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In this study, we introduce and study a generalized complementarity problem involving XOR operation and three classes of
generalized variational inequalities involving XOR operation. Under certain appropriate conditions, we establish equivalence
between them. An iterative algorithm is defined for solving one of the three generalized variational inequalities involving XOR
operation. Finally, an existence and convergence result is proved, supported by an example.

1. Introduction

It is well known that the many unrelated free boundary value
problems related to mathematical and engineering sciences can
be solved by using the techniques of variational inequalities. In a
variational inequality formulation, the location of the free
boundary becomes an intrinsic part of the solution, and no
special devices are needed to locate it. Complementarity theory
is an equally important area of operations research and ap-
plication oriented.)e linear as well as nonlinear programs can
be distinguished by a family of complementarity problems.)e
complementarity theory have been elongated for the purpose of
studying several classes of problems occurring in fluid flow
through porous media, economics, financial mathematics,
machine learning, optimization, and transportation equilib-
rium, for example, [1–5].

)e correlations between the variational inequality problem
and complementarity problem were recognized by Lions [6]
and Mancino and Stampacchia [7]. However, Karamardian
[8, 9] showed that both the problems are equivalent if the
convex set involved is a convex cone. For more details on
variational inequalities and complementarity problems, refer to
[6, 10–12].

)e exclusive “XOR,” sometimes also exclusive dis-
junction (short: XOR) or antivalence, is a Boolean operation

which only outputs true if only exactly one of its both inputs
is true (so, if both inputs differ).)ere are many applications
of XOR terminology, that is, it is used in cryptography, gray
codes, parity, and CRC checks. Commonly, the ⊕ symbol is
used to denote the XOR operation. Some problems related to
variational inclusions involving XOR operation were studied
by [13–16].

Influenced by the applications of all the above discussed
concepts in this study, we introduce and study a generalized
complementarity problem involving XOR operation with
three classes of generalized variational inequalities involving
XOR operation. Some equivalence relations are established
between them. An existence and convergence result is
proved for one of the three types of generalized variational
inequalities involving XOR operation. For illustration, an
example is provided.

2. Some Basic Concepts and Formulation of
the Problem

)roughout this study, we assume E to be real ordered
Banach space with norm ‖ · ‖ and E∗ be its dual space.
Suppose that d is the metric induced by the norm, 2E (re-
spectively, CB(E)) is the family of nonempty (respectively,
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closed and bounded) subsets of E. )e Hausdorff metric
D(., .) on CB(E) is defined as

D(A,B) � max sup
x∈A

d(x,B), sup
y∈B

d(A, y)
⎧⎨

⎩

⎫⎬

⎭, ∀A,B ∈ CB(E),

(1)

where d(x,B) � infy∈Bd(x, y), and
d(A, y) � infx∈Ad(x, y).

Let C be a pointed closed convex positive cone in E, and
〈t, x〉 denotes the value of the linear continuous function
t ∈ E∗ at x.

)e following definitions and concepts are required to
achieve the goal of this study, andmost of them can be found
in [17, 18].

Definition 1. )e relation “≤ ” is called the partial order
relation induced by the cone C, that is, x≤y if and only if
y − x ∈ C.

Definition 2. For arbitrary elements x, y ∈ E, if x≤y (or
y≤x) holds, then x and y are said to be comparable to each
other (denoted by x∝y).

Definition 3. For arbitrary elements x, y ∈ E, lub x, y  and
glb x, y  mean the least upper bound and the greatest upper
bound of the set x, y . Suppose lub x, y  and glb x, y 

exist, then some binary operations are defined as

(i) x∨y � lub x, y 

(ii) x∧y � glb x, y 

(iii) x⊕y � (x − y)∨(y − x)

(iv) x⊙y � (x − y)∧(y − x)

)e operations ∨,∧, ⊕, and ⊙ are called OR, AND, XOR,
and XNOR operations, respectively.

