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In this paper, we propose Fourier–Boas-Like wavelets and obtain sufficient conditions for their higher vanishing moments. A
sufficient condition is given to obtain moment formula for such wavelets. Some properties of Fourier–Boas-Like wavelets as-
sociated with Riesz projectors are also given. Finally, we formulate a variation diminishing wavelet associated with a Four-
ier–Boas-Like wavelet.

1. Introduction

Fourier analysis was initiated with the reconstruction and
analysis of periodic functions with the help of Fourier series. It
was later extended to Fourier transform in order to study the
nonperiodic signals. +e Fourier transform is an effective an-
alytical tool to study the continuous and discrete-time signals,
but there is a limitation in employing this transform as it does
not exhibit the temporal information of the signal. +us, to
overcome this limitation, Gabor [1] introduced the concept of
short-time Fourier transform,where an analysis windowof fixed
length slides over the time axis to give time-localized frequency
information. +e inherent limitation of short-time Fourier
transform lies in the fact that the window width remains the
same for all the frequencies, thereby making the localization
extent to be constant for different frequencies. +e resolution to
this problem was given by Grossmann and Morlet [2] who
introduced the notion of wavelet transforms in 1984. A function
ψ with finite energy,Eψ, i.e., ψ ∈ L2(R), is said to be a wavelet if
it satisfies the admissibility condition given by
Cψ � 

R
((|ψ(η)|2)/|η|)dη< +∞, where ψ denotes the

Fourier transform of a wavelet ψ.+emost significant work that
has driven the progress of wavelets to great heights was at-
tributed to Mallat [3] and Meyer [4] who both were responsible
in the development of the concept of multiresolution analysis
(MRA), another way of constructing wavelets.

An MRA consists of a sequence of closed subspaces
Vj, j ∈ Z of L2(R) satisfying the following conditions: (i)
Vj ⊂Vj+1, for all j ∈ Z; (ii) f ∈ Vj if and only if f(2·) ∈
Vj+1, for all j ∈ Z; (iii) ∩ j∈ZVj � 0{ }; (iv) ∪ j∈ZVj �

L2(R); (v) if there exists ϕ ∈ V0 so that ϕ(· − k): k ∈ Z 

constitutes an orthonormal basis forV0, then there exists an
orthonormal wavelet basis ψj,k such that
Pjf � Pj− 1f + k∈Z〈f,ψj,k〉ψj,k holds, where Pj denotes
the orthogonal projection operator ontoVj. +e function ϕ
is called a scaling function of the given MRA. It solves the
dilation equation ϕ(x) � 2k∈Zakϕ(2x + k) with |ϕ(0)| � 1
and ψ is a function associated to ϕ, which is defined by
ψ(x) � 2k∈Zbkϕ(2x + k). +e functions ϕ and ψ are
usually known as father and mother wavelets, respectively. It
is well established in [5] that a pair of quadrature mirror
filter coefficients, (ak)k∈Z, (bk)k∈Z ∈ l2(Z), is associated to
the MRA and the following relations
ϕ(η) � m0(η/2)ϕ(η/2), ψ(η) � m1(η/2)ϕ(η/2) are satisfied
for η ∈ R, where m0 and m1 are given by
m0(η) � k∈Zakeikη, m1(η) � k∈Zbkeikη � eiη m0(η + π).
For more details on wavelets, one may refer to [6–14].

Boas [15] proposed an integral transform related to the
Hilbert transform, which arose due to the study of the class
of functions having Fourier transforms vanishing on a finite
interval. +is transform is known as Boas transform, which
finds an application in the theory of filters in electrical
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engineering. Goldberg [16], in 1960, analyzed this transform
in detail and gave some significant results and properties.
Subsequently, it was further examined by Heywood [17] in
1963 and Zaidi [18] in 1976. For various details pertaining to
Boas transform, one may refer to [19].

