Research Article

Set-Valued SU-Type Fixed Point Theorems via Gauge Function with Applications

Amjad Ali,1 Monairah Alansari,2 Fahim Uddin,1 Muhammad Arshad,1 Awais Asif,1 and Ghada Ali Basendwah2

1Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Fahim Uddin; fahim.uddin@iiu.edu.pk

Received 26 December 2020; Revised 21 March 2021; Accepted 25 March 2021; Published 19 May 2021

Copyright © 2021 Amjad Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

The most publicized famous result in nonlinear analysis is Banach contraction principle, which made clear a systematic rule to find the fixed point of a given mapping on a metric space. So far, numerous authors have studied this classical result to examine the existence and uniqueness of a solution for different forms of contractive structure.

In 2014, Jeleli and Samet [1] introduced the concept of a new contraction known as the θ-contraction, which generalizes the Banach contraction principle in a beautiful way.

In 2015, Khojasteh et al. [2] introduced simulation function. Recently, many researchers have proved fixed point theorems for Suzuki-type (SU) mappings in metric space [see [3, 4]].

Let (X, δ) be a metric space. For $\mu \in X$ and $\beta_1 \subseteq X$, let $\text{CL}(X)$ and $\text{CB}(X)$ denote the family of all nonempty closed subsets and the family of all nonempty closed bounded subsets of X. Design the Pompeiu–Hausdorff metric H_d induced by δ on $\text{CB}(X)$ as

$$H_d(\beta_1, \beta_2) = \max \left\{ \sup_{\mu_1 \in \beta_1} \delta(\mu_1, \beta_2), \sup_{\mu_2 \in \beta_2} \delta(\mu_2, \beta_1) \right\},$$

for all $\beta_1, \beta_2 \in \text{CL}(X)$ and $\delta(\mu_1, \beta_1) = \inf \{ \delta(\mu_1, \mu_2): \mu_2 \in \beta_1 \}$. A point $\mu \in X$ is said to be a fixed point of $T: X \rightarrow \text{CB}(X)$, if $\mu \in T(\mu)$. If, for $\mu_0 \in X$, there exists a sequence $\{\mu_k\}$ in X such that $\mu_k \in T(\mu_{k-1})$, then $O(T, \mu_0) = \{\mu_0, \mu_1, \mu_2, \ldots\}$ is said to be an orbit of $T: X \rightarrow \text{CB}(X)$. Mapping $f: X \rightarrow \mathbb{R}$ is said to be T-orbitally lower semi-continuous (o.l.s.c.), if a sequence $\{\mu_k\}$ in $O(T, \mu_0)$ and $\mu_k \rightarrow \gamma \Rightarrow f(\gamma) \leq \liminf f(\mu_k)$.

A multivalued mapping $T: X \rightarrow \text{CB}(X)$ is called a Nadler-contraction, if there exists $\gamma \in (0, 1)$ such that

$$H_d(T(\mu_1), T(\mu_2)) \leq \gamma \delta(\mu_1, \mu_2) \quad \text{for all} \quad \mu_1, \mu_2 \in X. \quad (2)$$

Nadler [5] obtained the multivalued version of the Banach contraction principle. Let (X, δ) be a complete metric space and $T: X \rightarrow \text{CL}(X)$ be a Nadler-contraction. Then, T has a fixed point. Recently, Vetro [6] proved the following result to μ^*.

Theorem 1. Let (X, δ) be a complete metric space and $T: X \rightarrow \text{CB}(X)$ be a multivalued mapping. Suppose that there exist $\theta \in \Xi$ and $k \in (0, 1)$ such that

$$\mu_1, \mu_2 \in X, H_d(T(\mu_1), T(\mu_2)) > 0 \Rightarrow \theta[H_d(T(\mu_1), T(\mu_2)) \leq \theta(\delta(\mu_1, \mu_2))]^k,$$

for all $\mu_1, \mu_2 \in X$. Then T has a fixed point in X.
where Ξ is the set of mapping $\theta: (0, \infty) \to (1, \infty)$ satisfying $(\theta_1 - \theta_2)$:

(i) $(\theta_1 - \theta_2)$ is nondecreasing and right-continuous.
(ii) (θ_n) For each $\{s_n\}$ in $(0, \infty)$, $\lim_{n \to \infty} \theta(s_n) = 1 \Rightarrow \lim_{n \to \infty} (s_n) = 0$.
(iii) (θ_n) There exist $r \in (0, 1)$ and $\mu \in (0, +\infty)$ such that $\lim_{r \to 0} \theta(s) - 1/s^r = \mu$. Then, T has at least one fixed point.

Remark 1. Let (X, δ) be a metric space. If $T: X \to CB(X)$ is a multivalued mapping satisfying the above theorem, then

$$\ln \theta(H_d(T(\mu_1), T(\mu_2))) \leq k \ln \theta(H_d(\mu_1, \mu_2)) < \ln \theta(\delta(\mu_1, \mu_2)).$$

(4)

Since θ is nondecreasing, we obtain

$$H_d(T\mu_1, T\mu_2) < \delta(\mu_1, \mu_2), \quad \text{for all } \mu_1, \mu_2 \in X, T\mu_1 \neq T\mu_2.$$

(5)

Example 1. The functions $\theta_1, \theta_2: (0, \infty) \to (1, \infty)$, defined by $\theta_1(r) = e^{\sqrt{r}}$ and $\theta_2(r) = 1 + \sqrt{r}$, are in Ξ.

Lemma 1 (see [6]). Let (X, δ) be a metric space and $\beta_1, \beta_2 \in CB(X)$ with $H_d(\beta_1, \beta_2) > 0$. Then, for all $k > 1$ and $\mu \in \beta_1$, there exists $\nu = \nu(\mu) \in \beta_2$ such that

$$\delta(\mu, \nu) < hH_d(\beta_1, \beta_2).$$

(6)

Example 2 (see [2]). For $j = 1, 2$, let $\bar{\theta}_j: \mathbb{R}^+ \to \mathbb{R}^+$ be continuous functions such that $\bar{\theta}_j(0) = 0$ and $\bar{\theta}_j(1) = 0$. Functions $\Gamma_j: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ ($j = 1, 2$) are in V:

(i) $\Gamma_j(\mu_1, \mu_2) = \bar{\theta}_j(\mu_2) - \bar{\theta}_j(\mu_1)$ for all $\mu_1, \mu_2 \geq 0$.

(7)

Definition 1 (see [2]). Mapping $\Gamma: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is called a simulation function such that

(i) $\Gamma(0, 0) = 0$.
(ii) $\Gamma(\mu_1, \mu_2) < \mu_2 - \mu_1$ for all $\mu_1, \mu_2 > 0$.
(iii) If $\{\mu_{1n}\}, \{\mu_{2n}\} \in (0, \infty)$ such that $\lim_{n \to \infty} \mu_{1n} = \lim_{n \to \infty} \mu_{2n} > 0$, then

$$\limsup_{n \to \infty} \Gamma(\mu_{1n}, \mu_{2n}) < 0.$$

(8)

Due to (T2), we have $\Gamma(\mu_1, \mu_2) < 0$ for all $\mu_1 > 0$. Here, the set V satisfies the conditions (G1)–(G3).

Lemma 2 (see [6]). Let (X, δ) be a metric space, $\beta_1 \in CB(X)$, and $\mu \in X$. Then, for each $\epsilon > 0$, there exists $\nu \in \beta_2$ such that

$$\delta(\mu, \nu) \leq \delta(\mu, \beta_2) + \epsilon.$$

(9)

Definition 2 (see [1]). Let (X, δ) be a metric space and Λ be a nonempty subset of X, and $T: \Lambda \to CB(X)$ is known as α-admissible, if there exists a mapping $\alpha: \Lambda \times \Lambda \to (0, \infty)$ such that

$$\alpha(\beta_1, \beta_2) \geq 1 \Rightarrow \alpha(\mu, v) \geq 1,$$

(10)

for all $\mu \in T(\beta_1) \cap \Lambda$ and $v \in T(\beta_2) \cap \Lambda$.

Lemma 3 (see [7]). Suppose there is a point $\mu_0 \in \Lambda$ (Λ is a closed subset of X) that satisfies

$$\delta(\mu_0, T(\mu_0)) \in \tilde{E},$$

(11)

and $\mu_0 \in \Lambda$ for some $\epsilon > 0$. Then, $\delta(\mu_0, T(\mu_0)) \in \tilde{E}$ where \tilde{E} denotes an interval on \mathbb{R}^+ containing 0.

