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,e polynomial xn + 1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields.
In this paper, a rigorous treatment of the factorization of xn + 1 over finite fields is given as well as its applications. Explicit and
recursive methods for factorizing xn + 1 over finite fields are provided together with the enumeration formula. As applications,
some families of negacyclic codes are revisited with more clear and simpler forms.

1. Introduction

In coding theory, the polynomial xn + 1 over finite fields
plays an important role in the study of negacyclic codes (see
[1–5] and references therein). Precisely, a negacyclic code of
length n over Fq can be uniquely determined by an ideal in
the principal ring Fq[x]/〈xn + 1〉 generated by a monic
divisor of xn + 1. A brief discussion on the factorization of
xn + 1 over finite fields Fq has been given in [3, 4]. In the case
where the characteristic of Fq is even, the factorization of
xn + 1 � xn − 1 over Fq has been given and applied in the
study of cyclic codes over finite fields in [6]. In [7, 8], an
explicit form of the factorization of x2i

+ 1 over finite fields
of odd characteristic has been established. Some results on
the factorization of xn − λ over finite fields have been pre-
sented in [5].

In this paper, we focus on the factorization of xn + 1 over
finite fields Fq for arbitrary positive integers n and all odd
prime powers q. If the characteristic of Fq is p, we have xpsn +

1 � (xn + 1)ps

, for all integers n≥ 1 and s≥ 0. It is therefore
sufficient to study the factorization of xn + 1 over Fq such
that n is coprime to q. Here, we write n � 2in′ for some
integer i≥ 0 and odd positive integer n′ such that
gcd(n′, q) � 1.

Before proceeding to the general results, we consider a
pattern on the factorization of x2i11 + 1 over F5. We have

x
2·11

+ 1 � f1(x)f2(x)f3(x)f4(x)f5(x)f6(x),

x
22 ·11

+ 1 � f1 x
2

 f2 x
2

 f3 x
2

 f4 x
2

 f5 x
2

 f6 x
2

 ,

⋮

x
2i·11

+ 1 � f1 x
2i− 1

 f2 x
2i− 1

 f3 x
2i− 1

 f4 x
2i− 1

 

· f5 x
2i− 1

 f6 x
2i− 1

 ,

(1)

for all i≥ 1, where f1(x) � x + 2, f2(x) � x + 3,
f3(x) � x5 + x4 + x3 + 2x2 + x + 2, f4(x) � x5+ 2x4 + x3 +

2x2 + 3x + 2, f5(x) � x5 + 3x4 + x3 + 3x2 + 3x + 3, and
f6(x) � x5 + 4x4 + x3 + 3x2 + x + 3. It is easily seen that the
factorization can be determined recursively on the exponent
i of 2 and the number of monic irreducible factors of x2i11 +

1 is a constant independent of i≥ 2.
In this paper, a complete study on the above pattern of

the factorization of x2in′ + 1 over Fq is given. Precisely, we
prove that there exists a positive integer k such that the
number of monic irreducible factors of x2in′ + 1 over Fq
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becomes a constant for all positive integers i≥ k. In the cases
where ord

n′
(q) is odd, a complete recursive factorization of

x2in′ + 1 over Fq is provided together with a recursive for-
mula for the number of its monic irreducible factors for all
positive integers i. In the cases where ordn′(q) is even, a
recursive factorization of x2in′ + 1 over Fq is given for all
positive integers i≥ k. As applications, constructions and
enumerations of some negacyclic codes of lengths 2in′ over
Fq are given based on the above results.

,e paper is organized as follows. Preliminary concepts
and results on the factorization of xn + 1 over finite fields are
recalled in Section 2. In Section 3, the number theoretical
results and properties of q-cyclotomic cosets required in the
study of the factorization of x2in′ + 1 are established. Re-
cursive methods for factorizing x2in′ + 1 and enumerating its
monic irreducible factors are given in Section 4. Applica-
tions in the study of negacyclic codes over finite fields are
revisited in Section 5.

2. Preliminary

In this section, basic concepts and tools used in the study of
the factorization of xn + 1 over finite fields and the enu-
meration of its monic irreducible factors are recalled.

For a positive integer a and an integer s, the notation
2s‖a is used whenever s is the largest integer such that a is
divisible by 2s, or equivalently, 2s|a but 2s+1∤a. For an integer
a and a positive integer n, denote byΘn(a) the additive order
of a modulo n. In the case where gcd(a, n) � 1, denote by
ordn(a) the multiplicative order of a modulo n. By abuse of
notation, we write ord1(a) � 1.

For a prime power q, a positive integer n coprime to q,
and an integer 0≤ a< n, the q-cyclotomic coset modulo n

containing a is defined to be

Clq,n(a) � aq
j
(mod n)|j � 0, 1, 2, . . . . (2)

It is not difficult to see that Clq,n(a) � aqj(mod

n)|0≤ j< ordΘn(a)(q)} and |Clq,n(a)| � ordΘn(a)(q). More-
over, Θn(a) � Θn(j) for all j ∈ Clq,n(a). Let Sq(n) denote a
complete set of representatives of the q-cyclotomic cosets
modulo n, and let α be a primitive nth root of unity in some
extension field of Fq. It is well known (see [9]) that

x
n

− 1 � 
a∈Sq(n)

fa(x),
(3)

where

fa(x) � 
j∈Clq,n(a)

x − αj
 ,

(4)

is the minimal polynomial of αa over Fq referred as the
irreducible polynomial induced by Clq,n(a).