Khanna et al. [9] introduced Boas transforms of wavelets
and furnished various results related to their higher van-
ishing moments. Later, Khanna and Kathuria [8] studied
convolution of these resulting wavelets to analyze Boas
transform of convolution of signals. Recently, Khanna et al.
[20] introduced fractional Boas transforms and the associ-
ated wavelets. +ese new wavelets appeared to be more
prominent than the Boas transforms of wavelets due to an
additional degree of freedom in terms of fractional order.

1.1. Framework. +is work is streamlined as follows. In
Section 2, Fourier–Boas-Like wavelets are introduced and
studied. Some results related to higher vanishing moments
of such wavelets are obtained. Also, the moment formula for
such wavelets by enforcing sufficient condition on the
wavelet is derived. Further, some properties of Four-
ier–Boas-Like wavelets associated with Riesz projectors are
given. Finally, a variation diminishing wavelet associated
with Fourier–Boas-Like wavelet is constructed.

2. Fourier–Boas-Like Wavelets

Let f ∈ L2(R). +en, the Boas transform of f in terms of
principal value integral is defined as

Bf(x) �
1
π

p.v. 
∞

0

f(x + z) − f(x − z)

z
2 sin(z)dz

�
1
π

p.v. 
∞

− ∞

f(x + z)

z
2 sin(z)dz,

(1)

for any x for which the integral exists.
+e relationship between the Boas transform and the

Hilbert transform of a function is given by

(Bf)(x) � (Hf)(x) − Hf∗ g (x), (2)

where

g(x) �
2
π

 
(1/2) 1 − cos(x)

πx
2 , (3)

whereas the Fourier transform and the Hilbert transform
share a relationship, specified by

Hf(η) �

− if(η), if η> 0,

if(η), if η< 0,

0, if η � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Taking Fourier transform on both the sides of (2), we
have

Bf(η) � Hf(x) − F Hf∗ g (η). (5)

IfHf(x) ∈ L1(R), then using (2), (4), and (5), we obtain
Bf(η) � − isgn(η)f(η)(1 − g(η)), where

g(η) �
0, if |η|> 1,

1 − |η|, if |η|≤ 1.
 (6)

Soares et al. [21] introduced Fourier-like wavelets, de-
fined by FLike ψ (x) � (1/

�
2

√
)(ψ(x) − iHψ(x)), using the

concept of the Fourier kernel ei η. Further, a factor of (1/
�
2

√
)

was imposed on function ψ(x) − iHψ(x) in order to aver the
same energy and admissibility coefficient of its generating
wavelet. Later, Khanna et al. [12] defined an improved and
natural version of such wavelets by employing Riesz pro-
jectors on wavelets. +emain idea behind these wavelets was
to perlustrate both even and odd symmetries of an asym-
metric signal.

One may note that B sin(x){ } � cos(x) and
B cos(x){ } � − sin(x), and thus the Fourier kernel can be
written as eix � cos(x) − iB cos(x){ }. +is observation
persuaded us to analyze Boas transform further and we
define Fourier–Boas-Like wavelets as B

F

Likeψ(x) � ψ
(x) − iBψ(x). +ere are two main reasons for defining these
new wavelets: (i) to characterize the wavelets whose Fourier
transform vanishes a.e. on ] − 1, 1[ and (ii) to reinforce the
incompetency of wavelets to study both the symmetries of an
asymmetric signal.

Next, we give a sufficient condition under which B
F

Likeψ
forms a wavelet.

Proposition 1. Let ψ ∈ L1(R) be a wavelet such that
ψ ∈ L1(R) and ψ(0) � 0. /en, BF

Likeψ is again a wavelet.

Proof. Note that

E
B

F

Likeψ
� 

R
B

F
Likeψ(x)




2
dx≤

R
|ψ(x)|

2
+|Bψ(x)|

2
 dx< +∞.

(7)

Also, we have

C
B

F

Likeψ
� 

R

F B
F

Likeψ(x) (η)



2

|η|
dη

� 
R

|ψ(η) − sgn(η)(1 − g(η))ψ(η)|
2

|η|
dη

< +∞.