Definition 3 (see [7]). (inclusion ball) Suppose $\mu_0 \in \Lambda$ and $\delta(\mu_0, T(\mu_0)) \in \tilde{E}$. Then, for all μ_0, μ which belongs to Λ, we define the closed-ball $B(\mu_1, \rho)$ with center μ_1 and radius $\rho = \delta(\mu_1, T(\mu_1))$, where $\delta: \tilde{E} \to R_{+}$ is defined by (13).

Definition 4 (see [7]). Let $j \geq 1$, and $\eta: \tilde{E} \to \tilde{E}$ is known as a gauge function of order j on \tilde{E}, if it satisfies the following conditions:

(i) $\eta(\lambda \mu) < l^j \eta(\mu)$ for all $\lambda \in (0, 1)$ and $\mu \in \tilde{E}$.
(ii) $\eta(\mu) < \mu$ for all $\mu \in \tilde{E} - \{0\}$.

Note that the first condition of Definition 4 is equivalent to $\eta(0) = 0$ and $\eta(\mu/\mu')$ is nondecreasing on $\tilde{E} - \{0\}$.

Definition 5 (see [7]). A gauge function $\eta: \tilde{E} \to \tilde{E}$ is said to be a Bianchini–Grandolfi gauge function on \tilde{E} if

$$\sigma(\mu) = \sum_{i=0}^{\infty} \eta(\mu) < \infty,$$

(12)

for all $\mu \in \tilde{E}$. Note that a Bianchini–Grandolfi gauge function also satisfies the following functional equation:

$$\sigma(\mu) = \sigma(\eta(\mu)) + \mu.$$

(13)

2. Set-Valued θ_η-Contraction

The first main definition of this exposition is as follows.
\textbf{Theorem 2.} Let \((X, \delta)\) be a complete metric space, \(\theta\) be a Bianchini–Grandolfo gauge function on \(E\). A mapping \(T: \Lambda \rightarrow CB(X)\) is known as set-valued \(SU_{\theta}\)-contraction, if there exists \(\theta \in \Xi\) such that for \(T(\mu) \cap \Lambda \neq \emptyset\),

\[
\frac{1}{2} \min \{\delta(\mu, T(\mu) \cap \Lambda), \delta(\nu, T(\nu) \cap \Lambda)\} < \delta(\mu, \nu), \quad (14)
\]

for all \(\mu \in \Lambda, \nu \in T(\mu) \cap \Lambda\) with \(\delta(\mu, \nu) \in \bar{E}\), where \(k \in (0, 1)\).

\begin{align*}
\Omega(\mu, \nu) &= \max \left\{ \delta(\mu, \nu), \delta(\mu, T(\mu)), \delta(\nu, T(\nu)), \frac{\delta(\mu, T(\nu)) + \delta(\nu, T(\mu))}{2} \right\}, \quad (16)
\end{align*}

\[
\frac{\rho[\hbar H_d(T(\mu) \cap \Lambda, T(\nu) \cap \Lambda)]}{\delta(\mu, \nu) \cap \Lambda} \leq \left[\theta(\eta(\Omega(\mu, \nu))) \right]^k, \quad (15)
\]

where

\[
\theta(\mu, \nu) = \max \left\{ \delta(\mu, \nu), \delta(\mu, T(\mu)), \delta(\nu, T(\nu)), \frac{\delta(\mu, T(\nu)) + \delta(\nu, T(\mu))}{2} \right\},
\]

which implies that

\[
\frac{\Omega(\mu, \nu)}{\delta(\mu, \nu) \cap \Lambda} \leq \left[\theta(\eta(\Omega(\mu, \nu))) \right]^k,
\]

where

\[
\delta(\mu_0, \mu_1) = \max \left\{ \delta(\mu_0, \mu_1), \delta(\mu_0, T(\mu_0)), \delta(\mu_1, T(\mu_0)), \frac{\delta(\mu_0, T(\mu_1)) + \delta(\mu_1, T(\mu_0))}{2} \right\},
\]

\[
\delta(\mu_0, \mu_1) \leq \max \left\{ \delta(\mu_0, \mu_1), \delta(\mu_1, T(\mu_1)), \frac{\delta(\mu_0, T(\mu_1))}{2} \right\}
\]

\[
\leq \max \left\{ \delta(\mu_0, \mu_1), \delta(\mu_1, T(\mu_1)) \right\},
\]

We claim that

\[
\theta(\delta(\mu_1, \mu_2)) \leq \theta[h_1 H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda)] \leq \left[\theta(\delta(\mu_0, \mu_1)) \right]^k. \quad (23)
\]

Let \(\Phi = \max \{\delta(\mu_0, \mu_1), \delta(\mu_1, T(\mu_1))\}\). If \(\Phi = \delta(\mu_1, T(\mu_1))\), we have \(\mu_2 \in T(\mu_1) \cap \Lambda\), so we obtain

\[
\theta(\delta(\mu_1, \mu_2)) \leq \theta[h_1 H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda)] \leq \left[\theta(\delta(\mu_1, \mu_2)) \right]^k, \quad (24)
\]

which is a contradiction. Thus, we conclude that \(\Phi = \delta(\mu_0, \mu_1)\). We assume that \(\delta(\mu_1, \mu_2) \neq 0\); otherwise, \(\mu_1\) is a fixed point of \(T\). From Remark 1, we have \(\delta(\mu_1, \mu_2) < \delta(\mu_0, \mu_1)\), and so \(\delta(\mu_1, \mu_2) \in \bar{E}\). Next, \(\mu_2 \in \bar{B}(\mu_0, \rho)\) because

\[
\delta(\mu_0, \mu_2) \leq \delta(\mu_0, \mu_1) + \delta(\mu_1, \mu_2) \leq \delta(\mu_0, \mu_1) + \eta(\delta(\mu_0, \mu_1)) \leq \delta(\mu_0, \mu_1) + \sigma(\eta(\delta(\mu_0, \mu_1))) = \sigma(\delta(\mu_0, \mu_1)) = \rho.
\]

\[
\theta(\mu_1, \mu_2) \leq \theta[h_1 H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda)] \leq \left[\theta(\eta(\Omega(\mu, \nu))) \right]^k,
\]

where
Also, since
\[
\frac{1}{2} \min \{ \delta(\mu_1, T(\mu_1) \cap \Lambda), \delta(\mu_2, T(\mu_2) \cap \Lambda) \} < \delta(\mu_1, \mu_2),
\]
from (15), we get
\[
\theta[H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)] \leq \left[\theta(\eta(\delta(\mu_1, \mu_2))) \right]^k < \left[\theta(\Omega(\mu_1, \mu_2)) \right]^k. \tag{27}
\]
Since \(\theta \) is right-continuous, there exists a real number \(h_2 > 1 \) such that
\[
\theta[h_2 H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)] \leq \left[\theta(\Omega(\mu_1, \mu_2)) \right]^k. \tag{28}
\]
Next, from
\[
\delta(\mu_2, T(\mu_2) \cap \Lambda) \leq \delta(H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)),
\]
by Lemma 1, there exists \(\mu_3 \in T(\mu_2) \cap \Lambda \) such that
\[
\delta(\mu_2, \mu_3) \leq \delta h_2 H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda). \tag{29}
\]
By (28), this inequality gives that
\[
\theta(\delta(\mu_2, \mu_3)) \leq \theta[h_2 H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)] \leq \left[\theta(\Omega(\mu_1, \mu_2)) \right]^k \leq \left[\theta(\Omega(\mu_0, \mu_1)) \right]^k.
\]
where

\[
\Omega(\mu_1, \mu_2) = \max \left\{ \delta(\mu_1, \mu_2), \delta(\mu_1, T(\mu_1)), \delta(\mu_2, T(\mu_2)), \frac{\delta(\mu_1, T(\mu_2)) + \delta(\mu_2, T(\mu_1))}{2} \right\}
\]

\[
\leq \max \left\{ \delta(\mu_1, \mu_2), \delta(\mu_2, T(\mu_2)), \frac{\delta(\mu_1, T(\mu_2))}{2} \right\}
\]

\[
\leq \max \{ \delta(\mu_1, \mu_2), \delta(\mu_2, T(\mu_2)) \}.
\]

