δ+Φ(J)<Ψ(δ+), for all δ > 0
(iv) limsupa⟶0Φ(a)≤ liminfa⟶ξ+Ψ(a)

=en, S has a fixed point in A.

Proof. Keeping in view the simplifications for �F4(Zn− 1, Zn)

given in Remark 4 and following the proof of (eorem 4, we
assert that S admits a fixed point in A. □

Theorem 7. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24)
(i � 4) with a + b + c< 0.5 and property P. Assume the re-
lation ⊥ is transitive and the functions
Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1
or Z1⊥Z0

(ii) Φ(J)<Ψ(J), for all J> 0
(iii) infa>ξ>0Ψ(a)> − ∞
(iv) If Ψ(Zn)  and Φ(Zn)  are converging to the same

limit and Ψ(Zn)  is strictly decreasing, then
limn⟶∞Zn � 0

(v) limsupa⟶0Φ(a)< liminfa⟶ξ+Ψ(a), for all ξ > 0
(vi) limsupa⟶0Φ(a)< liminfa⟶ξΨ(a), for all ξ > 0

=en, S possesses a fixed point in A.
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Proof. Keeping in view the simplifications for �F4(Zn− 1, Zn)

given in Remark 4 and following the proof of (eorem 5, we
assert that S admits a fixed point in A. □

4. The Generality of the Main Results

Let us defineΨ(J) � J, for allJ> 0, in any one of(eorems
2 and 3, we receive a general version of the interpolative
Boyd–Wong fixed-point theorem proved in [9], and defining
Φ(J) � Ψ(J) − τ in (eorem 2, we receive the following
result (interpolative fractional version of Wardowski fixed-
point theorem with only monotonicity condition on Ψ).

Corollary 1. Let (A, d) be a complete metric space. Let
S: A⟶ A be a mapping so that

Ψ(d(Sℓ, SJ))≤Ψ �Fi(ℓ,J)(  − τ ∀ℓ,J ∈ A,

i � 1, 2, 3, 4 provided d(Sℓ, SJ)> 0,
(48)

where Ψ: (0,∞)⟶ R is nondecreasing and τ > 0. =en,
there is a fixed point of S in A.

If we define Φ(J) � Ψ(J) − τ(J) in (eorem 2, we get
an interpolative fractional version of fixed-point theorem
presented in [4].

Corollary 2. Let (A, d) be a complete metric space. Let
S: A⟶ A be a mapping so that

τ(d(ℓ,J)) + Ψ(d(Sℓ, SJ))≤Ψ �Fi(ℓ,J)(  ∀ℓ,J ∈ A,

i � 1, 2, 3, 4 provided d(Sℓ, SJ)> 0,

(49)

where Ψ: (0,∞)⟶ R is nondecreasing and
liminfa⟶t+τ(a)> 0,∀t≥ 0. =en, S has a fixed point in A.

We receive the following interpolative fractional version
of Moradi theorem [30] if we take Φ(J) � h(Ψ(J)) in
(eorem 2.

Corollary 3. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping so that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤ h Ψ �Fi(ℓ,J)( (  ∀ℓ,J ∈ Λ,

i � 1, 2, 3, 4 provided d(Sℓ, SJ)> 0,

(50)
where

(i) h: I⟶ [0,∞) is an upper semicontinuous function
with h(J)<J, for all J ∈ I ⊂ R

(ii) Ψ: (0,∞)⟶ I is nondecreasing

Assume that, for each Z0 ∈ A, there is Z1 � S(Z0) such
that Z0⊥Z1 or Z1⊥Z0. (en, S has a unique fixed point in A.

Defining h(J) � Jδ and δ ∈ (0, 1) in Corollary 3, we
have the next result.

Corollary 4. Let (A,⊥, d) be an ⊥-regular and OCMS. Let
S: A⟶ A be an ⊥-preserving mapping so that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤ Ψ �Fi(ℓ,J)( ( 
r ∀ℓ,J ∈ Λ,

i � 1, 2, 3, 4 providedd(Sℓ, SJ)> 0,

(51)

where Ψ: (0,∞)⟶ (0, 1) is nondecreasing. Assume that,
for each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1 or
Z1⊥Z0. =en, S has a fixed point in A.