(8)

Clearly, BF
Likeψ has finite energy, and it also satisfies the

admissibility condition. □

Vanishing moments bestow orthogonality relative to
subspaces of polynomials and thus perform a significant task
in signal processing. For many applications of wavelets such
as reconstruction of a signal, compression of images and to
examine the regularity of the analyzed signal, a large number
of vanishing moments of a wavelet are needed.+eoretically,
a large number of vanishing moments insinuate the com-
petency of the scaling function in representing more
complex signals scrupulously. A function f(x) is said to
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have s vanishing moments if 
R

xuf(x)dx � 0, 0≤ u≤ s − 1,
where the given integral is called the uth moment of f(x).
For more details, see [10].

Daubechies [22] constructed compactly supported or-
thonormal wavelets having smoothness of a fixed degree. She
observed that if ϕ,ψ ∈ Cs(R), then the low-pass filter m0
takes the form m0(η) � ((1 + e− iη)/2)s+1F(η), where
F ∈ Cs(R) is 2π-periodic function. +is can be construed
using the below stated result which also helps us in deducing
that there does not exist any compactly supported ortho-
normal wavelet ψ ∈ C∞(R).

Theorem 1. (see [5]). Let ψ ∈ Cs(R) (s ∈ N0) be a function
such that |ψ(x)|≤M(1 + |x|)− s− 1− ϱ for some ϱ > 0, and that
ψ(u) ∈ L∞(R) for u � 1, 2, . . . , s. If ψj,k: j, k ∈ Z  is an
orthonormal system in L2(R), then 

R
xuψ(x)dx � 0, for all

u � 0, 1, . . . , s.

Recall from [13] that a function f is said to have fast
decay with decay rate p ∈ N, if there exists a constant Cp

such that |f(x)|≤ (Cp/(1 + |x|p))∀x ∈ R. +e moment
formula for the Hilbert transform of f is given by

H x
s
f(x)  � x

s
Hf(x) −

1
π



s− 1

m�0
x

m

R

q
s− 1− m

f(q)dq, s≥ 0.

(9)

Note that the above formula holds if
xsf(x) ∈ Lq(R), 1< q<∞.

In the following result, we give the relationship between
the higher vanishing moments of Fourier–Boas-Like
wavelets and the fast decay of wavelet ψ.

Theorem 2. Let ψ, ψ(1), ψ ∈ L1(R) such that ψ ∈ Cs(R) is
having a fast decay with decay exponent
p ∈ N and ψ(u) ∈ L∞(R), u � 1, 2, . . . , s. Also, let
xsψ(x) ∈ L2(R), and 

R
xuG(x)dx � 0, for u � 0, 1, . . . , s,

where G(x) � 
1
− 1(1 − (1/|η|))e− 2πiηxψ(1)(− η)dη. If

ψj,k 
j,k∈Z constitutes an orthonormal system in L2(R), then


R

xuB
F

Like ψ(x) dx � 0, for all u � 0, 1, . . . , s, where
u + 1<p.

Proof. We compute


R

x
u
B

F

Like ψ(x) dx � 
R

x
u
(ψ(x) − iBψ(x))dx

� 
R

x
u
(ψ(x) − i(Hψ(x) − (Hψ ∗ g)(x)))dx

� 
R

x
u ψ(x) − i Hψ(x) − 

R
T− xHψ(− t)g(t)dt  dx

� 
R

x
u ψ(x) − i Hψ(x) − 

R
F HT− xψ (− η)g(η)dη  dx

� 
R

x
u ψ(x) − i Hψ(x) + 

1

− 1
sgn(− η)F T− xψ (− η)(1 − |η|)dη  dx.

(10)

Since ψ, ψ(1), ψ ∈ L1(R), we have


R

x
u
B

F

Likeψ(x)dx � 
R

x
u ψ(x) − i Hψ(x) −

1
2π


1

− 1
1 −

1
|η|

 e
− 2πiηxψ(1)

(− η)dη  dx

� 
R

x
u ψ(x) − i Hψ(x) −

1
2π

G(x)  dx.