We claim that
\[
\theta(\delta(\mu_2, \mu_3)) \leq \theta[h_2 H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)] \leq \left[\theta(\delta(\mu_0, \mu_1)) \right]^k \tag{32}
\]
Let
\[
\Phi = \max \{ \delta(\mu_1, \mu_2), \delta(\mu_2, T(\mu_2)) \}. \]
If \(\Phi = \delta(\mu_2, T(\mu_2)) \), we have \(\mu_3 \in T(\mu_2) \cap \Lambda \), so we obtain
\[
\theta(\delta(\mu_2, \mu_3)) \leq \theta[h_2 H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)] \leq \left[\theta(\delta(\mu_2, \mu_3)) \right]^k. \tag{33}
\]
which is a contradiction. Thus, we conclude that \(\Phi = \delta(\mu_1, \mu_2) \). We assume that \(\delta(\mu_2, \mu_3) \neq 0 \); otherwise, \(\mu_2 \) is a fixed point of \(T \). From Remark 1, we have \(\delta(\mu_2, \mu_3) \leq \delta(\mu_1, \mu_2) \), and so \(\delta(\mu_2, \mu_3) \in \mathcal{B} \). Also, we have \(\mu_3 \in \mathcal{B}(\mu_0, \rho) \), since
\[
\delta(\mu_0, \mu_3) \leq \delta(\mu_0, \mu_1) + \delta(\mu_1, \mu_2) + \delta(\mu_2, \mu_3)
\]
\[
\leq \delta(\mu_0, \mu_1) + \eta(\delta(\mu_0, \mu_1)) + \eta^2(\delta(\mu_0, \mu_1))
\]
\[
\leq \sum_{i=0}^{\infty} \eta^i(\delta(\mu_0, \mu_1)) = \sigma(\delta(\mu_0, \mu_1)) = \rho.
\tag{34}
\]
Continuing this setup, we have two sequences \(\{ \mu_1 \} \subset \mathcal{B}(\mu_0, \rho) \) and \(\{ h_i \} \subset (1, \infty) \) such that \(\mu_{i+1} \in T(\mu_i) \cap \Lambda \), \(\mu \neq \mu_{i+1} \) with \(\delta(\mu_{i+1}, \mu_{i+2}) \in \mathcal{B} \) and

\[
1 < \theta(\delta(\mu_{i+1}, \mu_{i+2})) \leq \theta[h_i H_d(T(\mu_{i-1}) \cap \Lambda, T(\mu_{i}) \cap \Lambda)] \leq \left[\theta(\delta(\mu_{i-1}, \mu_{i})) \right]^k,
\tag{35}
\]
for all \(i \in \mathbb{N} \). Then,
\[
1 < \theta(\delta(\mu_{i+1}, \mu_{i+2})) \leq \theta(\delta(\mu_0, \mu_1))^k, \quad \text{for all } i \in \mathbb{N}, \tag{36}
\]
which gives that
\[
\lim_{i \to \infty} \theta(\delta(\mu_{i+1}, \mu_{i+2})) = 1,
\tag{37}
\]
and by \((\theta_1) \), we have
\[
\lim_{i \to \infty} \delta(\mu_{i+1}, \mu_{i+2}) = 0. \tag{38}
\]
Next, we prove that \(\{ \mu_i \} \) is a Cauchy sequence in \(X \). Setting \(\delta_1 = \delta(\mu_{i+1}, \mu_{i+2}) \), from \((\theta_3) \), there exist \(r \in (0, 1) \) and \(\mu \in (0, \infty) \) such that
\[
\lim_{i \to \infty} \frac{\theta(\delta_1) - 1}{\delta_1^r} = \mu. \tag{39}
\]
Take \(\lambda \in (0, \mu) \). From the definition of limit, there exists \(t_0 \in \mathbb{N} \) such that
\[
[\delta_1]_r^r \leq \lambda^{-1}[\theta(\delta_1) - 1], \quad \text{for all } i > t_0.
\tag{40}
\]
Using (36) and the above inequality,
\[
[\delta_1]_r^r \leq \lambda^{-1}[\theta(\delta_0)]^k - 1), \quad \text{for all } i > t_0. \tag{41}
\]
This implies that
\[
\lim_{i \to \infty} t[|\delta|]^i = \lim_{i \to \infty} t[d(\mu_i, \mu_{i+1})]^i = 0. \tag{42}
\]
Hence, there exists \(t_1 \in \mathbb{N} \) such that
\[
d(\mu_i, \mu_{i+1}) \leq \frac{1}{t_1^i} \quad \text{for all } i > t_1. \tag{43}
\]

Let \(p > t > t_1 \). Then, using the triangular inequality and (43), we get
\[
d(\mu_p, \mu_{t_1}) \leq \sum_{j=t}^{p-1} nd(\mu_j, \mu_{j+1}) \leq \sum_{j=t}^{p-1} \frac{1}{t_1^j} < \sum_{j=t}^{\infty} \frac{1}{t_1^j}. \tag{44}
\]

Owing to the convergence of the series \(\sum_{j=t}^{\infty} \frac{1}{t_1^j} \), \(\{\mu_i\} \) is a Cauchy sequence in \(B(\mu_0, \rho) \). Since \(B(\mu_0, \rho) \) is closed in \(X \), there exists \(\delta \in B(\mu_0, \rho) \) such that \(\mu_i \to \delta \). Note that \(\delta \in \Lambda \) because \(\mu_{i+1} \in T(\mu_i) \cap \Lambda \). Now, we claim that
\[
\frac{1}{2} \min\{d(\mu_i, T(\mu_i) \cap \Lambda), d(\delta, T(\delta) \cap \Lambda)\} < d(\mu_i, \delta), \tag{45}
\]
for all \(i \in \mathbb{N} \). Assume, on the contrary, that there exists \(i' \in \mathbb{N} \) such that
\[
\frac{1}{2} \min\{d(\mu_i, T(\mu_i) \cap \Lambda), d(\delta, T(\delta) \cap \Lambda)\} \geq d(\mu_i, \delta), \tag{46}
\]
and
\[
\frac{1}{2} \min\{d(\delta, T(\delta) \cap \Lambda), d(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)\} \geq d(\mu_{i+1}, \delta). \tag{47}
\]

By (47), we have
\[
2d(\mu_i, \delta) \leq \min\{d(\mu_i, T(\mu_i) \cap \Lambda), d(\delta, T(\delta) \cap \Lambda)\} \leq \min\{d(\delta, T(\delta) \cap \Lambda), d(\delta, T(\delta) \cap \Lambda)\} \leq \min\{d(\delta, T(\delta) \cap \Lambda), d(\delta, T(\delta) \cap \Lambda)\} \leq [d(\mu_i, \delta) + d(\delta, T(\mu_i) \cap \Lambda)] < [d(\mu_i, \delta) + d(\delta, T(\mu_{i+1}) \cap \Lambda)] \leq [d(\mu_i, \delta) + d(\delta, T(\mu_{i+1}) \cap \Lambda)]. \tag{48}
\]

which implies that
\[
d(\mu_i, \delta) \leq d(\delta, \mu_{i+1}), \tag{50}
\]
which together with (38) gives
\[
d(\mu_i, \delta) \leq d(\delta, \mu_{i+1}) \leq \frac{1}{2} \min\{d(\delta, T(\delta) \cap \Lambda), d(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)\}. \tag{51}
\]

Since
\[
\frac{1}{2} \min\{d(\mu_i, T(\mu_i) \cap \Lambda), d(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)\} < d(\mu_i, \mu_{i+1}), \tag{52}
\]
from contractive condition (15), we have
\[
\theta(d(\mu_{i+1}, \mu_{i'+1})) \leq \theta[h_2H_d(T(\mu_i) \cap \Lambda, T(\mu_{i+1}) \cap \Lambda)] \leq \theta(\Omega(\mu_{i+1}, \mu_{i'+1}))^k, \tag{53}
\]
where
\[
\Omega(\mu_{i+1}, \mu_{i'+1}) = \max \left\{ \frac{\delta(\mu_{i+1}, \mu_{i'+1}), \delta(\mu_{i+1}, T(\mu_i)), \delta(\mu_{i+1}, T(\mu_{i+1}))}{2} \right\} \tag{54}
\]

