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,e theory of convex functions plays an important role in the study of optimization problems. ,e fractional calculus has been
found the best to model physical and engineering processes. ,e aim of this paper is to study some properties of strongly convex
functions via the Caputo–Fabrizio fractional integral operator. In this paper, we present Hermite–Hadamard-type inequalities for
strongly convex functions via the Caputo–Fabrizio fractional integral operator. Some new inequalities of strongly convex
functions involving the Caputo–Fabrizio fractional integral operator are also presented. Moreover, we present some applications
of the proposed inequalities to special means.

1. Introduction

,e theory of fractional calculus got rapid development, and
it has brought the attention of many researchers from
various disciplines [1–3]. In the last few years, it was ob-
served that fractional calculus is very useful for modeling
complicated problems of engineering, chemistry, mechanics,
and many other branches. Various interesting notations of
fractional calculus exist in the literature, for example, the
Riemann–Liouville fractional integral and Caputo–Fabrizio
fractional integral [4–14].

Among these notions, Riemann–Liouville and Caputo
involve the following singular kernal [11]:

K(ζ , x) �
(ζ − x)

− ς

Γ(1 − ς)
, 0< ς< 1. (1)

However, it was observed by Caputo and Fabrizio in [8]
that certain phenomena cannot be modelled by the already
existing definition in the literature. ,at is why, they pro-
posed a more general fractional derivative in [8] and named
it as the Caputo–Fabrizio fractional integral operator. It
mainly involves the following nonsingular kernal:

K(ζ , x) � e
− ς(ζ− x)/(1−ς)

, 0< ς< 1. (2)

Nowadays, many researchers of applied sciences are
using the Caputo–Fabrizio fractional integral operator to
model their problem. For more details about the fractional
integral with a nonsingular kernal, we refer [15–19] to the
readers.

,e theory of inequalities also plays an important role in
applied as well as in pure mathematics. ,e Hermi-
te–Hadamard inequality is the most important inequality in
the literature, and this inequality has been studied for dif-
ferent classes of convex functions, see [20–24]. ,e classical
version of the Hermite–Hadamard inequality for convex
functions is stated as follows:

If ϱ: I � [a, b] ⊂ R⟶ R is an integrable and contin-
uous convex function, then its mean value remains between
the value of ϱ at (a + b)/2 of interval I � [a, b] and arith-
metic mean value of ϱ at the endpoints a, b ∈ I � [a, b]. In
other words, it means that

ϱ
a + b

2
􏼠 􏼡≤

1
b − a

􏽚
b

a
ϱ(x)x≤

ϱ(a) + ϱ(b)

2
. (3)
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Inequality (3), in the literature, is generalized by several
fractional integral operators to meet the desired results, see,
for instance, [25–28]. In this paper, we present the Her-
mite–Hadamard inequality for a strongly convex function in
the setting of the Caputo–Fabrizio fractional integral op-
erator. We also present some new inequalities for strongly
convex functions in the setting of the Caputo–Fabrizio
fractional integral operator. We also give some applications
of the presented inequalities in special mean.

2. Preliminaries

In this section, we present some definitions from the
literature.

Definition 1. A function is convex if

ϱ(ζx +(1 − ζ)y)≤ ζϱ(x) +(1 − ζ)ϱ(y), (4)

for every x, y ∈ I and ζ ∈ [0, 1].

Definition 2 (see [29]). Assume λ≥ 0. A function ϱ: I⟶ R

is strongly convex if

ϱ(ζx +(1 − ζ)y)≤ ζϱ(x) +(1 − ζ)ϱ(y) − λζ(1 − ζ)(x − y)
2
,

(5)

for every x, y ∈ I and ζ ∈ [0, 1].

Remark 1. Setting λ � 0 in inequality (5), we obtain convex
function (4).

Definition 3 (see [8]). Let ϱ ∈ H1(a, b), a< b, ς ∈ [0, 1];
then, the left Caputo–Fabrizio fractional derivative is de-
fined by

CF
a D

ςϱ􏼐 􏼑(ζ) �
B(ς)

(1 − ς)
∈ ζζaϱ′(x)e

− ς(ζ− x)ς/(1−ς)dx, (6)

and the left Caputo–Fabrizio fractional integral is defined by

CF
a I

ςϱ􏼐 􏼑(ζ) �
(1 − ς)
B(ς)
ϱ(ζ) +

ς
B(ς)
∈ ζζaϱ(x)dx, (7)

where B(ς)> 0 is a normalization of function with
B(0) � B(1) � 1.