(11)

Now, since ψ, ψ ∈ L1(R) and xsψ(x) ∈ L2(R), it follows
that xuψ(x) ∈ L2(R), for u � 0, 1, . . . , s. Using the moment
formula for Hilbert transform, (11) can be written as


R

x
u
B

F

Likeψ(x)dx � 
R

x
uψ(x) − i H x

uψ(x)  +
1
π



u− 1

j�0
x

j

R

q
u− 1− jψ(q)dq⎛⎝ ⎞⎠⎛⎝ ⎞⎠dx. (12)
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In view of +eorem 1 and since xuψ(x) ∈ L2(R), for
u � 0, 1, . . . , s, it follows that 

R
xuB

F

Likeψ(x)dx � 0 for
u � 0, 1, 2, . . . , s. □

In [14], a sufficient condition was presented in order to
obtain higher vanishing moments of wavelets. +e result is
stated as the following.

Theorem 3. Let ψ(x) be such that for some s ∈ N,
xsψ(x), ηs+1ψ(η) ∈ L1(R). If ψj,k(x) 

j,k∈Z is an orthogonal
system on R, then


R

x
uψ(x)dx � 0, for 0≤ u≤ s. (13)

Next result generalizes+eorem 3 for Fourier–Boas-Like
wavelets.

Theorem 4. Let ψ, ψ(1), ψ ∈ L1(R) be such that for some
s ∈ N, xsψ(x) ∈ L1(R)∩ L2(R), ηs+1ψ(η) ∈ L1(R), and

R

xuG(x)dx � 0, for 0≤ u≤ s, where G(x) � 
1
− 1(1−

(1/|η|))e− 2πiηxψ(1)(− η)dη. If ψj,k 
j,k∈Z is an orthogonal

system on R, then 
R

xuB
F

Likeψ(x)dx � 0, for 0≤ u≤ s.

Proof. We have


R

x
u
B

F

Likeψ(x)dx � 
R

x
uψ(x)dx − i

R
H x

uψ(x) dx −
i

π


u− 1

j�0

R

x
j

R

q
u− 1− jψ(q)dqdx. (14)

Since xuψ(x) ∈ L2(R) for u � 0, 1, . . . , s, by +eorem 3,
it follows that 

R
xuB

F
Likeψ(x)dx � 0, for u � 0, 1, 2, . . . , s.

□

In [6], regularity of orthonormal wavelet bases was
studied and a relationship between the regularity of wavelet
and the multiplicity of the zero at η � 0 of ψ was observed.
+is observation can be seen and deduced using the fol-
lowing result which is given in more generalized form.

Theorem 5. Let f, f be two functions (not identically
constant) such that

(i) 〈fj,k, fj′,k′
〉 � δjj′

δkk′
, where fj,k(x) � 2j/2

f(2jx − k), fj,k(x) � 2j/2 f(2jx − k).
(ii) |f(x)| ≤M(1 + |x|)− c, with c> s + 1.
(iii) f ∈ Cs, with f(u) bounded for u≤ s.

/en, 
R

xu f(x)dx � 0 for u � 0, 1, . . . , s.

+e next result generalizes +eorem 5 and depicts the
relationship among the regularity of orthonormal wavelets ψ
and vanishing moments of Fourier–Boas-Like wavelets.

Theorem 6. Let ψ, ψ(1), ψ ∈ L1(R) and let the system
ψj,k � 2j/2ψ(2jx − k), j, k ∈ Z form an orthonormal set in
L2(R) such that |ψ(x)|≤M(1 + |x|)− s− 1− ϱ, where ϱ > 0 and
ψ ∈ Cs(R) such that ψ(u) is bounded for u≤ s. Also, if
xsψ(x) ∈ L2(R) and 

R
xuG(x)dx � 0, for 0≤ u≤ s, where

G(x) � 
1
− 1(1 − (1/|η|))e− 2πiηxψ(1)(− η)dη, then 

R
xuBLike

F ψ(x) dx � 0 for u � 0, 1, 2, . . . , s.

Proof. Note that


R

x
u
B

F

Like ψ(x) dx � 
R

x
uψ(x)dx − i

R
H x

uψ(x) dx

−
i

π


u− 1

j�0

R

x
j

R

q
u− 1− jψ(q)dqdx.