Observe that Corollary 4 is an improvement of Jle-
li–Samet fixed-point theorem [31] and the results of Li and
Jiang [32] and Ahmad et al. [33].

An improvement of Skof fixed-point theorem [34] may
be stated by putting Φ(J) � λΨ(J) in (eorem 2, for i � 1,
with either a �∞ or b �∞ or c �∞.

Corollary 5. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping so that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤ λΨ �F1(ℓ,J)(  ∀ℓ,

J ∈ Λ, provided d(Sℓ, SJ)> 0,
(52)

whereΨ: (0,∞)⟶ (0,∞) is nondecreasing and λ ∈ (0, 1).
Assume that, for each Z0 ∈ A, there is Z1 � S(Z0) so that
Z0⊥Z1 or Z1⊥Z0. =en, S has a unique fixed point in A.

5. The Existence of the Solution to Urysohn
Integral Equation (UIE)

In this section, we will apply (eorem 2 for the existence of
the unique solution to UIE:

ℓ(Z) � f(Z) + 
IR

K1(Z, s, ℓ(s))ds. (53)

(is integral equation encapsulates both Volterra inte-
gral equation (VIE) and Fredholm integral equation (FIE),
depending on the region of integration (IR). If IR � (a, x),
where a is fixed, then UIE is VIE, and for IR � (a, b), where
a, b are fixed, UIE is FIE. In the literature, one can find many
approaches to find a unique solution to UIE (see [35–39] and
references therein). We are interested to use a fixed-point
technique for this purpose. (e fixed-point technique is
simple and elegant to show the existence of a unique solution
to further mathematical models.

Let IR be a set of finite measure and
L2

IR � ℓ|IR|ℓ(s)|2ds<∞ .
Define the norm ‖.‖: L2

IR⟶ [0,∞) by

‖ℓ‖2 �

����������


IR

|ℓ(s)|
2ds



, for all ℓ,J ∈L2
IR. (54)

An equivalent norm can be defined as follows:

‖ℓ‖2,] �

��������������������������

sup e
− ]

IR
α(s)ds


IR

|ℓ(s)|
2ds

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭




, for all ℓ ∈L2
IR, ]> 1.

(55)

(en, (L2
IR, ‖.‖2,]) is a Banach space. Let

A � ℓ ∈L2
IR: ℓ(s)> 0 for almost every s . (e metric d]
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associated to norm ‖.‖2,] is given by d](ℓ,J) � ‖ℓ − J‖2,],
for all ℓ,J ∈ A. Define an orthogonal relation ⊥ on A by

a⊥υ if and only if a(s)υ(s)≥ υ(s), for all a, υ ∈ A. (56)

(en, (A,⊥, d) is an OCMS (see(eorem 4.1 in [3]). Let
L: A × A⟶ (1,∞) be defined by

L(δ, t) � e
‖δ+t‖L2 for all δ, t ∈ Awith δ⊥t. (57)

(en, L is a strictly ⊥-admissible mapping. Put
M � inf L(δ, t), ∀δ, t ∈ Awith δ⊥t{ }. Let

(A1) (e kernel K1: IR × IR × R⟶ R satisfies Car-
athéodory conditions and

K1(Z, s, ℓ(s))


≤w(Z, s) + e(Z, s)|ℓ(s)|; w,

e ∈L2
(IR × IR), e(Z, s)> 0.

(58)

(A2) (e function f: IR⟶ [1,∞) is continuous and
bounded on IR.
(A3) (ere exists a positive constant C such that

sup
Z∈IR


IR

K1(Z, s)


ds≤C. (59)

(A4) For any ℓ0 ∈L
2
IR, there is ℓ1 � R(ℓ0) such that

ℓ1⊥ℓ0 or ℓ0⊥ℓ1.
(A5) (ere exists a nonnegative and measurable
function q: IR × IR⟶ R such that

α(Z) ≔ 
IR

q
2
(Z, s)ds≤

1
]M

2 (60)

and integrable over IR with

K1(Z, s, ℓ(s)) − K1(Z, s,J(s))


≤ q(Z, s)|ℓ(s) − J(s)|,

(61)

for all Z, s ∈ IR and ℓ,J ∈ A with ℓ⊥J.