In [10], a basic idea for the factorization of x2in′ + 1 is
given using (3) and the following lemmas.

Lemma 1 (see [10], Lemma 2). Let q be an odd prime power,
and let n′ be an odd positive integer such that gcd(q, n′) � 1.

Let i≥ 0 and 0≤ a< 2i+1n′ be integers. !en, the elements in
Clq,2i+1n′(a) have the same parity.

Lemma 2 (see [10], Lemma 3). Let q be an odd prime power,
and let n′ be an odd positive integer such that gcd(q, n′) � 1.
Let i≥ 0 and 0≤ a< 2i+1n′ be integers. !en, the polynomial
fa(x) induced by Clq,2i+1n′(a) is a divisor of x2in′ + 1 if and
only if a is odd.

From Lemma 1, the parity of a representative of
Clq,2i+1n′(a) is independent of its choices. By Lemma 2, the
monic irreducible divisors of x2in′ + 1 are induced by the
q-cyclotomic cosets modulo 2i+1n′ containing odd inte-
gers. Let SOq(n) (resp., SEq(n)) denote a complete set of
representatives of the q-cyclotomic cosets containing
odd integers (resp., even integers) modulo n. It follows
that

x
2in′

+ 1 �
x
2i+1n′

− 1

x
2in′

− 1
� 

a∈SOq 2i+1n′( )

fa(x), (5)

for all i≥ 0.
For a positive integer n and a prime power q, let Nq(n)

denote the number of monic irreducible factors of xn + 1
over Fq. Based on ([3], equation 3.1), it can be deduced
that

Nq 2i
n′  � 

d|n′

ϕ 2i+1
d 

ord2i+1d(q)
. (6)

As discussed above, the q-cyclotomic cosets modulo
2i+1n′ containing odd integers are key to determine the
factorization of x2in′ + 1 over Fq and the enumeration of its
monic irreducible factors. Properties of these cosets are
studied in Section 3.

3. Number Theoretical Results and
Cyclotomic Cosets

In this section, number theoretical results required in the
factorization of x2in′ + 1 are derived. Subsequently, prop-
erties of q-cyclotomic cosets modulo 2i+1n′ containing odd
integers are established for all positive integers i and odd
positive integers n′. ,ese results are key in the study of the
factorization of x2in′ + 1 in Section 4.

A relation on the carnality of the q-cyclotomic costs
containing odd integers a and a + 2in′modulo 2i+1n′ is given
in the following lemma.

Lemma 3. Let q be an odd prime power, and let n′ be an odd
positive integer such that gcd(q, n′) � 1.!en, |Clq,2i+1n′(a)| �

|Clq,2i+1n′(a + 2in′)| for all odd integers a and for all positive
integers i.

Proof. Let a be an odd integer, and let i be a positive integer.
,en,
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Θ2i+1n′(a) �
2i+1

n′

gcd 2i+1
n′, a 

�
2i+1

n′

gcd n′, a( 
�

2i+1
n′

gcd n′, a + 2i
n′ 

,

�
2i+1

n′

gcd 2i+1
n′, a + 2i

n′ 
� Θ2i+1n′

a + 2i
n′ .

(7)

Hence,

Clq,2i+1n′(a)


 � ordΘ
2i+1n′(a)(q) � ordΘ

2i+1n′ a+2in′( )(q)

� Clq,2i+1n′ a + 2i
n′ 



,
(8)

as desired. □

Properties of q-cyclotomic cosets with q ≡ 1 (mod 4)

and q ≡ 3 (mod 4) are given separately in the following
sections.

3.1. q ≡ 3 (mod 4). In this section, we focus on properties of
q-cyclotomic cosets in the case where q ≡ 3 (mod 4).

First, an explicit formula for ord2i (q) is recalled for all
odd prime powers q ≡ 3 (mod 4) and positive integers i. ,is
result can be derived from ([11], Proposition 1). For com-
pleteness, a detailed proof is given.

Lemma 4. Let q be an odd prime power, and let β be the
positive integer such that 2β

����(q2 − 1). Let i be a positive
integer. If q ≡ 3 (mod 4), then

ord2i (q) �

1, if i � 1,

2, if 2≤ i≤ β,

2i− β+1
, if i≥ β + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Proof. Assume that q ≡ 3 (mod 4). ,en, 2‖(q − 1) and
2i|(q2 − 1), for all 2≤ i≤ β. Since q3 − 1 � (q − 1)(q2 + q + 1)

and q2 + q + 1 is odd, we have 2‖(q3 − 1). Hence, ord2(q) �

1 and ord2i (q) � 2, for all 2≤ i≤ β.
Assume that i≥ β + 1. Since q ≡ 3 (mod 4), it follows that

q2
j ≡ 1 (mod 4), for all j≥ 1. Hence, 2‖(q2

j

+ 1), for all j≥ 1.
Since (q2

i− β
− 1)(q2

i− β
+ 1) � q2

i− β+1
− 1 � (q2 − 1)

i− β
j�1

(q2
j

+ 1), we have 2i
����(q2

β− i+1
− 1) and 2i∤(q2

t

− 1), for all
t≤ β + i. Hence, ord2i (q) � 2i− β+1, for all i≥ β + 1. □

Properties of q-cyclotomic cosets modulo 2i+1n′ con-
taining odd integers are established in Proposition 1.