(15)

+erefore, in view of +eorem 5 and the fact that
xuψ(x) ∈ L2(R), for u � 0, 1, . . . , s, it follows that

R

xuB
F

Likeψ(x)dx � 0, for u � 0, 1, 2, . . . , s. □

Recall from [12] that wavelets associated with projection
operators P+ and P− involving the Hilbert transform are
defined as P+ � (1/2)(I + iH) and P− � (1/2)(I − iH),
where I and H represent the identity operator and Hilbert
transform operator, respectively. +ese projection operators
are also known as Riesz projectors.

In the following result, the moment formula for Four-
ier–Boas-Like wavelets is given.

Theorem 7. Let ψ ∈ L1(R) be a wavelet such that ψ ∈ L1(R)

and xsψ(x) ∈ L1(R)∩L2(R), for some s ∈ N. /en,

B
F

Like x
sψ(x)  � 2x

s
P− ψ(x) +

i

π


s− 1

p�0
x

p

R

q
s− 1− pψ(q)dq

+
− 1
2πi

 
s


1

− 1
ψ(s)

(η)e
− 2πiηx

(sgn(η) − η)dη,

(16)

where P− ψ is a wavelet associated with Riesz projectors.

Proof. We compute
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B
F
Like x

sψ(x)  � x
sψ(x) − iB x

sψ(x)  � 2x
s
P− ψ(x) +

i

π


s− 1

p�0
x

p

R

q
s− 1− pψ(q)dq

+ i
R
F H t

sψ(t)  (η)F Txg(t) (η)dη � 2x
s
P− ψ(x) +

i

π


s− 1

p�0
x

p

R

q
s− 1− pψ(q)dq

+ i
R

− isgn(η) F t
sψ(t)  (η)E− xg(η)dη � 2x

s
P− ψ(x) +

i

π


s− 1

p�0
x

p

R

q
s− 1− pψ(q)dq

+
− 1
2πi

 
s


1

− 1
ψ(s)

(η)e
− 2πiηx

(sgn(η) − η)dη.

(17)

A continual filter is defined by φ(f(x)) � P− f(x),
where f ∈ L2(R) and φ: L2(R)⟶ L2(R). Note that φ is
said to be a convolution filter if φ(x) � w∗x for any x,
where w ∈ (L1 ∩ L2)(R) is a weight function and w(η) is
known as the transfer function. For more details, one may
see [12].

In the next result, we give a sufficient condition under
which P− B

F

Likeψ (x), i.e., Fourier–Boas-Like wavelets as-
sociated with Riesz projectors form a convolution filter and
Fourier transform of P− B

F

Likeψ (x) vanishes for all positive
frequencies.

Theorem 8. Let ψ ∈ L1(R) be a wavelet such that
ψ ∈ L1(R) and ψ(0) � 0./en, P− B

F

Likeψ (x) is a convolu-
tion filter with transfer function

2, if η< − 1,

1 − η, if − 1≤ η< 0,

1
2
, if η � 0,

0, if η> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

and Fourier transform of P− B
F

Likeψ (x) vanishes for all
positive frequencies.

Proof. Note that

φ B
F
Likeψ(x)  � P− B

F
Likeψ (x)

�
1
2

B
F

Likeψ(x) − i
1
π

p.v.
1
x
∗BF

Likeψ(x)  

� P− δ ∗B
F
Likeψ (x)

� P− δ ∗ψ( (x) − i P− δ ∗ (Hψ − Hψ ∗ g)( (x)

� P− δ ∗ψ( (x) − iB P− δ ∗ψ( (x).