Definition 4 (see [8]). Let ϱ ∈ H1(a, b), a< b, ς ∈ [0, 1];
then, the right Caputo–Fabrizio fractional derivative is
defined by

CF
D

ς
bϱ􏼐 􏼑(ζ) �

−B(ς)
(1 − ς)
∈ ζb

ζϱ′(x)e
− ς(x− ζ)ς/(1−ς)dx, (8)

and the right Caputo–Fabrizio fractional integral is defined
by

CF
I
ς
bϱ􏼐 􏼑(ζ) �

(1 − ς)
B(ς)
ϱ(ζ) +

ς
B(ς)
∈ ζb

ζϱ(x)dx, (9)

where B(ς)> 0 is a normalization of function with
B(0) � B(1) � 1.

3. Hermite–Hadamard-Type Inequalities via
Caputo–Fabrizio Fractional Integrals for
Strongly Convex Functions

Theorem 1. Assume ϱ: I⟶ R to be a strongly convex
function with modulus λ≥ 0 and ϱ ∈ L1[a, b]; then, the
inequality

ϱ
a + b

2
􏼠 􏼡 +

λ
12

(b − a)
2

≤
B(ς)

ς(b − a)

CF
a I

ςϱ􏼐 􏼑(ζ) +
CF

I
ς
bϱ􏼐 􏼑(ζ) −

2(1 − ς)
B(ς)
ϱ(ζ)􏼢 􏼣

≤
ϱ(a) + ϱ(b)

2
−
λ
6
(b − a)

2
,

(10)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Proof. Since ϱ is strongly convex function, we have

ϱ
a + b

2
􏼠 􏼡 −

λ
12

(b − a)
2 ≤

1
b − a

􏽚
b

a
ϱ(x)dx

≤
ϱ(a) + ϱ(b)

2
−
λ
6
(b − a)

2
.

(11)

,e left side of inequality (11) yields

2ϱ
a + b

2
􏼠 􏼡 −

λ
6
(b − a)

2 ≤
2

b − a
􏽚

b

a
ϱ(x)dx,

�
2

b − a
􏽚
ζ

a
ϱ(x)g(x)dx + 􏽚

b

ζ
ϱ(x)g(x)dx􏼢 􏼣.

(12)

Multiplying ς(b − a)/2B(ς) on both sides of the
abovementioned inequality, adding (2(1 − ς)/B(ς))ϱ(ζ)

g(ζ) and rearranging the terms, we obtain

ϱ
a + b

2
􏼠 􏼡 +

λ
12

(b − a)
2

≤
B(ς)

ς(b − a)

CF
a I

ςϱ􏼐 􏼑(ζ) +
CF

I
ς
bϱ􏼐 􏼑(ζ) −

2(1 − ς)
B(ς)
ϱ(ζ)􏼢 􏼣,

(13)

which is the left side of ,eorem 1.
Now, to prove the right side of ,eorem 1, we use the

right side of (11), which is

2
b − a

􏽚
b

a
ϱ(x)dx≤ ϱ(a) + ϱ(b) −

λ
3
(b − a)

2
. (14)

Applying the same operations on the abovementioned
inequality as on (12) yields the right side of ,eorem 1,
which is
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≤
B(ς)

ς(b − a)

CF
a I

ςϱ􏼐 􏼑(ζ) +
CF

I
ς
bϱ􏼐 􏼑(ζ) −

2(1 − ς)
B(ς)
ϱ(ζ)􏼢 􏼣

≤
ϱ(a) + ϱ(b)

2
−
λ
6
(b − a)

2
.