Proposition 1. Let q be a prime power such that
q ≡ 3 (mod 4), and let n′ be an odd positive integer such that
gcd(q, n′) � 1. Let λ≥ 0 be the integer such that 2λ

����ordn′(q),
and let β be the positive integer such that 2β

����(q2 − 1). !en,
the following statements hold:

(i) If λ � 0, then the following statements hold:

(a) Clq,2i+1n′(a)≠Clq,2i+1n′(a + 2in′) all odd integers a

and integers 2≤ i≤ β − 1
(b) Clq,2i+1n′(a) � Clq,2i+1n′(a + 2in′) � Clq,2in′ (a)∪

(Clq,2in′(a) + 2in′) for all odd integers a and
integers i � 1 or i≥ β

(ii) If λ> 0, then the following statements hold:

(a) Clq,2λ+β− 1n′(1)≠Clq,2λ+β− 1n′(1 + 2λ+β− 2n′)
(b) Clq,2i+1n′(a) � Clq,2in′(a)∪ (Clq,2in′(a) + 2in′) for

all odd integers a and integers i≥ λ + β − 1

Proof. First, we observe that β≥ 3, 2‖(q − 1) and
2β− 1

����(q + 1).
To prove (i), assume that λ � 0. In this case, ordn′(q) is

odd which implies that ordΘ
n′(a)(q) is odd for all odd

positive integers a.
To prove (a), let a be an odd integer, and let i be

an integer such that 2≤ i≤ β − 1. By Lemma 4, it follows
that ord2i (q) � 2 � ord2i+1(q). Since ordΘ

n′(a)(q) is odd, it
can be deduced that ordΘ

2i+1n′(a)(q) � ord2i+1Θ
n′(a)(q) �

lcm(ord2i+1(q), ordΘ
n′(a)(q)) � lcm(ord2i (q), ordΘ

n′(a)(q)) �

ordΘ
2in′(a)(q). Suppose that Clq,2i+1n′(a) � Clq,2i+1n′(a +2in′).

Since a≢a +2in′(mod2i+1n′), there exists
0<j<ordΘ

2i+1n′(a)(q) such that a +2in′ ≡ aqj(mod2i+1n′).
Hence, we have a≡ aqj(mod2in′) which implies that
ordΘ

2in′(a)(q)≤ j<ordΘ
2i+1n′(a)(q) � ordΘ

2in′(a)(q), a contra-
diction. ,erefore, Clq,2i+1n′(a)≠Clq,2i+1n′(a +2in′), as
desired.

To prove (b), let a be an odd integer, and let i be
an integer such that i � 1 or i≥ β. By Lemma 4, we
have ord2i+1(q) � 2 ord2i (q). Since ordn′(q) is odd, we
have ord2i+1n′(q) � lcm(ord2i+1(q), ordn′(q)) � lcm(2 ord2i

(q), ordn′(q)) � 2 ord2in′(q) which implies that
aqord2in′(q) ≢ a(mod 2i+1n′). Since aqord2in′(q) ≡ a(mod 2in′),
we have aqord2in′(q) ≡ a + 2in′(mod 2i+1n′). Hence,
a + 2in′ ∈ Clq,2i+1n′(a) which implies that Clq,2i+1n′(a) �

Clq,2i+1n′(a + 2in′). ,is proves the first equality.
For the second equality, let b ∈ Clq,2i+1n′(a). ,en,

b ≡ aqj(mod 2i+1n′) for some 0≤ j< ordΘ
2i+1n′(a)(q). It fol-

lows that b ≡ aqj(mod 2in′). If b< 2in′, then b ∈ Clq,2in′(a).
Otherwise, b − 2in′ ∈ Clq,2in′(a) which implies that
b ∈ Clq,2in′(a) + 2in′. Hence, Clq,2i+1n′(a)⊆Clq,2in′(a)∪
(Clq,2in′ (a)+ 2in′). Since Clq,2in′(a) and Clq,2in′(a) + 2n′
are disjoint sets of the same size ordΘ

2in′(a)(q),
we have |Clq,2in′(a)| � ordΘ

2i+1n′(a)(q) � 2ordΘ
2in′(a)(q) �

|Clq,2in′(a)∪ (Clq,2in′(a) +2in′)|. ,erefore, Clq,2i+1n′(a) �

Clq,2in′(a)∪ (Clq,2in′(a) +2in′) as desired.
To prove (ii), assume that λ> 0. For (a), suppose that

1 ∈ Clq,2λ+β− 1n′(1 + 2λ+β− 2n′). If λ � 1, then λ + β − 1 � β, we
have ord2λ+β− 1(q) � 2 � ord2λ+β− 2(q) by Lemma 4. Since
2‖ordn′(q), we have (ordn′(q)/2) is odd and it follows
that ord2λ+β− 1n′(q) � lcm(ord2λ+β− 1(q), ordn′(q)) � lcm
(ord2λ+β− 2(q), ordΘ

n′
(a)(q)) � ordΘ

2λ+β− 2n′(a)(q). Assume
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that λ≥ 2. Since λ + β − 1≥ β + 1, we have ord2λ+β− 1(q) � 2λ
and ord2λ+β− 2(q) � 2λ− 1 by Lemma 4. Since 2λ

����ordn′(q), it
follows that

ord2λ+β− 1n′(q) � lcm ord2λ+β− 1(q), ordn′(q)( 

� lcm 2λ, ordn′(q) 

� lcm 2λ− 1
, ordn′(q) 

� lcm ord2λ+β− 2(q), ordn′(q)(  � ord2λ+β− 2n′(q).