(19)

+us, P− B
F

Likeψ (x) is a convolution filter. Clearly, we
calculate

F B
F

Like P− δ  (η) � F P− δ (η)[1 − sgn(η)(1 − g(η))]

�

2, if η< − 1,

1 − η, if − 1≤ η< 0,

1
2
, if η � 0,

0, if η> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Also, we evaluate

F P− B
F

Likeψ  (η) �

2ψ(η), if η< − 1,

(1 − η)ψ(η), if − 1≤ η< 0,

ψ(η)

2
, if η � 0,

0, if η> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
□

Let α(x) ∈ L1(R) and let h(x) � (α∗ψ)(x) � 
R
α

(x − t)ψ(t)dt, where ψ(t) is continuous and bounded. +e
kernel α(x) is variation diminishing if η[α∗ψ]≤ η[ψ],
where η[ψ] denotes number of changes of sign of ψ on R. It
was found that α(x) is variation diminishing if and only if

α(η) � 
R
α(x)e

− iηxdx � e
lη2+imη


n ∈ N

1 −
iη
dn

 e
iη/dn⎛⎝ ⎞⎠

− 1

,

(22)

where l, m≠ 0 anddn(n ∈ N) are real numbers with n∈Nd− 2
n

<∞.
+is gives
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α(x) �
1
2π


R

e
iηx

e
lη2+imη


n∈N

1 −
iη
dn

 e
iη/dn⎛⎝ ⎞⎠

− 1

dη,

(23)

α(s)
(x) �

1
2π


R

(iη)
s
e

iηx
e

lη2+imη

n∈N

1 −
iη
dn

 e
iη/dn⎛⎝ ⎞⎠

− 1

dη.

(24)

Let ψ be a wavelet. +en, for a variation diminishing
kernel given by (23) such that n∈Nd− 2

n <∞,ψ ∗ α is known
as wavelet, a wavelet with specific changes of sign. For
further details, one may read [23, 24].

In the given result, we show that BF
Likeψ ∗ α is also a

variation diminishing wavelet.

Theorem 9. Let ψ ∈ L1(R) be a wavelet such that
ψ ∈ L1(R) and ψ(0) � 0. Let α ∈ L1(R) be a variation di-
minishing kernel. /en, BF

Likeψ ∗ α is a variation diminishing
wavelet.

Proof. Since B
F
Likeψ ∈ L2(R) and α ∈ L1(R), it follows that

B
F

Likeψ ∗ α ∈ L2(R).
Also note that

B
F
Likeψ

�����

�����1
� ‖ψ − iBψ‖1

� ‖ψ − iHψ + iHψ ∗ g‖1
≤ ‖ψ‖1 +‖Hψ‖1 +‖Hψ ∗ g‖1.

(25)

Since ψ ∈ L1(R) and ψ(0) � 0, it follows that
Hψ ∈ L1(R). +us,

B
F

Likeψ
�����

�����1
≤ ‖ψ‖1 +‖Hψ‖1 +‖Hψ‖1‖g‖1 < +∞. (26)

Hence,

C
B

F

Likeψ ∗ α
� 

R

F B
F

Likeψ ∗ α (η)



2

|η|
dη,

� 
R

F B
F
Likeψ (η)




2
|α(η)|

2

|η|
dη

≤

4 DCψ , if η< − 1,

D
R

|ψ(η)(1 − η)|
2

|η|
dη, if |η|≤ 1, η≠ 0,

DCψ , if η � 0,

0, if η> 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≤

4ACψ , if η< − 1,

4ACψ , if |η|≤ 1, η≠ 0,

ACψ , if η � 0,

0, if η> 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

< +∞,

(27)

where D � sup
η

|eiη2+imη 
n∈N

(1 − (iη/dn))e(iη/dn)|− 2 and A �

sup
η

(1/(n∈N(1 − (η2/d2
n)))). □

3. Conclusions

New wavelet functions, called Fourier–Boas-Like wavelets,
have been established. +ese wavelets have been found to be
better than the earlier proposed wavelets in [12, 21] derived
from the Riesz projectors and Fourier kernels, respectively.
Various results related to higher vanishing moments of
Fourier–Boas-Like wavelets have been given, and it is ob-
served that regularity and fast decay are significant attributes
for the vanishing moments of Fourier–Boas-Like wavelets. It
has also been investigated that under some conditions,
Fourier–Boas-Like wavelets associated with Riesz projectors
form a convolution filter. Further, using Schoenberg’s theory
of variation diminishing integral operators of convolution
type, variation diminishing wavelet associated with Four-
ier–Boas-Like wavelet is constructed.
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