(15)

,e combination of (13) and (15) completes the
proof. □

Theorem 2. Assume that ϱ, g: I⟶ R are two strongly
convex functions with modulus λ≥ 0 and f, g ∈ L1[a, b];
then, the inequality

2B(ς)
ς(b − a)

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ) −

2(1 − ς)
B(ς)
ϱ(ζ)g(ζ)􏼢 􏼣

≤
2
3

P(a, b) +
1
3

Q(a, b) −
λ
3
(b − a)

2
R(a, b) −

λ
5
(b − a)

2
􏼢 􏼣,

(16)

holds with normalization function B(ς)> 0, ς ∈ [0, 1], and
ζ ∈ [0, 1], where P(a, b) � ϱ(a)g(a) + ϱ(b)g(b), Q(a, b) �

ϱ(a) g(b) + ϱ(b)g(a), and R(a, b) � ϱ(a) + g(a) + ϱ(b)

+g(b).

Proof. Since ϱ and g are strongly convex functions defined
on I, by definition, we have

ϱ(ζa +(1 − ζ)b)≤ ζϱ(a) +(1 − ζ)ϱ(b) − λζ(1 − ζ)(b − a)
2
,

(17)

g(ζa +(1 − ζ)b)≤ ζg(a) +(1 − ζ)g(b) − λζ(1 − ζ)(b − a)
2
,

(18)

for all a, b ∈ I and ζ ∈ [0, 1].
Multiplying (17) and (18), we have

ϱ(ζa +(1 − ζ)b)g(ζa +(1 − ζ)b)

≤ ζ2ϱ(a)g(a) +(1 − ζ)
2ϱ(b)g(b)

+ ζ(1 − ζ)[ϱ(a)g(b) + ϱ(b)g(a)]

− λζ(1 − ζ)
2
(b − a)

2
[ϱ(b) + g(b)]

− λζ2(1 − ζ)g(a)(b − a)
2

− λζ2(1 − ζ)(b − a)
2
[ϱ(a) + g(a)]

+ λ2ζ2(1 − ζ)
2
(b − a)

4
.

(19)

Integrating the abovementioned inequality w.r.t “ζ” over
[0, 1], we obtain

2
b − a

􏽚
b

a
ϱ(x)g(x)dx ≤

2
3

[ϱ(a)g(a) + ϱ(b)g(b)] +
1
3

[ϱ(a)g(b) + ϱ(b)g(a)]

−
λ
3
(b − a)

2
[ϱ(a) + ϱ(b) + g(a) + g(b)] −

λ
5
(b − a)

2
,

2
b − a

􏽚
b

a
ϱ(x)g(x)dx

≤
2
3

[P(a, b)] +
1
3

[Q(a, b)] −
λ
3
(b − a)

2
[R(a, b)] −

λ
5
(b − a)

2
.

(20)

Multiplying ς(b − a)/2B(ς) on both sides and adding
(2(1 − ς)/B(ς))ϱ(ζ)g(ζ), we obtain

ς
B(ς)

􏽚
ζ

a
ϱ(x)g(x)dx + 􏽚

b

ζ
ϱ(x)g(x)dx􏼢 􏼣 +

2(1 − ς)
B(ς)
ϱ(ζ)g(ζ)

≤
ς(b − a)

2B(ς)
2
3

[P(a, b)] +
1
3

[Q(a, b)] −
λ
3
(b − a)

2
[R(a, b)] −

λ
5
(b − a)

2
􏼢 􏼣

+
2(1 − ς)

B(ς)
ϱ(ζ)g(ζ).

(21)

Now, the use of (7) and (9) and rearrangements of the
terms of abovementioned inequality complete the
proof. □

Theorem 3. Assume that f, g: I⟶ R are two strongly
convex functions with modulus λ≥ 0 and f, g ∈ L1[a, b];
then, the inequality
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2ς
B(ς)
ϱ

a + b

2
􏼠 􏼡g

a + b

2
􏼠 􏼡 −

1
(b − a)

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ)􏽨 􏽩

+
2(1 − ς)

B(ς)(b − a)
ϱ(ζ)g(ζ)

≤
ς

2B(ς)
2
3

Q(a, b) +
1
3

P(a, b) −
λ
3
(b − a)

2
R(a, b) −

λ
5
(b − a)

2
−

(b − a)
2

2
−
1
5

􏼢 􏼣􏼢 􏼣

(22)

holds with normalization function B(ς)> 0, ς ∈ [0, 1], and
ζ ∈ [0, 1], where P(a, b) � ϱ(a)g(a) + ϱ(b)g(b), Q(a, b) �

ϱ(a)g(b) + ϱ(b) g(a), and R(a, b) � ϱ(a) + g(a) + ϱ(b) +g

(b).