(10)

Since 2λ
����ordn′(q), (ordn′(q)/2λ) is odd. Hence,

ord2λ+β− 1n′(q) � lcm(ord2λ+β− 1(q), ordn′(q)) � lcm (ord2λ+β− 2

(q), ordn′(q)) � ord2λ+β− 2n′(q). Since 1 + 2λ+β− 2n′ ≢ 1
(mod 2λ+β− 1n′), we have 1 + 2λ+β− 2n′ ≡ qj (mod 2λ+β− 1n′)
for some 0< j< ordΘ

2λ+β− 1n′(1)(q) � ord2λ+β− 1n′ (q). It follows
that 1 ≡ qj(mod 2λ+β− 2n′) which implies that
ord2λ+β− 2n′(q)≤ j< ord2λ+β− 1n′(q) � ord2λ+β− 2n′(q), a contra-
diction. ,erefore, Clq,2λ+β− 1n′(1)≠ Clq,2λ+β− 1n′(1 + 2λ+β− 2n′),
as desired.

To prove (b), let a be an odd integer, and let i be an
integer such that i≥ λ + β − 1. ,en, i≥ β which implies that
ord2i+1(q) � 2 ord2i (q) and ord2i (q) � 2i− β+1 ≥ 2λ by Lemma
4. Since 2λ

����ordn′(q), (ordn′(q)/2λ) is odd and

ord2i+1n′(q) � lcm ord2i+1(q), ordn′(q)( 

� lcm 2 ord2i (q), ordn′(q)( 

� lcm 2 ord2i (q),
ordn′(q)

2λ
 

� 2 lcm ord2i (q),
ordn′(q)

2λ
 

� 2 lcm ord2i (q), ordn′(q)(  � 2 ord2in′(q),

(11)

which implies that aqord
2in′(q) ≢ a(mod 2i+1n′). Since

aqord2in′(q) ≡ a(mod 2in′), we have aqord2in′(q) ≡ a +

2in′(mod 2i+1n′). Hence, a + 2in′ ∈ Clq,2i+1n′(a) which im-
plies that Clq,2i+1n′(a) � Clq,2i+1n′(a + 2n′). ,e first equality
holds.

For the second equality, let b ∈ Clq,2i+1n′(a). ,en,
b ≡ aqj(mod 2i+1n′) for some 0≤ j< ordΘ

2i+1n′(a)(q). It fol-
lows that b ≡ aqj(mod 2in′). If b< 2in′, then b ∈ Clq,2in′(a).
Otherwise, b − 2in′ ∈ Clq,2in′(a) which implies that
b ∈ Clq,2in′(a) + 2in′. Hence, Clq,2i+1n′(a)⊆Clq,2in′(a)∪
(Clq,2in′(a) + 2in′). Since Clq,2in′(a) and Clq,2in′(a) + 2in′ are
disjoint sets of the same size ordΘ

2in′(a)(q), we have
|Clq,2i+1n′(a)| � ordΘ

2i+1n′(a)(q) � 2 ordΘ
2in′(a)(q) � |Clq,2in′

(a)∪ (Clq,2in′(a) + 2in′)|. ,erefore, Clq,2i+1n′(a) � Clq,2in′
(a)∪ (Clq,2in′(a) + 2in′) as desired. □

3.2. q ≡ 1 (mod 4). Here, we investigate properties of
q-cyclotomic cosets in the case where q ≡ 1 (mod 4). We
begin with an explicit formula for ord2i (q) which can be
derived from ([11], Proposition 1). For completeness, a
rigorous proof is provided.

Lemma 5. Let q be an odd prime power, and let β be the
positive integer such that 2β

����(q2 − 1). Let i be a positive
integer. If q ≡ 1 (mod 4), then

ord2i (q) �
1, if 1≤ i≤ β − 1,

2i− β+1
, if i≥ β.

⎧⎨

⎩ (12)

Proof. Assume that q ≡ 1 (mod 4). ,en, 2β− 1
����(q − 1)

which implies that ord2i (q) � 1, for all 1≤ i≤ β − 1. Next,
assume that i≥ β. Since q ≡ 1 (mod 4), it follows that
q2

j ≡ 1 (mod 4) for all j≥ 0. Hence, 2‖(q2
j

+ 1) for all j≥ 0.
Since (q2

i− β
− 1)(q2

i− β
+ 1) � q2

i− β+1
− 1 � (q − 1)

i− β
j�0(q2

j

+

1), it can be concluded that 2i
����(q2

β− i+1
− 1) and 2i∤(q2

t

− 1),
for all t≤ β + i. As desired, we have ord2i (q) � 2i− β+1 for all
i≥ β. □

Proposition 2. Let q be a prime power such that
q ≡ 1 (mod 4), and let n′ be an odd positive integer such that
gcd(q, n′) � 1. Let λ≥ 0 be the integer such that 2λ

����ordn′(q),
and let β be the positive integer such that 2β||(q2 − 1). !en,
the following statements hold:

(i) If λ � 0, then

(a) Clq,2i+1n′(a)≠Clq,2i+1n′(a + 2in′) for all odd inte-
gers a and integers 1≤ i≤ β − 2

(b) Clq,2i+1n′(a) � Clq,2i+1n′(a + 2in′) � Clq,2in′(a)∪
(Clq,2in′(a) + 2in′) for all odd integers a and
integers i≥ β − 1

(ii) If λ> 0, then

(a) Clq,2λ+β− 1n′(1)≠Clq,2iλ+β− 1n′(1 + 2λ+β− 2n′)
(b) Clq,2i+1n′(a) � Clq,2i+1n′(a + 2in′) � Cl

q,2in′
(a)∪

(Clq,2in′(a) + 2in′) for odd integers a and integers
i≥ λ + β − 1

Proof. First, we observe that β≥ 3, 2‖(q + 1) and
2β− 1

����(q − 1). Using Lemma 5 and arguments similar to
those in the proof of Proposition 1, the following key results
can be deduced:

(1) If λ � 0, then ordΘ
2i+1n′(a)(q) � ordΘ

2in′(a)(q), for all
odd integers a and integers 1≤ i≤ β − 2, and
ord2i+1n′(q) � 2 ord2in′(q), for all integers i≥ β − 1.