Proposition 1. Let ⊕ be an XOR operation and ⊙ be an
XNOR operation. 5en, the following relations hold:

(i) x⊙ x � 0, x⊙y � y⊙ x

(ii) if x∝ 0, then − x⊕0≤ x≤x⊕0
(iii) 0≤x⊕y, if x∝y

(iv) If x∝y, then x⊕y � 0 if and only if x � y

(v) x⊕y � y⊕x
(vi) x⊕x � 0
(vii) 0≤x⊕0
(viii) If x≤y and u≤ v, then (x + u)≤ (y + v)

(ix) If x∝y, then (x⊕0)⊕(y⊕0)≤ (x⊕y)⊕0 � x⊕y, for
all x, y, u, v ∈ E and λ ∈ R

Proposition 2. Let C be a cone in E; then, for each x, y ∈ E,
the following relations hold:

(i) ‖0⊕ 0‖ � ‖0‖ � 0

(ii) ‖x∨y‖≤ ‖x‖∨‖y‖≤ ‖x‖ + ‖y‖

(iii) ‖x⊕y‖≤ ‖x − y‖

(iv) If x∝y, then ‖x⊕y‖ � ‖x − y‖

Definition 4. Let A: E⟶ E be a single-valued mapping,
then

(i) A is said to be a comparison mapping, if x∝y, then
A(x)∝A(y), x∝A(x), and y∝A(y), for all
x, y ∈ E

(ii) A is said to be a strongly comparisonmapping, if A is
a comparison mapping and A(x)∝A(y), if and
only if x∝y, for any x, y ∈ E

Definition 5. Let f: E⟶ R∪ +∞{ } be a proper functional.
A vector ω∗ ∈ E∗ is called subgradient of f at x ∈ domf, if

〈ω∗, y − x〉 ≤f(y) − f(x), for ally ∈ E. (2)

)e set of all subgradients of f at x is denoted by zf(x).
)e mapping zf : E⟶ 2E∗ defined by

zf(x) � ω∗ ∈ E
∗
: 〈ω∗, y − x〉 ≤f(y) − f (x), for ally ∈ E 

(3)

is called subdifferential of f.

Definition 6. )e resolvent operatorJzf
ρ associated with zf

is given by

J
zf
ρ (x) � [I + ρ zf]

− 1
(x), for allx ∈ E, (4)

where ρ> 0 is a constant, and I is the identity operator.
It is well known that the resolvent operator Jzf

ρ is
single-valued as well as nonexpansive.

Definition 7. A mapping f: C⟶ R is said to be

(i) Positive homogeneous if, for all α> 0 and x ∈ C,
f(αx) � αf(x)

(ii) Convex, if x, y ∈ C and all λ ∈ [0, 1]

f(λx +(1 − λ)y)≤ λf(x) +(1 − λ)f(y). (5)

Definition 8. A multivalued mapping F: C⟶ 2E∗∖ ∅{ } is
said to be

(i) Upper semicontinuous at x ∈ C if, for every open set
V containing F(x), there exists an open set U

containing x such that F(U)⊆V, where E∗ is
equipped with ω∗ topology

(ii) Upper semicontinuous on C if it is upper
semicontinuous at every point of C
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(iii) Upper hemicontinuous on C if its restriction to line
segments of C is upper semicontinuous

(iv) Monotone if, for every x, y ∈ C

〈t1 − t2, y − x〉 ≥ 0, for all t1 ∈ F(y), t2 ∈ F(x). (6)

Definition 9. A multivalued mapping F: E⟶ 2E is said to
be D-Lipschitz continuous, if there exists a constant λDF

> 0
such that

D(F(x), F(y)) ≤ λDF
‖x − y‖, for allx, y ∈ E. (7)

Definition 10. Amultivaluedmapping F: E⟶ 2E is said to
be relaxed Lipschitz continuous, if there exists a constant
k> 0 such that

〈w1 − w2, x − y〉 ≤ − k‖x − y‖
2
, for allw1 ∈ F(x), w2 ∈ F(y).