Theorem 8. Suppose that the mappings f and K1 mentioned
above satisfy conditions (A1)–(A5); then, the UIE (53) has a
unique solution.

Proof. Define the mapping R: A⟶ A, in accordance with
the abovementioned notations, by

(Rℓ)(Z) � f(Z) + 
IR

K1(Z, s, ℓ(s))ds. (62)

(e operator R is ⊥-preserving: let ℓ, J ∈ A with ℓ⊥J;
then, ℓ(s)J(s) ≥ J(s). Since, for almost every Z ∈ IR,

(Rℓ)(Z) � f(Z) + 
IR

K1(Z, s, ℓ(s))ds≥ 1, (63)

this implies that (Rℓ)(Z)(RJ)(Z) ≥ (RJ)(Z). (us,
(Rℓ)⊥(RJ).

Self-operator: conditions (A1) and (A3) imply that R is
continuous and compact mapping fromA toA (see Lemma
3 in [35]).

By (A4), for any ℓ0 ∈ A, there is ℓ1 � R(ℓ0) such that
ℓ1⊥ℓ0 or ℓ0⊥ℓ1, and using the fact that R is ⊥-preserving, we
have ℓn � Rn(ℓ0) with ℓn⊥ℓn+1 or ℓn+1⊥ℓn, for all n≥ 0. We
will check the contractive condition (24) of(eorem 2 in the
next lines. By (A5) and Holder inequality, we have

|(Rℓ)(Z) − (RJ)(Z)|
2

� 
IR

K1(Z, s, ℓ(s))ds − 
IR

K1(Z, s,J(s))ds





2

≤ 
IR

K1(Z, s, ℓ(s)) − K1(Z, s,J(s))


ds 
2

≤ 
IR

q(Z, s)|ℓ(s) − J(s)|ds 
2

≤
IR

q
2
(Z, s)ds · 

IR
|ℓ(s) − J(s)|

2ds

� α(Z)
IR

|ℓ(s) − J(s)|
2ds.

(64)

(is implies, by integrating with respect to Z,


IR

|(Rℓ)(Z) − (RJ)(Z)|
2
dZ ≤

IR
α(Z)

IR
|ℓ(s) − J(s)|

2ds dZ

� 
IR

α(Z)e
]

IR
α(s)ds

· e
− ]

IR
α(s)ds


IR

|ℓ(s) − J(s)|
2ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dZ

≤ ‖ℓ − J‖
2
2,]

IR
α(Z)e

]
IR

α(s)ds

dZ

≤
1

]M
2‖ℓ − J‖

2
2,]e

]
IR

α(s)ds

.

(65)
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(us, we have

M
2
e

− ]
IR

α(s)ds


IR

|(Rℓ)(Z) − (RJ)(Z)|
2
dZ≤

1
]
‖ℓ − J‖

2
2,].

(66)

(is implies that

M
2
‖(Rℓ) − (RJ)‖

2
2,] ≤

1
]
‖ℓ − J‖

2
2,]. (67)

(at is,

L(ℓ,J)d]((Rℓ), (RJ))≤
�
1
]



d](ℓ,J). (68)

Taking ln on both sides and defining Ψ(t) � ln(t) with
Φ(t) � Ψ(t) − τ, τ > 0, we have

Ψ L(ℓ,J)d]((Rℓ), (RJ))( ≤Φ �F1(ℓ,J)( ,

τ � − ln
�
1
]



 , a �∞.

(69)

(e defined Ψ and Φ satisfy remaining conditions of
(eorem 2. Hence, by (eorem 2, the operator R has a
unique fixed point. (is means that the UIE (53) has a
unique solution. □

6. Conclusion

(e (Ψ,Φ)⊥ interpolative contractions are broad enough to
include well-known contractions. (e presented theorems
provide a general criterion for the existence of a unique fixed
point of (Ψ,Φ)⊥ interpolative contraction mappings. Fixed-
point methodology is used to investigate the presence of a
solution to a UIE.
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Hardy-rogers and reich-rus-cirić type contractions in rect-
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