(2) If λ> 0, then ord2λ+β− 1n′(q) � ord2λ+β− 2n′(q)

and ord2i+1n′(q) � 2 ord2in′(q), for all integers
i≥ λ + β − 1.
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,e complete proof can be obtained using arguments
similar to those in Proposition 1, while the above discussion
and Lemma 5 is applied instead of Lemma 4. □

4. Factorization of xn + 1 over Finite Fields

In this section, the factorization of x2in′ + 1 over Fq is
established. First, we prove that there exists a positive integer
k such that the number of monic irreducible factors of x2in′ +

1 over Fq becomes a constant for all integers i≥ k. In the case
where ordn′(q) is odd, a complete recursive factorization of
x2in′ + 1 over Fq is given together with a recursive formula
for the number of its monic irreducible factors for all
positive integers i in Section 4.1. In the case where ordn′(q) is
even, a recursive factorization of x2in′ + 1 over Fq is given as
well as a recursive formula for the number of its monic
irreducible factors for all integers i≥ k in Section 4.2.

4.1. Recursive Factorization of xn + 1 over Fq with Odd
ordn′(q). In this section, we establish a complete recursive
factorization of x2in′ + 1 over Fq in the case where ordn′(q) is
odd. Subsequently, a formula for the number of monic ir-
reducible factors of x2in′ + 1 over Fq is given recursively on i.

4.1.1. q ≡ 3 (mod 4). We begin with useful relations between
q-cyclotomic cosets and their induced polynomials for the
case q ≡ 3 (mod 4).

Lemma 6. Let q be a prime power such that q ≡ 3 (mod 4),
and let n′ be an odd positive integer such that gcd(q, n′) � 1
and ordn′(q) is odd. Let β be the positive integer such that
2β

����(q2 − 1). Let i be a positive integer, and let a be an odd
integer. ,en, one of the following statements holds:

(i) Clq,2i+1n′(a) and Clq,2i+1n′(a + 2in′) induce distinct
monic irreducible polynomials of degree |Clq,2in′(a)|,
for all 2≤ i≤ β − 1.

(ii) For each i � 1 or i≥ β, if f(x) is induced by
Clq,2in′(a), then Clq,2in′(a) induces f(x2).

Proof. To prove (i), assume that 2≤ i≤ β − 1. By Proposition
1 ((a) in (i)), we have Clq,2i+1n′(a)≠Clq,2i+1n′(a + 2in′). From
Lemma 3, it follows that |Clq,2i+1n′(a)| � |Clq,2i+1n′(a + 2in′)|
which equals to |Clq,2in′(a)| by the proof of Proposition 1 ((a)
in (i)). Hence, Clq,2i+1n′(a) and Clq,2i+1n′(a + 2in′) induce
distinct monic irreducible polynomials of degree
|Clq,2in′(a)|.

To prove (ii), assume that i � 1 or i≥ β. Assume that
f(x) is induced by Clq,2in′(a). Let α be a 2i+1n′th root of
unity. ,en, α2 is a 2in′ th root of unity and
f(x) � j∈Cl

q,2in′(a)(x − (α2)j). From Proposition 1 ((b) in

(i)), we have Clq,2i+1n′(a) � Clq,2in′(a)∪ (Clq,2in′(a) + 2in′). It
follows that


j∈Cl

q,2i+1n′(a)

x − αj
  � 

j∈Cl
q,2in′(a)∪ Cl

q,2in′(a)+2in′ 

x − αj
 ,

� 
j∈Cl

q,2in′(a)

x − αj
  × 

j∈ Cl
q,2in′

(a)+2in′ 

x − αj
 

� 
j∈Cl

q,2in′(a)

x − αj
  x − αj+2in′

 

� 
j∈Cl

q,2in′(a)

x − αj
  x + αj

 

� 
j∈Cl

q,2in′(a)

x − α2j
 

� f x
2

 .

(13)

,erefore, Clq,2i+1n′(a) induces f(x2) as desired. □

,e next corollary can be deduced directly from the
above lemma.

Corollary 1. Assume the notations as in Lemma 6 with i≥ β.
If f(x) is induced by Clq,2in′(a), then f(x2j

) is irreducible for
all j≥ β − i.

In order to simplify the notations in the following
theorem, let α and c be 2in′th and 2i+1n′th roots of unity,
respectively. For each a ∈ SOq(2in′), let

fa(x) � 
j∈Cl

q,2in′(a)

x − αj
  and

gj(x) � 
j∈Cl

q,2i+1n′(a)

x − c
j

 .
(14)
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be the irreducible polynomials induced by Clq,2in′(a) and
Clq,2i+1n′(a), respectively. Using these notations, a recursive
factorization of x2in′ + 1 is given as follows.