(8)

Let F: C⟶ 2E∗∖ ∅{ } be a multivalued mapping with
nonempty values and f: C⟶ R∪ +∞{ } be a proper
functional. We consider the following generalized com-
plementarity problem involving XOR operation.

Find x ∈ C, t ∈ F(x) such that

〈t, tx〉⊕f(x) � 0,

〈t, ty〉⊕f(y)≥ 0,

∀y ∈ C.

(9)

We denote by SC⊕ the solution set of generalized
complementarity problem involving XOR operation (9).

We mention some special cases of problem (9) as
follows.

(i) If we replace ⊕ by + and f by f: C⟶ R, then
problem (9) reduces to the problem of finding x ∈ C

and t ∈ F(x) such that

〈t, tx〉 + f(x) � 0,

〈t, ty〉 + f(y) ≥ 0,

∀y ∈ C.

(10)

Problem (10) is called generalized f complemen-
tarity problem, introduced and studied by Huang
et al. [19].

(ii) If f ≡ 0, then problems (9) as well as (10) reduce to
the problem of finding x ∈ C and t ∈ F(x) such that

〈t, tx〉 � 0,

〈t, ty〉 ≥ 0,

∀y ∈ C.

(11)

Problem (11) can be found in [20, 21].

We remark that for suitable choices of operators in-
volved in the formulation of (9), a number of known

complementarity problems can be obtained easily, for ex-
ample, [17, 22–24].

Simultaneously, we also study the following three types
of generalized variational inequalities involving XOR
operation.

(1) Find x ∈ C such that

∃t ∈ F(x), ∀y ∈ C: 〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0;

(12)

(2) Find x ∈ C such that

∀y ∈ C, ∃t ∈ F(x): 〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0;

(13)

(3) Find x ∈ C such that

∀y ∈ C, ∀t ∈ F(y): 〈t, y − x〉⊕(f(y) − f(x))≥ 0.

(14)

We denote the solution set of (12) by S1⊕, (13) by S2⊕, and
(14) by S3⊕.

Many known variational inequality problems can be
obtained from problems (12)–(14), for example, [25–29] and
the references therein.

3. Equivalence Results

We establish the equivalence among problems (9), (12)–(14).
First, we establish the equivalence between generalized
complementarity problem involving XOR operation (9) and
generalized variational inequality problem involving XOR
operation (12).

Theorem 1. Let F: C⟶ 2E∗∖ ∅{ } be a multivalued map-
ping with nonempty values and f: C⟶ R∪ +∞{ } be a
proper functional. 5en, the following statements are true:

(i) If 〈t, tx〉∝f(x), then SC⊕⊆S1⊕
(ii) If f is positive homogeneous, then S1⊕⊆SC⊕

Proof

(i) Let x ∈ SC⊕, then x ∈ C, and there exists t ∈ F(x)

such that

〈t, tx〉⊕f(x) � 0,

〈t, ty〉⊕f(y)≥ 0.
(15)

Since 〈t, tx〉∝f(x), by (iv) of Proposition 1, we
have

〈t, tx〉 � f(x),

Also as 〈t, ty〉⊕f(y)≥ 0,

〈t, ty〉⊕f(y)⊕f(y) ≥ 0⊕f(y),

(16)

which implies that
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〈t, ty〉 ≥f(y). (17)

By using (16) and (17), we have

〈t, tyn − qx〉 � 〈t

〈t, tyn − qx〉⊕(f(y) − f(x))≥ (f(y) − f(x))⊕(f(y) − f(x)),

(18)

that is,

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0, (19)

which implies that x ∈ S1⊕. So, we have SC⊕⊆S1⊕.
(ii) Let x ∈ S1⊕, then x ∈ C, and there exists t ∈ F(x)

such that

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0, ∀y ∈ C. (20)

Since C is a pointed closed convex positive cone, clearly
y � 2x ∈ C and y � (1/2)x ∈ C. Putting y � 2x in gener-
alized variational inequality involving XOR operation (12)
and using positive homogenity of f, we get

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, t2nxq − hx〉⊕(f(2x) − f(x))≥ 0,

〈t, tx〉⊕f(x)≥ 0.