Proof. Since ϱ and g be the two strongly convex functions,
so for ζ � 1/2, we have

ϱ
a + b

2
􏼠 􏼡≤

ϱ(ζa +(1 − ζ)b) + ϱ(ζa +(1 − ζ)a)

2
−
λ
4

(2ζ − 1)(b − a)
2
, (23)

g
a + b

2
􏼠 􏼡≤

g(ζa +(1 − ζ)b) + g(ζa +(1 − ζ)a)

2
−
λ
4

(2ζ − 1)(b − a)
2
, (24)

for all a, b ∈ I and ζ ∈ [0, 1]. Multiplying (23) and (24), we obtain

ϱ
a + b

2
􏼠 􏼡g

a + b

2
􏼠 􏼡

≤
1
4

[ϱ(ζa +(1 − ζ)b)g(ζa +(1 − ζ)b) + ϱ(ζa +(1 − ζ)a)g(ζa +(1 − ζ)a)

+ ζ2 +(1 − ζ)
2

􏼐 􏼑[ϱ(a)g(b) +(b)g(a)] + 2ζ(1 − ζ)[ϱ(a)g(a) + ϱ(b)g(b)]

− λ(b − a)
2 ζ2(1 − ζ) + ζ(1 − ζ)

2
􏼐 􏼑[ϱ(a) + g(b) + ϱ(b) + g(a)]

+ 2λ2ζ2(1 − ζ)
2
(b − a)

2
+ 2λ2ζ(1 − ζ)(2ζ − 1)

2
(b − a)

4
+
λ
2
(2ζ − 1)

2
(b − a)

4

−
λ
2
(2ζ − 1)

2
(b − a)

2
R(a, b).

(25)

Integrating the abovementioned inequality w.r.t “ζ” over
[0, 1] and using the technique of change of variable, we
obtain

4ϱ
a + b

2
􏼠 􏼡g

a + b

2
􏼠 􏼡≤

2
b − a

􏽚
b

a
ϱ(x)g(x)dx +

1
3

P(a, b) +
2
3

Q(a, b)

−
λ
3
(b − a)

2
R(a, b) −

λ
5

−
(b − a)

2

2
−
1
5

􏼢 􏼣.

(26)
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Multiplying ς(b − a)/2B(ς) on both sides and sub-
tracting (2(1 − ς)/B(ς))ϱ(ζ)g(ζ), we obtain

2ς(b − a)

2B(ς)
ϱ

a + b

2
􏼠 􏼡g

a + b

2
􏼠 􏼡

≤
ς

B(ς)
􏽚
ζ

a
ϱ(x)g(x)dx + 􏽚

b

ζ
ϱ(x)g(x)dx􏼢 􏼣 −

2(1 − ς)
B(ς)
ϱ(ζ)g(ζ)

+
ς(b − a)

2B(ς)
1
3

P(a, b) +
2
3

Q(a, b) −
λ
3
(b − a)

2
R(a, b) −

λ
5

−
(b − a)

2

2
−
1
5

􏼢 􏼣􏼢 􏼣

−
2(1 − ς)

B(ς)
ϱ(ζ)g(ζ).

(27)

Now, the use of (7) and (9) and rearrangements of the
terms of the abovementioned inequality complete the
proof. □

4. Some New Caputo–Fabrizio Fractional
Integral Inequalities for Strongly
Convex Functions

Lemma 1 (see [28, 30]). Assume that ϱ: I⟶ R is a dif-
ferentiable mapping on I°, where a, b ∈ I with a< b. If
ϱ′ ∈ L1[a, b], then the inequality

b − a

2
∈ ζ01(1 − 2ζ)ϱ′(ζa +(1 − ζ)b)dζ −

2(1 − ς)
ς(b − a)

ϱ(ζ)

�
ϱ(a) + ϱ(b)

2
−

B(ς)
ς(b − a)

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ)􏽨 􏽩

(28)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Theorem 4. Assume that ϱ: I⟶ R is a differentiable
positive mapping on I°, where a, b ∈ I with a< b. If
ϱ′ ∈ L1[a, b] and |ϱ′| are two strongly convex functions, then
the inequality

ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

≤
(b − a) ϱ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 + ϱ′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