Theorem 1. Let q be a prime power such that q ≡ 3 (mod 4),
and let n′ be an odd positive integer such that gcd(q, n′) � 1
and ordn′(q) is odd. Let β be the positive integer such that
2β

����(q2 − 1). !en, the following statements hold:

(i) If i � 0, then

x
2in′

+ 1 � x
n′

+ 1 � 

a∈SOq 2n′( )

fa(x).
(15)

(ii) If i≥ 1, then

x
2in′

+ 1 �



a∈SOq 2in′( )

fa x
2

 , if i � 1 or i≥ β,



a∈SOq 2in′( )

ga(x)ga+2in′(x), if 2≤ i≤ β − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where fa(x) and ga(x) are given in (14).
In this case, we have

x
2β− 1+in′

+ 1 � 

a∈SOq 2βn′( )

fa x
2i

 , (17)

for all i≥ 0.

Proof. From (5), we note that

x
2in′

+ 1 � 

a∈SOq 2i+1n′( )

fa(x).
(18)

,e first statement is the special case where i � 0. From
Proposition 1 (i), it can be deduced that

SOq 2i+1
n′  �

SOq 2i
n′ , if i � 1 or i≥ β,

SOq 2i
n′ ∪ SOq 2i

n′  + 2i
n′ , if 2≤ i≤ β − 1,

⎧⎪⎨

⎪⎩

(19)

where the union is disjoint.,e results therefore follow from
Lemma 6. □

A recursive formula for the number of monic irreducible
factors of x2in′ + 1 over Fq follows immediately from the
theorem.

Corollary 2. Let q be a prime power such that q ≡ 3 (mod 4),
and let n′ be an odd positive integer such that gcd(q, n′) � 1
and ordn′(q) is odd. Let i≥ 0 be an integer, and let β be the
positive integer such that 2β

����(q2 − 1). !en,

Nq n′(  � 

d|n′

ϕ(2d)

ord2d(q)
, (20)

Nq 2i
n′  �

Nq n′(  if i � 1,

2Nq 2i− 1
n′  � 2i− 1

Nq n′(  if 2≤ i≤ β − 1,

Nq 2β− 2
n′  � 2β− 2

Nq n′(  if i≥ β.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

Proof. Equation (20) is a special case of (6). Equation (21)
follows immediately from ,eorem 1. □

4.1.2. q ≡ 1 (mod 4). Here, we focus on q ≡ 1 (mod 4). First,
some useful relations between the q-cyclotomic coset
Clq,2i+1n′(a) and its induced polynomial are established.

Lemma 7. Let q be a prime power such that q ≡ 1 (mod 4),
and let n′ be an odd positive integer such that gcd(q, n′) � 1
and ordn′(q) is odd. Let β be the positive integer such that
2β

����(q2 − 1). Let i be a positive integer, and let a be an odd
integer. !en, one of the following statements holds:

(i) Clq,2i+1n′(a) and Clq,2i+1n′(a + 2in′) induce distinct
monic irreducible polynomials of the same degree for
all 1≤ i≤ β − 2

(ii) For each i≥ β − 1, if f(x) is induced by Clq,2in′(a),
then Clq,2i+1n′(a) induces f(x2)

Proof. ,e proof can be obtained using arguments similar to
those in the proof of Lemma 6, while Proposition 2 (i) is
applied instead of Proposition 1 (i). □

Corollary 3. Assume the notations as in Lemma 7 with
i≥ β − 1. If f(x) is induced by Clq,2in′(a), then f(x2j

) is
irreducible for all j≥ β − i − 1.

,e factorization of x2in′ + 1 is given in the following
theorem.

Theorem 2. Let q be a prime power such that q ≡ 1 (mod 4),
and let n′ be an odd positive integer such that gcd(q, n′) � 1
and ordn′(q) is odd. Let β be the positive integer such that
2β

����(q2 − 1). !en, the following statements hold:

(i) If i � 0, then

x
2in′

+ 1 � x
n′

+ 1 � 

a∈SOq 2n′( )

fa(x).
(22)

(ii) If i≥ 1, then
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x
2in′

+ 1 �



a∈SOq 2in′( )

ga(x)ga+2in′(x), if 1≤ i≤ β − 2,



a∈SOq 2in′( )

fa x
2

 , if i≥ β − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where fa(x) and ga(x) are given in (14).
In this case, we have

x
2β− 2+in′

+ 1 � 

a∈SOq 2β− 1n′( )

fa x
2i

 , (24)

for all i≥ 0.

Proof. ,e proof can be obtained using arguments similar to
those in the proof of ,eorem 1, while Proposition 2 (i) and
Lemma 7 are applied instead of Proposition 1 (i) and Lemma
6. □

From the theorem, the enumeration of monic irreducible
factors of x2in′ − 1 over Fq can be concluded in the following
corollary.

Corollary 4. Let q be a prime power such that q ≡ 1 (mod 4),
and let n′ be an odd positive integer such that gcd(q, n′) � 1
and ordn′(q) is odd. Let i≥ 0 be an integer, and let β be the
positive integer such that 2β

����(q2 − 1). !en,

Nq n′(  � 

d|n′

ϕ(2 d)

ord2 d(q)
, (25)

Nq 2i
n′  �

2Nq 2i− 1
n′  � 2i

Nq n′( , if 1≤ i≤ β − 2,

Nq 2β− 2
n′  � 2β− 2

Nq n′( , if i≥ β − 1.