We claim that
\[
\theta(d(\mu_{i+1}, \mu_{i'+1})) \leq \theta[h_2H_d(T(\mu_i) \cap \Lambda, T(\mu_{i+1}) \cap \Lambda)] \leq \theta(\Omega(\mu_{i+1}, \mu_{i'+1}))^k. \tag{55}
\]

Let \(\Delta = \max\{d(\mu_{i+1}, \mu_{i'+1}), d(\mu_{i+1}, \mu_{i'+1})\} \). If \(\Delta = d(\mu_{i+1}, \mu_{i'+1}) \). Since \(\mu_{i+1} \in T(\mu_i) \cap \Lambda \), we have
\[
\theta(d(\mu_{i+1}, \mu_{i'+1})) \leq \theta[h_2H_d(T(\mu_i) \cap \Lambda, T(\mu_{i+1}) \cap \Lambda)] \leq \theta(\Omega(\mu_{i+1}, \mu_{i'+1}))^k, \tag{56}
\]
which is a contradiction. Thus, we conclude that \(\Delta = d(\mu_{i+1}, \mu_{i'+1}) \). From Remark 1, we have
\[
d(\mu_{i+1}, \mu_{i'+1}) < d(\mu_i, \mu_{i+1}). \tag{57}
\]

From (38), (43), and (47), we obtain
\[
d(\mu_{i+1}, \mu_{i'+1}) < d(\mu_i, \mu_{i+1}) \leq \frac{1}{2} \min\{d(\delta, T(\delta) \cap \Lambda), d(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)\} \leq \frac{1}{2} \min\{d(\delta, T(\delta) \cap \Lambda), d(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)\} \leq \delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda), \tag{58}
\]
which is a contradiction. Hence, (45) holds true:
Also, we know that $\delta(\mu, \mu_{i+1}) \in \hat{E}$ for all n. Thus, from (15), we have
\[
\theta(\delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)) \leq \theta[H_d(T(\mu) \cap \Lambda, T(\mu_{i+1}) \cap \Lambda)] \\
\leq [\theta(b(\Omega(\mu, \mu_{i+1})))]^k \\
< \theta(\Omega(\mu, \mu_{i+1})))^k,
\]
where
\[
\Omega(\mu, \mu_{i+1}) = \max \left\{ \frac{\delta(\mu_{i+1}, T(\mu_{i+1})), \delta(\mu_{i+1}, T(\mu_{i+1}))}{2} \right\}
\]
\[
\leq \max \left\{ \delta(\mu_{i+1}, \mu_{i+2}), \delta(\mu_{i+1}, \mu_{i+2}) \right\}
\]
\[
\leq \max[\delta(\mu_{i+1}, T(\mu_{i+1})), \delta(\mu_{i+1}, \mu_{i+2})].
\]
We claim that
\[
\theta(\delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)) \leq [\theta(\Omega(\mu, \mu_{i+1})))]^k.
\]
(62)
\[
\delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda) < \delta(\mu_{i+1}, \mu_{i+1}).
\]
(63)
which is a contradiction. Thus, we obtain $\Phi = \delta(\mu_{i+1}, \mu_{i+1})$.
From Remark 1, we deduce
\[
\delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda) < \delta(\mu_{i+1}, \mu_{i+1}).
\]
(64)
Taking limit $i \rightarrow \infty$ in (64),
\[
\lim_{i \rightarrow \infty} \delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda) = 0.
\]
(65)
Since $g(\mu) = \delta(\mu, T(\mu) \cap \Lambda)$ is T-o.l.s.c at θ^*, then
\[
\delta(\theta^*, T(\theta^*) \cap \Lambda) = g(\theta^*) \leq \liminf_{i \rightarrow \infty} g(\mu_{i+1})
\]
\[
= \liminf_{i \rightarrow \infty} \delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda) = 0.
\]
(66)
Since $T(\theta^*)$ is closed, we have $\theta^* \in T(\theta^*)$. Conversely, if θ^* is a fixed point of T, then $g(\theta^*) = 0 \leq \liminf_{i \rightarrow \infty} g(\mu_{i+1})$, since $\theta^* \in \Lambda$.
\[
\frac{1}{2} \min[\delta(\mu, T(\mu) \cap \Lambda), \delta(\theta^*, T(\theta^*) \cap \Lambda)] < \delta(\mu, \theta^*) \quad \text{for all } i \geq 2.
\]
(59)

Corollary 1. Let (X, δ) be a complete metric space, η be a Bianchini–Grandolfi gauge function on an interval \hat{E}, and $T: \Lambda \rightarrow CB(X)$ be a given set-valued mapping. If $k \in (0, 1)$ and $T(\mu) \cap \Lambda \neq \emptyset$ exist,
\[
\frac{1}{2} \min[\delta(\mu, T(\mu) \cap \Lambda), \delta(\nu, T(\nu) \cap \Lambda)] < \delta(\mu, \nu),
\]
(67)
which implies that
\[
\theta[H_d(T(\mu) \cap \Lambda, T(\nu) \cap \Lambda)] \leq [\theta(\delta(\mu, \nu)))]^k,
\]
(68)
for all $\mu \in \Lambda$, $\nu \in T(\mu) \cap \Lambda$ with $\delta(\mu, \nu) \in \hat{E}$. Suppose $\mu_0 \in \Lambda$ such that $\delta(\mu_0, c^*) \in \hat{E}$ for some $c^* \in T(\mu_0) \cap \Lambda$. Then, there exists an orbit $\{\mu_n\}$ of T in Λ and $\theta^* \in \Lambda$ such that $\lim_{n \rightarrow \infty} \mu_n = \theta^*$. In addition, θ^* is a fixed point of T if and only if the function $g(\mu): = \delta(\mu, T(\mu) \cap \Lambda)$ is T-o.l.s.c at point θ^*.

Corollary 2. Let (X, δ) be a complete metric space, η be a Bianchini–Grandolfi gauge function on an interval \hat{E}, and $T: \Lambda \rightarrow CB(X)$ be a given set-valued mapping. If $k \in (0, 1)$ and for $T(\mu) \cap \Lambda \neq \emptyset$ exist,
Theorem 3. Let \(X, \delta \) be a complete metric space, \(\eta \) be a Bianchini–Grandolfi gauge function on \(\overline{E} \), and \(T: \Lambda \to CB(X) \) be a given set-valued mapping. If \(\theta \in \Xi \) and \(k \in (0, 1) \) exist, then
\[
\frac{1}{2} \min \{ \delta (\mu, T(\mu) \cap \Lambda), \delta (\nu, T(\nu) \cap \Lambda) \} < \delta (\mu, \nu),
\]
implies that
\[
\sqrt{\theta [H_d(T(\mu), T(\nu))]} \leq k \sqrt{\eta (\delta (\mu, \nu))},
\]
for all \(\mu \in \Lambda, \nu \in T(\mu) \cap \Lambda, \) and \(\delta (\mu, \nu) \in \overline{E} \). In addition, suppose \(\mu_0 \in \Lambda \) such that \(\delta (\mu_0, c^*) \in \overline{E} \) for some \(c^* \in T(\mu_0) \cap \Lambda \). Then, there exists an orbit \(\{ \mu_i \} \) of \(T \) in \(\Lambda \), and \(0^* \in \Lambda \) such that \(\lim_{i \to \infty} \mu_i = 0^* \) and \(0^* \) is a fixed point of \(T \) if and only if the function \(g(\mu) = \delta (\mu, T(\mu) \cap \Lambda) \) is \(T \)-o.l.s.c at \(0^* \).

Corollary 3. Let \((X, \delta) \) be a complete metric space, \(\eta \) be a Bianchini–Grandolfi gauge function on \(\overline{E} \), and \(T: \Lambda \to CB(X) \) be a given set-valued mapping. If \(\theta \in \Xi \) and \(k \in (0, 1) \) exist, then
\[
\frac{1}{2} \min \{ \delta (\mu, T(\mu) \cap \Lambda), \delta (\nu, T(\nu) \cap \Lambda) \} < \delta (\mu, \nu),
\]
implies that
\[
\theta [H_d(T(\mu), T(\nu))] \leq \theta \left(\frac{|\mu - \nu|}{8} \right)
\]
for all \(\mu \in X, \nu \in T(\mu) \), and \(\delta (\mu, \nu) \in \overline{E} \). Suppose that \(\mu_0 \in X \) such that \(\delta (\mu_0, c^*) \in \overline{E} \) for some \(c^* \in T(\mu_0) \). Then, there exists an orbit \(\{ \mu_i \} \) of \(T \) in \(X \) that converges to the fixed point \(0^* \), where \(0^* \in \mathcal{F} = \{ \mu \in X: \delta (\mu, 0^*) \in \overline{E} \} \) of \(T \).