8
−

λ
32

(b − a)
3

(29)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Proof. By using Lemma 1, convexity of |ϱ′|, and the property
of absolute value, we get

ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

�
b − a

2
∈ ζ10(1 − 2ζ)ϱ′(ζa +(1 − ζ)b)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
∈ ζ10(1 − 2ζ) ϱ′(ζa +(1 − ζ)b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

≤
b − a

2
∈ ζ10|(1 − 2ζ)| t ϱ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1 − ζ) ϱ′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − λζ(1 − ζ)(b − a)

2
􏽨 􏽩dζ ,

�
(b − a) ϱ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ϱ′(b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

8
−

λ
32

(b − a)
3
.

(30)
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,is completes the proof. □

Theorem 5. Assume ϱ: I⟶ R to be a differentiable pos-
itive mapping on I°, a, b ∈ I with a< b, and
(1/p) + (1/q) � 1. If ϱ′ ∈ L1[a, b] and |ϱ′|q is a strongly
convex function, then the inequality
ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

≤
b − a

2(p + 1)
1/p
ϱ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p/(p− 1)

+ ϱ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p/(p− 1)

2
−
λ
6
(b − a)

2⎡⎢⎣ ⎤⎥⎦

(p− 1)/p

(31)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Proof. We start the proof by using Lemma 1, convexity of
|ϱ′|q, the property of absolute value, where (1/p) + (1/q)

� 1, and Holder’s inequality to obtain

ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)

CF
a I

ςϱg􏼐 􏼑(ζ) +
CF

I
ς
bϱg􏼐 􏼑(ζ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

�
b − a

2
∈ ζ10(1 − 2ζ)ϱ′(ζa +(1 − ζ)b)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
b − a

2
∈ ζ10|(1 − 2ζ)| ϱ′(ζa +(1 − ζ)b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dζ

≤
b − a

2
∈ ζ10|(1 − 2ζ)|

pdζ􏼐 􏼑
1/p

􏽚
1

0
ϱ′(ζa +(1 − ζ)b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdζ􏼠 􏼡

1/q

≤
b − a

2
∈ ζ10|(1 − 2ζ)|

pdζ􏼐 􏼑
1/p

􏽚
1

0
t ϱ′(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +(1 − ζ) ϱ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − λζ(1 − ζ)(b − a)
2

􏽨 􏽩dζ􏼠 􏼡

1/q

,

�
b − a

2(p + 1)
1/p
ϱ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ ϱ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

2
−
λ
6
(b − a)

3
􏼠 􏼡

1/q

,

�
b − a

2(p + 1)
1/p
ϱ′(a)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p/(p− 1)

+ ϱ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p/(p− 1)

2
−
λ
6
(b − a)

3⎛⎝ ⎞⎠

(p− 1)/p

,

(32)

where 􏽒
1
0 |1 − 2ζ|pdζ � 􏽒

1/2
0 (1 − 2ζ) pdζ + 􏽒

1
1/2 (1 − 2ζ)pdζ

� 2􏽒
1/2
0 (1 − 2ζ)pdζ � 1/(p + 1). ,is completes the

proof. □

5. Some Applications of Caputo–Fabrizio
Fractional Integral Inequalities to
Special Means

Means are important in applied and pure mathematics;
especially, they are used frequently in numerical approxi-
mation. In the literature, they are ordered in the following
way:

H≤G≤L≤ I≤A. (33)

,e special means of two numbers a and b in the order
of b> a are known as arithmetic mean, geometric mean,

harmonic mean, power mean, logarithmic mean,
p-logarithmic mean, and identric mean. ,ey are listed
below from (34)–(40), respectively.

A(a, b) �
a + b

2
, (34)

G(a, b) �
��
ab

√
, (35)

H(a, b) �
2ab

a + b
, (36)

Mp(a, b) �
ap + bp

2
􏼠 􏼡

1/p
⎡⎣ ⎤⎦, p≠ 0, (37)
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L(a, b) �
b − a

ln(b) − ln(a)
, (38)

Lp(a, b) �
bp+1 − ap+1

(p + 1)(b − a)
􏼠 􏼡

1/p
⎡⎣ ⎤⎦, p ∈ R∖ − 1, 0, (39)

I(a, b) �
1
e

bp

ap
􏼠 􏼡

1/(b− a)

. (40)

,ere are several results connecting these means, see [31]
for some new relations; however, very few results are known
for arbitrary real numbers. For this, it is clear that we can
extend some of the abovementioned means as follows:

A(a, b) �
a + b

2
, a, b ∈ R,

L(a, b) �
b − a

ln|b| − ln|a|
, a, b ∈ R∖ 0{ },

Ln(a, b) �
bn+1 − an+1

(n + 1)(b − a)
􏼠 􏼡

1/n
⎡⎣ ⎤⎦. n ∈ N, n≥ 1, a, b ∈ R, a< b.