⎧⎪⎨

⎪⎩

(26)

Proof. Equation (25) is given in (6). Equation (26) follows
immediately from ,eorem 2. □

4.2. Factorization ofxn + 1 over Fq withEven ordn′(q). In this
section, we focus on the case where ordn′(q) is even, i.e.,
2λ

����ordn′(q) for some positive integer λ. ,e results are not

strong as the previous section. Precisely, a recursive fac-
torization of x2in′ + 1 over Fq is given only for all sufficiently
large positive integers i.

In general, the factorization of x2in′ + 1 over Fq is given
in (3). For i≥ λ + β − 1, a simpler recursive method for the
factorization is given in the following theorem.

Theorem 3. Let q be an odd prime power, and let n′ be an
odd positive integer such that gcd(q, n′) � 1. Let λ be the
positive integer such that 2λ

����ordn′(q), and let β be the positive
integer such that 2β

����(q2 − 1). !en,

x
2λ+β− 1+jn′

+ 1 � 

a∈SOq 2λ+βn′( )

fa x
2j

 , (27)

for all j≥ 0.

Proof. ,e proof can be obtained using arguments similar to
those in the proof of ,eorem 1, while Proposition 2 (ii) and
Proposition 1 (ii) are applied instead of Proposition 2 (i) and
Proposition 1 (i). □

Corollary 5 follows immediately.

Corollary 5. Let q be an odd prime power, and let n′ be an
odd positive integer such that gcd(q, n′) � 1. Let λ be the
positive integer such that 2λ

����ordn′(q), and let β be the positive
integer such that 2β

����(q2 − 1). !en,

Nq 2i
n′  � Nq 2λ+β− 2

n′ , (28)

for all i≥ λ + β − 1.

4.3. Algorithm and Examples. In this section, the above
results are summarized as an algorithm for factorizing x2in′ +

1 over Fq. Some illustrative examples are given as well. An
algorithm for the factorization of x2in′ + 1 over Fq is given in
Algorithm 1.

Note that fa(x) and ga(x) are given in (14).
For the enumeration of monic irreducible factors of

x2in′ + 1 over Fq, it can be calculated using (6). With more
information on n′, i, and q, the formula can be simplified
using Corollaries 2, 4, and 5 of the form

Nq 2i
n′  �

2i
Nq n′( , if λ � 0, 1≤ i≤ β − 2 and q ≡ 1 (mod 4),

2β− 2
Nq n′( , if λ � 0, i≥ β − 1 and q ≡ 1 (mod 4),

Nq n′( , if λ � 0, i � 1 and q ≡ 3 (mod 4),

2i− 1
Nq n′( , if λ � 0, 2≤ i≤ β − 1 and q ≡ 3 (mod 4),

2β− 2
Nq n′( , if λ � 0, i≥ β and q ≡ 3 (mod 4),

Nq 2λ+β− 2
n′ , if λ≥ 1 and i≥ λ + β − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)
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where λ is the positive integer such that 2λ
����ordn′(q), β is the

positive integer such that 2β
����(q2 − 1), and

Nq n′(  � 

d|n′

ϕ(2 d)

ord2 d(q)
. (30)

From (29), the number Nq(2in′) of monic irreducible
factors of x2in′ + 1 over Fq becomes a constant independent
of i for all i≥ λ + β − 1 if λ � 0 and q ≡ 3 (mod 4) and for all
i≥ λ + β − 2 otherwise. Illustrative examples for the number
Nq(2in′) of monic irreducible factors of x2in′ + 1 over Fq

with odd ordn′(q) and even ordn′(q) are given in Tables 1
and 2, respectively.

In Table 1, the results for q ∈ 3, 7{ } and q ∈ 5, 9{ } are
obtained from Corollaries 2 and 4, respectively.

In Table 2, the last row of each n′ is obtained from
Corollary 5. Otherwise, it is computed using (6).

5. Applications

In this section, the factorization of x2in′ + 1 over Fq obtained
in Section 4 is applied in the study of negacyclic codes. Some
known results are revisited in simpler forms.

A linear code of length n over Fq is defined to be a
subspace of the Fq-vector space Fn

q. ,e dual of a linear code
C of length n over Fq is defined to be

C
⊥

� v0, v1, . . . , vn− 1(  ∈ Fn
q| 

n− 1

i�0
civi � 0, for all c0, c1, . . . , cn− 1(  ∈ C

⎧⎨

⎩

⎫⎬

⎭. (31)

A linear code C is said to be self-dual if C � C⊥ and it is
said to be complementary dual if C ∩ C⊥ � 0{ }.

A linear code C of length n over Fq is said to be neg-
acyclic if it is closed under the negacyclic shift. Precisely,
(− cn− 1, c0, c1, . . . , cn− 2) ∈ C, for every (c0, c1, . . . , cn− 2,

cn− 1) ∈ C. Under the map π: Fn
q⟶ (Fq[x]/〈xn + 1〉) de-

fined by

c0, c1, . . . , cn− 2, cn− 1( ↦ c0 + c1x + c2x
2

+ · · · + cn− 1x
n− 1

, (32)

it is well known (see [4]) that a linear code C of length n over
Fq is negacyclic if and only if π(C) is an ideal in the principal
ideal ring (Fq[x]/〈xn + 1〉). ,emap π induces a one-to-one
correspondence between negacyclic codes of length n over
Fq and ideas in (Fq[x]/〈xn + 1〉). In this case, π(C) is
uniquely generated by the monic divisor of xn + 1 of
minimal degree in π(C). Such polynomial is called the
generator polynomial of C.