Example 3. Let \(X = [-10, \infty) \) be a usual metric \(\delta \) and let \(\overline{E} = [0, \infty) \). Mapping \(T: \Lambda \to CB(X) \) is defined as
\[
T(\mu) = \begin{cases}
0, & \mu < 0, \\
\mu, & 0 \leq \mu \leq 4, \\
4, & \mu > 4.
\end{cases}
\]
Clearly, \(\frac{1}{2} \min \{ \delta (\mu, T(\mu) \cap \Lambda), \delta (\nu, T(\nu) \cap \Lambda) \} < \delta (\mu, \nu) \) if and only if \(\mu, \nu \in [0, 4] \). Let \(\mu_0 = 4 \); then, we have \(c^* = 1/2 \in T(\mu_0) \) such that \(\delta (\mu_0, c^*) \in \overline{E} \). First, we claim that \(T \) satisfies inequality (68) with setting \(\theta (r) = e^{\sqrt{2}r} \), \(\eta (r) = r/2 \), and \(k = 1/2 \). For \(\mu \in [0, 4] \) and \(\nu \in T(\mu) \), we obtain
\[
\Omega (\mu, \nu) = \max \left\{ \delta (\mu, \nu), \delta (\mu, T(\mu)), \frac{\delta (\mu, T(\nu)) + \delta (\nu, T(\mu))}{2} \right\}.
\]
for all \(\mu \in \Lambda, \nu \in T(\mu) \cap \Lambda \) with \(\delta (\mu, \nu) \in \overline{E} \).

Theorem 3. Let \((X, \delta) \) be a complete metric space and \(T: \Lambda \to CB(X) \) be a set-valued SU-type \(\Gamma_\alpha \)-contraction such that the following conditions are satisfied:

(a) \(T \) is \(\alpha \)-admissible.

(b) There exists \(\mu_0 \in \Lambda \) with \(\delta (\mu_0, \mu_1) \in \overline{E} \) for some \(\mu_1 \in T(\mu_0) \cap \Lambda \) such that \(\alpha (\mu_0, \mu_1) \geq 1 \). Then, there exists an orbit \(\{ \mu_i \} \) of \(T \) in \(\Lambda \) and \(0^* \in \Lambda \) such that \(\lim_{i \to \infty} \mu_i = 0^* \). In addition, \(0^* \) is a fixed point of \(T \) if
\[
\frac{1}{2} \min \{ \delta (\mu_0, T(\mu_0) \cap \Lambda), \delta (\mu_1, T(\mu_1) \cap \Lambda) \} < \delta (\mu_0, \mu_1).
\]
In the case that \(\delta(\mu_0, \mu_1) = 0 \), \(\mu_0 \) is a fixed point of \(T \). Thus, we assume that \(\delta(\mu_0, \mu_1) \neq 0 \). Define \(\rho = \sigma(\delta(\mu_0, \mu_1)) \). From (13), we have \(\sigma(r) \geq r \). Hence, \(\delta(\mu_0, \mu_1) \leq \rho \), and so \(\mu_1 \in B(\mu_0, \rho) \). Since \(\alpha(\mu_0, \mu_1) \geq 1 \) and \(\delta(\mu_0, \mu_1) \in \bar{E} \), from (76) and (78), it follows that

\[
0 \leq [\alpha(\mu_0, \mu_1)H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda), \eta(\delta(\mu_0, \mu_1))] < \eta(\Omega(\mu_0, \mu_1)) - \alpha(\mu_0, \mu_1)H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda),
\]

which implies that

\[
\alpha(\mu_0, \mu_1)H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda) < \eta(\Omega(\mu_0, \mu_1)).
\]

We can choose \(\varepsilon_1 > 0 \) such that

\[
\alpha(\mu_0, \mu_1)H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda) + \varepsilon_1 \leq \eta(\Omega(\mu_0, \mu_1)).
\]

Thus,

\[
\delta(\mu_1, T(\mu_1) \cap \Lambda) + \varepsilon_1 \leq H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda) + \varepsilon_1 \leq a(\mu_0, \mu_1)H_d(T(\mu_0) \cap \Lambda, T(\mu_1) \cap \Lambda) + \varepsilon_1 \leq \eta(\Omega(\mu_0, \mu_1)).
\]

It follows from Lemma 2 that there exists \(\mu_2 \in T(\mu_1) \cap \Lambda \) such that

\[
\delta(\mu_1, \mu_2) \leq \delta(\mu_1, T(\mu_1) \cap \Lambda) + \varepsilon_1.
\]

From (82) and (83), we infer that

\[
\delta(\mu_1, \mu_2) \leq \eta(\Omega(\mu_0, \mu_1)),
\]

where

\[
\Omega(\mu_0, \mu_1) = \max\left\{ \delta(\mu_0, \mu_1), \delta(\mu_0, T(\mu_0)), \delta(\mu_1, T(\mu_1)), \left(\frac{\delta(\mu_0, T(\mu_1)) + \delta(\mu_1, T(\mu_0))}{2} \right) \right\}
\]

\[
\leq \max\left\{ \delta(\mu_0, \mu_1), \delta(\mu_1, T(\mu_1)), \frac{\delta(\mu_0, T(\mu_1))}{2} \right\}
\]

\[
\leq \max\{\delta(\mu_0, \mu_1), \delta(\mu_1, T(\mu_1))\}.
\]

We claim that

\[
\delta(\mu_1, \mu_2) \leq \eta(\Omega(\mu_0, \mu_1)).
\]

Let \(\Phi = \max\{\delta(\mu_0, \mu_1), \delta(\mu_1, T(\mu_1))\} \). If \(\Phi = \delta(\mu_1, T(\mu_1)) \), we have \(\mu_2 \in T(\mu_1) \cap \Lambda \), so we obtain

\[
\delta(\mu_1, \mu_2) \leq \eta(\Omega(\mu_0, \mu_1)),
\]

which is a contradiction. Thus, we obtain \(\Phi = \delta(\mu_0, \mu_1) \). We assume that \(\delta(\mu_1, \mu_2) \neq 0 \); otherwise, \(\mu_1 \) is a fixed point of \(T \). Since \(\delta(\mu_1, \mu_2) \leq \eta(\delta(\mu_0, \mu_1)) < \delta(\mu_0, \mu_1) \), we deduce that \(\delta(\mu_1, \mu_2) \in \bar{E} \). Next, \(\mu_2 \in B(\mu_0, \rho) \) because

\[
\delta(\mu_0, \mu_2) \leq \delta(\mu_0, \mu_1) + \delta(\mu_1, \mu_2)
\]

\[
\leq \delta(\mu_0, \mu_1) + \eta(\delta(\mu_0, \mu_1))
\]

\[
\leq \delta(\mu_0, \mu_1) + \sigma(\delta(\mu_0, \mu_1))
\]

\[
= \sigma(\delta(\mu_0, \mu_1)) = \rho.
\]

Because \(T \) is \(\alpha \)-admissible, \(\alpha(\mu_1, \mu_2) \geq 1 \). Also, since

\[
\frac{1}{2} \min\{\delta(\mu_1, \mu_2), \delta(\mu_2, \mu_1) \} \in \bar{E}
\]

from (76), we get

\[
0 \leq [\alpha(\mu_1, \mu_2)H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda), \eta(\Omega(\mu_1, \mu_2))] < \eta(\Omega(\mu_1, \mu_2)) - a(\mu_1, \mu_2)H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda).
\]

This implies that

\[
\alpha(\mu_1, \mu_2)H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda) < \eta(\Omega(\mu_1, \mu_2)).
\]

Now choose \(\varepsilon_2 > 0 \) such that

\[
\alpha(\mu_1, \mu_2)H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda) + \varepsilon_2 \leq \eta(\Omega(\mu_1, \mu_2)).
\]