(41)

Now, we shall use the results of Sections 3 and 4 to prove
the following new inequalities connecting the above-
mentioned means for arbitrary real numbers.

Proposition 1. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
n
, b

n
( 􏼁 − L

n
n(a, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

b − a

8
nA |a|

n− 1
, |b|

n− 1
􏼐 􏼑 −

λ
4
(b − a)

2
􏼢 􏼣.

(42)

Proof. Insertion of ϱ(x) � xn, where n ∈ N, n≥ 2, with ς � 1
and B(ς) � B(1) � 1 in,eorem 4 completes the proof. □

Proposition 2. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
n
, b

n
( 􏼁 − L

n
n(a, b)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
n(b − a)

2(p + 1)
1/p nA |a|

(n− 1)(p/(p− 1))
, |b|

(n− 1)(p/(p− 1))
􏼐 􏼑􏽨

−
λ(b − a)2

6np/(p−1)
􏼣

(p− 1)/p

.

(43)

Proof. Insertion of ϱ(x) � xn, where n ∈ N, n≥ 2, with ς � 1
and B(ς) � B(1) � 1 in,eorem 5 completes the proof. □

Proposition 3. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A
− 1

(a, b) +
λ
12

(b − a)
2 ≤L

− 1
(a, b)

≤A a
− 1

, b
− 1

􏼐 􏼑 +
λ
6
(b − a)

2
.

(44)

Proof. Insertion of ϱ(x) � xn, where n ∈ N, n≥ 2, with ς � 1
and B(ς) � B(1) � 1 in,eorem 1 completes the proof. □

Proposition 4. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
− 1

, b
− 1

􏼐 􏼑 − L
− 1

(a, b)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
b − a

4
A |a|

− 2
, |b|

− 2
􏼐 􏼑 −

λ
32

(b − a)
3
.

(45)

Proof. Insertion of ϱ(x) � x− 1, where x ∈ [a, b], with ς � 1
and B(ς) � B(1) � 1 in,eorem 4 completes the proof. □

Proposition 5. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
− 1

, b
− 1

􏼐 􏼑 − L
− 1

(a, b)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
b − a

2(p + 1)
1/p A |a|

− 2p/(p−1)
, |b|

− 2p/(p−1)
􏼐 􏼑 −

λ
6
(b − a)

2
􏼢 􏼣

(p− 1)/p

.

(46)

Proof. Insertion of ϱ(x) � x− 1, where x ∈ [a, b], with ς � 1
and B(ς) � B(1) � 1 in,eorem 4 completes the proof. □

6. Some Applications of Caputo–Fabrizio
Fractional Integral Inequalities to the
Trapezoidal Formula

Suppose d is the division of interval [a, b],
d: a � x0 < x1 < · · · <xn−1 <xn � b, and consider the trap-
ezoidal formula

T(ϱ, d) � 􏽘
i�1

i�0

ϱ xi( 􏼁 + ϱ xi+1( 􏼁

2
xi+1 − xi( 􏼁. (47)

It is well known that if the mapping ϱ: I⟶ R is twice
differentiable on (a, b) and M � maxx∈(a,b)[ϱ″(x)]<∞,
then

􏽚
b

a
ϱ(x)dx � T(ϱ, d) + E(ϱ, d), (48)

where the approximation error E(ϱ, d) of the integral
􏽒

b

a
ϱ(x)dx by the trapezoidal formula T(ϱ, d) satisfies

|E(ϱ, d)|≤
M

12
􏽘

n−1

i�0
xi+1 − xi( 􏼁

3
. (49)

It is clear that if the mapping f is not twice differentiable
or the second derivative is not bounded on (a, b), then (49)
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cannot be applied. In recent studies [30, 32–35], Dragomir
and Wang showed that the remainder term E(ϱ, d) can be
estimated in terms of the first derivative only. ,ese esti-
mates have a wider range of applications. Here, we shall
propose some new estimates of the remainder term E(ϱ, d)

which supplement, in a sense, those established in
[30, 32–35].