Let q be an odd prime power, and let n′ be an odd
positive integer such that gcd(q, n′) � 1. Let λ be the positive

Input: odd prime power q, odd integer n′ with gcd(q, n′) � 1, and integer i≥ 0.
(1) Compute the positive integer β such that 2β

����(q2 − 1).
(2) Compute ordn′(q) and the integer λ such that 2λ

����ordn′(q).
(3) Consider the following cases:

(I) λ � 0.

(i) q ≡ 1 (mod 4).

(a) i � 0. Compute x2in′ + 1 � xn′ + 1 � a∈SOq(2n′)fa(x).
(b) 1≤ i≤ β − 2. Compute

x2in′ + 1 � a∈SOq(2in′)ga(x)ga+2in′(x),

and SOq(2i+1n′) � SOq(2in′)∪ (SOq(2in′) + 2in′).
(c) i≥ β − 1. Compute

x2in′ + 1 � a∈SOq(2β− 1n′)fa(x2i− β+2
).

(ii) q ≡ 3 (mod 4).

(a) 0≤ i≤ 1. Compute x2in′ + 1 � a∈SOq(2n′)fa(xi).
(b) 2≤ i≤ β − 1. Compute

x2in′ + 1 � a∈SOq(2in′)ga(x)ga+2in′(x),

and SOq(2i+1n′) � SOq(2in′)∪ (SOq(2in′) + 2in′).
(c) i≥ β. Compute

x2in′ + 1 � a∈SOq(2βn′)fa(x2i− β+1
).

(II) λ≥ 1.

(i) 0≤ i≤ λ + β − 2. Compute x2in′ + 1 directly using (3)
(ii) i≥ λ + β − 1. Compute

x2in′ + 1 � a∈SOq(2λ+βn′)fa(x2i− λ− β+1
).

ALGORITHM 1: Algorithm for the factorization of x2in′ + 1 over Fq.
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integer such that 2λ
����ordn′(q), and let β be the positive in-

teger such that 2β
����(q2 − 1). Let

k �
λ + β − 1, if λ � 0 and q ≡ 3 (mod 4),

λ + β − 2, otherwise.
 (33)

In general, negacyclic codes have been studied in
[3, 4, 10]. Here, we focus on negacyclic codes of length n �

ps2in′ with i≥ k, where p is the characteristic of Fq. ,e
construction and enumeration of such negacyclic codes are
simplified using the results from Section 4.

From (5), we have

x
2kn′

+ 1 � 

Nq 2kn′( )

j�1
rj(x). (34)

Based on ,eorems 1–3, it follows that

x
ps2in′

+ 1 � x
2in′

+ 1 
ps

� 

Nq 2kn′( )

j�1
rj x

2i− k

  
ps

, (35)

and rj(x2i− k

) is irreducible for all i≥ k.
,e following characterization and enumeration of

negacyclic codes of length n � ps2in′ with i≥ k are
straightforward. ,e proof is committed.

Theorem 4. Assume the notations above. !e following
statements hold:

Table 2: Nq(2in′) of monic irreducible factors of x2in′ + 1 over Fq

with even ordn′(q).

q n′ ordn′(q) λ β i Nq(2in′)

3 5 4 2 3

0 2
1 3
2 6
≥3 10

3 7 6 1 3
0 2
1 3
≥2 6

5 3 2 1 3
0 2
1 4
≥2 6

5 7 6 1 3
0 2
1 4
≥2 6

5 9 6 1 3
0 3
1 6
≥2 10

5 13 4 2 3

0 4
1 8
2 14
≥3 26

7 5 4 2 4

0 2
1 3
2 6
3 12
≥4 20

7 11 10 1 4

0 2
1 3
2 6
≥3 12

7 13 12 2 4

0 2
1 3
2 6
3 12
≥4 20

7 15 4 2 4

0 6
1 9
2 18
3 36
≥4 60

9 5 2 1 4

0 3
1 6
2 12
≥3 20

Table 1: Nq(2in′) of monic irreducible factors of x2in′ + 1 over Fq

with odd ordn′(q).

q n′ ordn′(q) λ β i Nq(2in′)

3 1 1 0 3
0 1
1 1
≥2 2

3 11 5 0 3
0 3
1 3
≥2 6

3 13 3 0 3
0 5
1 5
≥2 10

5 1 1 0 3 0 1
≥1 2

5 11 5 0 3 0 3
≥1 6

7 1 1 0 4

0 1
1 1
2 2
≥3 4

7 3 1 0 4

0 3
1 3
2 6
≥3 12

7 9 3 0 4

0 5
1 5
2 10
≥3 20

9 1 1 0 4
0 1
1 2
≥2 4

9 7 3 0 4
0 3
1 6
≥2 12

9 11 5 0 4
0 3
1 6
≥2 12

9 13 3 0 4
0 5
1 10
≥2 20
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(1) !e map T: (Fq[x]/〈xps2kn′ + 1〉)⟶ (Fq[x]/
〈xps2in′ + 1〉), defined by f(x)↦f(x2i− k

), is a ring
isomorphism for all integers i≥ k

(2) For each integer i≥ k, g(x) is the generator polyno-
mial of a negacyclic code of length ps2kn′ over Fq if
and only if g(x2i− k

)is the generator polynomial of a
negacyclic code of length ps2in′ over Fq

(3) !e number of negacyclic codes of length ps2in′ over
Fq is (ps + 1)Nq(2kn′), for all i≥ k

From the theorem, all negacyclic codes of length ps2in′
over Fq with i≥ k can be determined using the negacyclic
codes of length ps2kn′ over Fq.
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