Thus,

\[
\delta(\mu_2, T(\mu_2) \cap \Lambda) + \varepsilon_2 \leq H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda) + \varepsilon_2 \leq a(\mu_1, \mu_2)H_d(T(\mu_1) \cap \Lambda, T(\mu_2) \cap \Lambda)
\]

\[
+ \varepsilon_2 \leq \eta(\Omega(\mu_1, \mu_2)).
\]

It follows from Lemma 2 that there exists \(\mu_3 \in T(\mu_2) \cap \Lambda \) such that

\[
\delta(\mu_2, \mu_3) \leq \delta(\mu_2, T(\mu_2) \cap \Lambda) + \varepsilon_2.
\]

From (93) and (94),

\[
\delta(\mu_2, \mu_3) \leq \eta^2(\Omega(\mu_0, \mu_1)),
\]

where
\[
\Omega(\mu_1, \mu_2) = \max \left\{ \delta(\mu_1, \mu_2), \delta(\mu_1, T(\mu_1)), \delta(\mu_2, T(\mu_2)), \frac{\delta(\mu_1, T(\mu_2)) + \delta(\mu_2, T(\mu_1))}{2} \right\}
\]
\[
\leq \max \left\{ \delta(\mu_1, \mu_2), \delta(\mu_2, T(\mu_2)), \frac{\delta(\mu_1, T(\mu_2))}{2} \right\}
\]
\[
\leq \max \left\{ \delta(\mu_1, \mu_2), \delta(\mu_2, T(\mu_2)) \right\}.
\]

We claim that
\[
\delta(\mu_2, \mu_3) \leq \eta(\delta(\mu_1, \mu_2)).
\] (97)

Let \(\Phi = \max \{ \delta(\mu_1, \mu_2), \delta(\mu_2, T(\mu_2)) \} \). If \(\Phi = \delta(\mu_2, T(\mu_2)) \), since \(\mu_1 \in T(\mu_2) \cap \Lambda \), we have
\[
\delta(\mu_2, \mu_3) \leq \eta(\delta(\mu_1, \mu_2)),
\] (98)
which is a contradiction. Thus, we have \(\Phi = \delta(\mu_1, \mu_2) \). We assume that \(\delta(\mu_2, \mu_3) \neq 0 \); otherwise, \(\mu_2 \) is a fixed point of \(T \). From (95), we have \(\delta(\mu_2, \mu_3) \leq \delta(\mu_1, \mu_2) \), and so \(\delta(\mu_2, \mu_3) \in \hat{E} \). Also, we have \(\mu_3 \in \mathcal{B}(\mu_0, \rho) \), since
\[
\delta(\mu_0, \mu_3) \leq \delta(\mu_0, \mu_1) + \delta(\mu_1, \mu_2) + \delta(\mu_2, \mu_3) \leq \delta(\mu_0, \mu_1) + \eta(\delta(\mu_0, \mu_1)) + \eta^2(\delta(\mu_0, \mu_1)) \leq \sum_{i=0}^{\infty} \eta^i(\delta(\mu_0, \mu_1)) = \sigma(\delta(\mu_0, \mu_1)) = \rho.
\] (99)

Continuing this setup, we obtain a sequence \(\{ \mu_i \} \subset \mathcal{B}(\mu_0, \rho) \) such that \(\mu_{i+1} \in T(\mu_i) \cap \Lambda \), \(\mu_i \neq \mu_{i+1} \) with \(\alpha(\mu_i, \mu_{i+1}) \geq 1 \) and \(\delta(\mu_i, \mu_{i+1}) \in \hat{E} \) and
\[
\delta(\mu_i, \mu_{i+1}) \leq \eta^i(\delta(\mu_0, \mu_1)), \text{ for all } i \in \mathbb{N}.
\] (100)

For \(i, m \in \mathbb{N} \) with \(m > i \), by using the triangular inequality and (100), we get
\[
\delta(\mu_i, \mu_m) \leq \delta(\mu_i, \mu_{i+1}) + \delta(\mu_{i+1}, \mu_{i+2}) + \cdots + \delta(\mu_{m-1}, \mu_m) \leq \eta^i(\delta(\mu_0, \mu_1)) + \eta^{i+1}(\delta(\mu_0, \mu_1)) + \cdots + \eta^{m-1}(\delta(\mu_0, \mu_1)) \leq \sum_{j=i}^{m-1} \eta^j(\delta(\mu_0, \mu_1)) < \infty.
\] (101)

To show that \(\{ \mu_i \} \) is a Cauchy sequence in \(\mathcal{B}(\mu_0, \rho) \). Since \(\mathcal{B}(\mu_0, \rho) \) is closed in \(X \), there exists an \(\vartheta' \in \mathcal{B}(\mu_0, \rho) \) such that \(\mu_i \to \vartheta' \). Note that \(\vartheta' \in \Lambda \) because \(\mu_{i+1} \in T(\mu_i) \cap \Lambda \). By same argument of Theorem 2, we have
\[
\frac{1}{2^5} \min\{\delta(\mu_i, T(\mu_i) \cap \Lambda), \delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda)\} < \delta(\mu_i, \mu_{i+1}).
\] (102)

Also, we know that \(\alpha(\mu_i, \mu_{i+1}) \geq 1 \) and \(\delta(\mu_i, \mu_{i+1}) < \infty \) for all \(n \). Thus, from (76), we have
\[
0 \leq \Gamma \left[\alpha(\mu_i, \mu_{i+1})H_d(T\mu_i \cap \Lambda, T\mu_{i+1} \cap \Lambda), \eta(\Omega(\mu_i, \mu_{i+1})) \right] < \eta(\Omega(\mu_i, \mu_{i+1})) - \alpha(\mu_i, \mu_{i+1})H_d(T\mu_i \cap \Lambda, T\mu_{i+1} \cap \Lambda),
\] (103)
which gives that
\[
\alpha(\mu_i, \mu_{i+1})H_d(T\mu_i \cap \Lambda, T\mu_{i+1} \cap \Lambda) < \eta(\Omega(\mu_i, \mu_{i+1})).
\] (104)

Since \(\mu_{i+1} \in T(\mu_i) \cap \Lambda \), from (100), we get
\[
\delta(\mu_{i+1}, T(\mu_i) \cap \Lambda) \leq \alpha(\mu_i, \mu_{i+1})H_d(T\mu_i \cap \Lambda, T\mu_{i+1} \cap \Lambda) \leq \eta(\Omega(\mu_i, \mu_{i+1})) < (\Omega(\mu_i, \mu_{i+1})),
\] (105)
where
\[
\Omega(\mu_i, \mu_{i+1}) = \max \left\{ \frac{\delta(\mu_i, T\mu_i), \delta(\mu_i, T\mu_{i+1})}{2} \right\}
\]
\[
\leq \max \left\{ \frac{\delta(\mu_i, \mu_{i+1}), \delta(\mu_{i+1}, T\mu_i)}{2} \right\}
\]
\[
\leq \max \{ \delta(\mu_i, \mu_{i+1}), \delta(\mu_{i+1}, \mu_{i+2}) \}.
\] (106)

We claim that
\[
\delta(\mu_{i+1}, T(\mu_i) \cap \Lambda) \leq \alpha(\mu_i, \mu_{i+1})H_d(T\mu_i \cap \Lambda, T\mu_{i+1} \cap \Lambda) \leq \eta(\Omega(\mu_i, \mu_{i+1})).
\] (107)

Let \(\Phi = \max\{\delta(\mu_i, \mu_{i+1}), \delta(\mu_{i+1}, \mu_{i+2})\} \). If \(\Phi = \delta(\mu_{i+1}, \mu_{i+2}) \), since \(\mu_{i+2} \in T(\mu_{i+1}) \cap \Lambda \), we have
\[
\delta(\mu_{i+1}, T(\mu_{i+1}) \cap \Lambda) \leq \alpha(\mu_i, \mu_{i+1})H_d(T\mu_{i+1} \cap \Lambda, T\mu_{i+2} \cap \Lambda) < \eta(\Omega(\mu_i, \mu_{i+1})),
\] (108)
which is a contradiction. Thus, we have \(\Phi = \delta(\mu_i, \mu_{i+1}) \).