Proposition 6. Assume that ϱ: I⟶ R is a differentiable
positive mapping on I°, a, b ∈ I with a< b. If ϱ′ ∈ L1[a, b] and
|ϱ′| is a strongly convex function, then for every division d of
[a, b], the following inequality holds:

|E(ϱ, d)|≤
1
8

􏽘

i�1

n−1
xi+1 − xi( 􏼁

2 ϱ′ xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ϱ′ xi+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
λ
4

􏽘

i�1

n−1
xi+1 − xi( 􏼁

2⎡⎣ ⎤⎦

≤
1
4

􏽘

i�1

n−1
xi+1 − xi( 􏼁

2 max |ϱ′(a)|, ϱ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯 −
λ
8

􏽘

i�1

n−1
xi+1 − xi( 􏼁

2⎡⎣ ⎤⎦.

(50)

Proof. Applying subinterval [xi, xi+1], i � 0, . . . , n − 1, of
the division d from ,eorem 4, we obtain

ϱ xi( 􏼁 + ϱ xi+1( 􏼁

2
xi+1 − xi( 􏼁 − 􏽚

xi+1

xi

ϱ(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
xi+1 − xi( 􏼁

2

4
ϱ′ xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ϱ′ xi+1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2
−

λ
16

xi+1 − xi( 􏼁
2⎡⎣ ⎤⎦.

(51)

Summing over i � 0, . . . , n − 1 and taking that |ϱ′| is a
strongly convex function, then by using (47), (48), and
triangular inequality, we complete the proof. □

Proposition 7. Assume that ϱ: I⟶ R is a differentiable
positive mapping on I°, a, b ∈ I with a< b and
(1/p) + (1/q) � 1. If ϱ′ ∈ L1[a, b] and |ϱ′|q is a strongly
convex function, then for every division d of [a, b], the fol-
lowing inequality holds:

|E(ϱ, d)|≤
1

2(p + 1)
1/p 􏽘

i�1

n−1
xi+1 − xi( 􏼁

2 ϱ′ xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p/(p− 1)

+ ϱ′ xi+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p/(p− 1)

2
⎛⎝ ⎞⎠ −

λ
6

􏽘

i�1

n−1
xi+1 − xi( 􏼁

2⎡⎢⎢⎣ ⎤⎥⎥⎦

p/(p− 1)

≤
1

2(p + 1)
1/p 􏽘

i�1

n−1
xi+1 − xi( 􏼁

2 max |ϱ′(a)|, ϱ′(b)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯 −
λ
6

􏽘

i�1

n−1
xi+1 − xi( 􏼁

2⎡⎣ ⎤⎦.

(52)

Proof. Applying subinterval [xi, xi+1], i � 0, . . . , n − 1, of
the division d, we obtain from ,eorem 5

ϱ xi( 􏼁 + ϱ xi+1( 􏼁

2
xi+1 − xi( 􏼁 − 􏽚

xi+1

xi

ϱ(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
xi+1 − xi( 􏼁

2

2(p + 1)
1/p

ϱ′ xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p/(p− 1)

+ ϱ′ xi+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p/(p− 1)

􏼒 􏼓

2
−
λ
6

xi+1 − xi( 􏼁
2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(p− 1)/p

.

(53)

Summing over i � 0, . . . , n − 1 and taking that |ϱ′|q, where
(1/p) + (1/q) � 1, is a strongly convex function, then by using
(47), (48), and triangular inequality, we complete the proof. □

7. Conclusions

,e convex functions play an important role in approxi-
mation theory, and the fractional calculus has been found

the best to model physical and engineering processes. Some
properties of strongly convex functions via the Capu-
to–Fabrizio fractional integral operator have been studied in
this paper. Precisely speaking, Hermite–Hadamard-type and
some new inequalities for strongly convex functions via the
Caputo–Fabrizio fractional integral operator are proved, and
applications of the proposed inequalities to special means
are also presented in this paper.
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