Taking limit \(i \to \infty \) in (105), we obtain
\[\lim_{r \to \infty} \delta(\mu_{r+1}, T(\mu_{r+1}) \cap \Lambda) = 0. \]
(109)

Since \(g(\mu) = \delta(\mu, T(\mu) \cap \Lambda) \) is \(T \)-o.l.s.c at \(8^* \), then
\[\delta(\theta', T(\theta') \cap \Lambda) = g(\theta') \leq \liminf g(\mu_{r+1}) \]
\[= \liminf \delta(\mu_{r+1}, T(\mu_{r+1}) \cap \Lambda) = 0. \]
(110)

Since \(T\theta' \) is closed, \(\theta' \in T(\theta') \). Conversely, if \(\theta' \) is a fixed point of \(T \), then \(g(\theta') = 0 \leq \liminf g(\mu) \), since \(\theta' \in \Lambda \).

Taking \(\Gamma(r, s) = s - \int_0^r \zeta(t) dt \) for all \(r, s \geq 0 \), in Theorem 3, we obtain the following theorem.

Corollary 4. Let \((X, \delta) \) be a complete metric space, \(\eta \) be a Bianchini–Grandolfi gauge function on an interval \(\bar{E} \), and \(T: \Lambda \to CB(X) \) be a given set-valued mapping. If \(T\mu \cap \Lambda \neq \emptyset \), then
\[\frac{1}{2} \min \{ \delta(\mu, T(\mu) \cap \Lambda), \delta(\eta, T(\eta) \cap \Lambda) \} < \delta(\mu, \eta). \]
(111)

which implies that
\[\int_0^\infty \zeta(t) dt \leq \eta(\delta(\mu, \eta)), \]
(112)
for all \(\mu \in \Lambda \), \(\eta \in T(\mu) \cap \Lambda \), and \(\delta(\mu, \eta) \in \bar{E} \), where \(\zeta: \mathbb{R}^+ \to \mathbb{R}^+ \) is a function such that \(\int_0^\infty \zeta(t) dt \) exists and \(\int_0^\infty \zeta(t) dt \geq \epsilon \) for all \(\epsilon > 0 \) such that the following holds:

(a) \(T \) is \(\alpha \)-admissible.

(b) There exists \(\mu_0, \mu_1 \in \Lambda \) with \(\delta(\mu_0, \mu_1) \in \bar{E} \) for some \(\mu_1 \in T(\mu_0) \cap \Lambda \) such that \(\alpha(\mu_0, \mu_1) \geq 1 \). Then, there exists an orbit \(\{ \mu_r \} \) of \(T \) in \(\Lambda \) and \(\theta' \in \Lambda \) such that \(\lim_{r \to \infty} \mu_r = \theta' \). In addition, \(\theta' \) is a fixed point of \(T \) if and only if the function \(g(\mu) = \delta(\mu, T(\mu) \cap \Lambda) \) is \(T \)-o.l.s.c at \(\theta' \).

Corollary 5. Let \((X, \delta) \) be a complete metric space, \(\eta \) be a Bianchini–Grandolfi gauge function on an interval \(\bar{E} \), and \(T: X \to CB(X) \) be a given set-valued mapping. If \(\Gamma \in \mathcal{V} \) exists, then
\[\frac{1}{2} \min \{ \delta(\mu, T(\mu) \cap \Lambda), \delta(\eta, T(\eta) \cap \Lambda) \} < \delta(\mu, \eta). \]
(113)

for all \(\mu \in X \), \(\eta \in T(\mu) \), and \(\delta(\mu, \eta) \in \bar{E} \) such that the following holds:

(a) \(T \) is \(\alpha \)-admissible.

(b) There exists \(\mu_0 \in X \) with \(\delta(\mu_0, \mu_1) \in \bar{E} \) for some \(\mu_1 \in T(\mu_0) \) such that \(\alpha(\mu_0, \mu_1) \geq 1 \). Then, there exists an orbit \(\{ \mu_r \} \) of \(T \) in \(X \) that converges to the fixed point \(\theta' \in \mathcal{F} = \{ \mu \in X: \delta(\mu, \theta') \in \bar{E} \} \) of \(T \).

4. Application to Dynamical System

Dynamical system is connected to a multistage operation reduced for solving the following functional equation:
\[T(\mu_1) = \sup_{\mu_2 \in H} [h(\mu_1, \mu_2) + \delta(\mu_1, \mu_2, T(\mu_1, \mu_2))] \]
(114)

where
\[l: \bar{B} \times H \to \bar{B}, \]
\[h, h: \bar{B} \times H \to (-\infty, \infty), \]
\[D, D: \bar{B} \times H \times (-\infty, \infty) \to (-\infty, \infty). \]

Assume that \(\bar{G}_1 \) and \(\bar{G}_2 \) are Banach spaces, \(\bar{B} \subset \bar{G}_1 \) is a state space, and \(H \subset \bar{G}_2 \) is a decision space. For more details, see [3]. Let \(B(\bar{B}) \) signify the set of all bounded real-valued functions on \(\bar{B} \). Choose an arbitrary point \(\sigma \in B(\bar{B}) \) defined as \(\| \sigma \| = \sup_{\sigma \in \bar{B}}|\sigma(r)| \). \((B(\bar{B}), \| \|) \) endowed with the metric given by
\[\delta(\mu_1, \mu_2) = \sup_{\sigma \in \bar{B}}|\mu_1(r) - \mu_2(r)|, \]
(115)

for all \(\mu_1, \mu_2 \in B(\bar{B}) \), are BS. Define \(g: B(\bar{B}) \to B(\bar{B}) \) by
\[g(\sigma)(r) = \max_{r \in H} \{ V(r, t, \omega_1[\mu_1(r)]) + f(\mu_1(r)) \}, \]
(116)

for all \(\omega \in B(\bar{B}) \) and \(r \in \bar{B} \). Also,

\[H_d[g(\omega_1)(r), g(\omega_2)(r)] = H_d[V^x(r, t, \omega_1[l(r, t)]) + f^x(r, t), V^y(r, t, \omega_2[l(r, t)]) + f^y(r, t)] \]
\[\leq H_d[V^x(r, t, \omega_1[l(r, t)]), V^y(r, t, \omega_2[l(r, t)])]. \]
(117)
and we have
\[
\left| V(r, t, \omega_1(r)) - V(r, t, \omega_2(r)) \right| \leq \left[\left[1 + \sqrt{T} \left(|\omega_1(r) - \omega_2(r)| \right)^\alpha \right] - 1 \right]^2,
\]
for all $\omega_1, \omega_2 \in B(\bar{\beta})$, where $r \in \bar{\beta}$, $t \in V$ and $0 \leq \alpha < 1$.

Theorem 4. Let $\phi: B(\bar{\beta}) \to B(\bar{\beta})$ be a l.s.c mapping as defined in (117) such that the following conditions are satisfied:

* V and f are continuous and bounded.
* There exists an orbit $[\tilde{\omega}] \in \Lambda$ of ϕ and $c^* \in \Lambda$ such that $\lim_{r \to c^*} \tilde{\omega} = c^*$.

Then, functional (114) possesses a bounded solution.

Proof. Note that $(B(\bar{\beta}), \delta)$ is a complete metric, where $\delta(\mu_1, \mu_2)$ is the metric, as defined by (82). There exist $r \in \beta$, $t_1, t_2 \in V$ and $\psi: B(\bar{\beta}) \times B(\bar{\beta}) \to (0, \infty)$ such that
\[
\psi(\delta(\omega_1, \phi(\omega_1)) \cap \Lambda), \delta(\omega_1, \omega_2)) < 0, \omega_1, \omega_2 \in B(\bar{\beta}),
\]
and we have
\[
H_d[\phi_1(\omega_1)(r), \phi_1(\omega_2)(r)] \leq H_d[\psi^2(r, t, \omega_1(l(r, t))), \psi^2(r, t, \omega_2(l(r, t)))]
\]
\[
\leq \max_{r \in \bar{\beta}} \left\{ \max_{r \in \bar{\beta}} \left\{ \left[\left[1 + \sqrt{T} \left(|\omega_1(r) - \omega_2(r)| \right)^\alpha \right] - 1 \right]^2 \right\} \right\}
\]
\[
\leq \left\{ \left[1 + \sqrt{T} \left(|\omega_1 - \omega_2| \right)^\alpha \right] - 1 \right\}.
\]

It implies that
\[
H_d[\phi_1(\omega_1)(r), \phi_1(\omega_2)(r)] \leq \left[\left[1 + \sqrt{T} \left(|\omega_1 - \omega_2| \right)^\alpha \right] - 1 \right]^2.
\]

Owing to (123),
\[
1 + \sqrt{T} \left(|\omega_1 - \omega_2| \right)^\alpha \leq \left[1 + \sqrt{T} \left(|\omega_1 - \omega_2| \right)^\alpha \right] - 1.
\]

By $\theta \in \mathbb{Z}$ and $\theta(z) = 1 + \sqrt{z}$ with (124), we obtain
\[
\delta[H_d(\phi_1(\omega_1), \phi_1(\omega_2))]
\leq \left[\theta(\delta(\omega_1, \omega_2)) \right] \text{ for all } \omega_1, \omega_2 \in B(\bar{\beta}).
\]

Furthermore, (1) - (3) are equivalent to (a) - (b) of Theorem 3. So, there exists a fixed point $c^* \in \Lambda$ in $B(\bar{\beta})$, which is a bounded solution of functional (117). \qed

4.1. An Application to Integral Inclusion

In this section, we consider the following set-valued integral inclusion:
\[
c(r) \in \kappa + U \int_{r_0}^r V(t, c(t))Vt,
\]
where $\kappa \subseteq (-\infty, \infty)$, U is a bounded compact subset of $(-\infty, \infty)$, and $V(t, c(t))$ is l.s.c. Let $X = C(I)$ be the space of all continuous real-valued function and $C(I)$ is complete w.r.t the metric δ, which defined by
\[
\delta(\mu_1, \mu_2) = \sup_{r \in I} \left| \mu_1(r) - \mu_2(r) \right|.
\]

Assume that there exists $\phi: B(\bar{\beta}) \to B(\bar{\beta})$ and $V: (-\infty, \infty) \times (-\infty, \infty) \to (-\infty, \infty)$ is continuous on
\[
R = \left\{ (r, \zeta): \left| r - r_0 \right| \leq \left(\frac{1}{\alpha_1} \right)^{1/2} \text{ and } |\zeta - \kappa| \leq \frac{1}{2\alpha_2} \right\},
\]

such that for
\[
\frac{1}{2} \min\{\delta(\mu_1, \phi(\mu_1) \cap \Lambda), \delta(\mu_2, \phi(\mu_2) \cap \Lambda)\} < \delta(\omega_1, \omega_2),
\]
\[
\mu_1, \mu_2 \geq 0,
\]
we have
\[
\left| V(r, c_1(r)) - V(r, c_2(r)) \right| \leq e^{\sqrt{\alpha_1/\alpha_2}} |c_1(r) - c_2(r)|^2,
\]
where $\alpha_2 = \max_{r \in \bar{\beta}} \left| r_0 \right|$, $0 < \alpha_1 \leq \alpha_2$, and $0 \leq \alpha < 1$.\head{Journal of Mathematics}
\[|V(t, \zeta)| < \frac{1}{2\alpha_1} \left[\frac{1}{\alpha_1} \right]^{1/2}. \]

(131)

Moreover, let \(\tilde{C} = \{ \zeta \in C(I) : \phi(\zeta, \kappa) \leq 1/2\alpha_3 \} \) be a closed subspace of \(C(I) \) and the operator \(\phi \) be defined by

\[\phi(\zeta(\kappa)) \in \kappa + U \int_{r_0}^{r} V(t, \zeta(t))dt. \]

(132)

Set \(V_x(r) = \int_{r_0}^{r} V(t, \zeta(t))dt. \) Note that

\[\frac{d}{2} \frac{1}{\alpha_3} \left[\frac{1}{\alpha_1} \right]^{1/2}. \]

Consider

\[H_d[\phi(\zeta_1(r)), \phi(\zeta_2(r))] = H_d[\kappa + UV_x(r), \kappa + UV_y(r)] \leq H_d[\kappa, \kappa] \]

(133)

\[= \max \left\{ \max_{\rho \in \rho(x)} \delta(\rho, UV_y(r)), \max_{\rho \in \rho(y)} \delta(\rho, UV_y(r)) \right\}. \]

Consider

\[\max_{\rho \in \rho(x)} \delta(\rho, UV_y(r)) = \max_{\rho \in \rho(x)} \min_{\rho \in \rho(y)} \delta(\rho, \rho) \]

\[= \max_{\rho \in \rho(x)} \min_{\rho \in \rho(y)} \delta(\rho, UV_y(r)) \]

\[= \max_{\rho \in \rho(x)} \min_{\rho \in \rho(y)} \delta(\rho, \rho) \]

\[\leq \max_{\rho \in \rho(x)} \min_{\rho \in \rho(y)} \delta(\rho, \rho) \]

\[= \max_{\rho \in \rho(x)} \min_{\rho \in \rho(y)} \delta(\rho, \rho) \]

(134)

This implies that

\[\max_{\rho \in \rho(x)} V(\rho, UV_y(r)) \leq \alpha_2 \sup_{\rho \in \rho} |V(r, \zeta_2(r)) - V(r, \zeta_1(r))| \]

(135)

Theorem 5. Let \(X = C(I) \) and \(\phi : (\tilde{C}, d) \rightarrow (D(\tilde{C}), H_d) \) be a l.s.c mapping. Suppose that the following assumptions hold:

(i) \(\phi \) is defined for all \(\zeta \in \tilde{C} \).

(ii) \(\phi(\zeta(r)) \) is a CS of \(\tilde{C} \) for all \(\zeta \in \tilde{C} \).

Then, owing to (127)–(135), integral (126) has a solution on \(I \).

Proof. Let \(\kappa \in I \). Then, \(|\kappa - r_0| \leq 1/2\alpha_3 \). Hence, we have

\[|\zeta(\kappa) - \kappa| \leq 1/2\alpha_3. \]

If \((\kappa, \zeta(\kappa)) \in (\infty, \infty) \), the integral equation in (132) exists. Since \(\kappa \in (\infty, \infty) \) is continuous, \(\kappa \) is defined for all \(\kappa \in \tilde{C} \). Next, let \(\theta(\kappa) \in \phi(\zeta(\kappa)) \). Then, \(\theta(\kappa) = \kappa + \Pi \) for \(\Pi \in U \):

\[\theta(\kappa) = \kappa + \Pi \]

Thus, \(|\theta(\kappa) - \kappa| \leq 1/2\alpha_3 \) for each \(\theta(\kappa) \in \phi(\zeta(\kappa)) \). So, \(\phi(\zeta(\kappa)) \) is a subset of \(\tilde{C} \). Now, let \(\{ \zeta \} \subseteq \phi(\zeta(\kappa)) \); then, \(\zeta = \kappa + \Pi \) for \(\Pi \in U \). Since \(U \) is compact, there exists subsequence \(\Pi \) convergent to \(\Pi \) such that \(\Pi \) converges to \(\Pi \) in \(U \). Let \(\Pi = \kappa + \Pi \), then,
\[d(\tilde{u}_t, \tilde{u}) = \sup_{r \in I} \left| \tilde{u}_t - \tilde{u} \right| V_x(r) \]
\[\leq \left| \tilde{u}_t - t \tilde{u} \right| \sup_{r \in I} V_x(r) \rightarrow 0, \text{ as } t^* \rightarrow \infty. \]

(137)

Hence, \(\phi(\zeta) \) is a CS of \(\hat{C} \) for all \(\zeta \in \hat{C} \). Next,
\[|V(r, \zeta_1(r)) - V(r, \zeta_2(r))| \leq \int_{t_0}^{t'} |V(t, \zeta_1(t)) - V(t, \zeta_2(t))| dt \]
\[\leq e^{\alpha t} \int_{t_0}^{t'} \left| \zeta_1(t) - \zeta_2(t) \right|^2 dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left| \zeta_1(t) - \zeta_2(t) \right|^2 dt \]
\[\leq e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[\leq e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\zeta_2(t) - \zeta_1(t) \right) dt \]
\[= e^{\alpha t} \int_{t_0}^{t'} \left(\zeta_1(t) - \zeta_2(t) \right) \left(\z_