(21)

Now, putting y � (1/2)x in generalized variational in-
equality involving XOR operation ((12)) and using positive
homogenity of f, we get

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, tyn − qx〉⊕(f(y) − f(x))⊕(f(y) − f(x))≥ 0⊕(f(y) − f(x)),

(22)

which implies that

〈t, y − x〉≥ (f(y) − f(x)),

〈t,
1
2

x − x〉 ≥ f
1
2

x  − f(x) ,

〈t, −
1
2

x〉 ≥ −
1
2

f(x),

(23)

thus,

〈t, tx〉≤f(x),

〈t, tx〉⊕f(x)≤f(x)⊕f(x) � 0,
(24)

that is,

〈t, tx〉⊕f(x)≤ 0. (25)

Combining (21) and (25), we have

〈t, tx〉⊕f(x) � 0. (26)

From generalized variational inequality involving XOR
operations (12) and (16), we have

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, tyn − qx〉⊕((f(y) − f(x))⊕(f(y) − f(x)))≥ 0⊕(f(y) − f(x)),

(27)

which implies that

〈t, tyn − qx〉⊕0≥ 0⊕(f(y) − f(x)),

〈t, tyn − qx〉≥ (f(y) − f(x)),

〈t, ty〉 − 〈t

〈t, ty〉 − f(x)≥f(y) − f(x),

〈t, ty〉 ≥f(y),

〈t, ty〉⊕f(y)≥f(y)⊕f(y) � 0,

(28)

thus, we have 〈t, ty〉⊕f(y)≥ 0. So, we have x ∈ SC⊕. )at is,
S1⊕⊆SC⊕. □

Theorem 2. 5e following statements are true.

(i) S1⊕⊆S2⊕
(ii) If F is monotone, then S2⊕⊆S3⊕
(iii) If F is upper hemicontinuous and f is convex, then

S3⊕⊆S2⊕

Proof

(i) Is trivial
(ii) Let x ∈ S2⊕. )en, for all y ∈ C, there exists t ∈ F(x)

such that

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0. (29)

Since F is monotone, for every y ∈ C, t ∈ F(y), and
using the above inequality, we have

〈t − t, y − x〉≥ 0,

〈t, y − x〉≥ 〈t, tyn − qx〉,

〈t, y − x〉⊕(f(y) − f(x))≥ 〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

(30)

which implies that 〈t, y − x〉⊕(f(y) − f(x))≥ 0.
)us, x ∈ S3⊕.

(iii) Suppose that the conclusion is not true. )en, there
exists x ∈ C such that x ∈ S3⊕ and x ∉ S2⊕. )en, for
some y ∈ C and t ∈ F(x), we have

〈t, y − x〉⊕(f(y) − f(x))< 0. (31)

Since F is upper hemicontinuous and f is convex, setting
xλ � λy + (1 − λ)x and taking λ⟶ 0, we have

〈tλ, y − x〉⊕(f(y) − f(x))< 0, ∀tλ ∈ F xλ( ,

〈tλ, y − x〉⊕((f(y) − f(x))⊕(f(y) − f(x)))< 0⊕(f(y) − f(x)),

(32)

which implies that
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〈tλ, y − x〉 <(f(y) − f(x)),

〈tλ, xλ − x〉 < f xλ(  − f(x)( ,

〈tλ, xλ − x〉⊕ f xλ(  − f(x)( < f xλ(  − f(x)( ⊕ f xλ(  − f(x)( ,

(33)

thus,

〈tλ, xλ − x〉⊕ f xλ(  − f(x)( < 0, (34)

which contradicts that x ∈ S3⊕. )us, x ∈ S2⊕, and (iii) is
true. □

Remark 1. If we replace ⊕ by + and dropping the concepts
related to ⊕ operation, then with slight modification in
)eorems 1 and 2, one can obtain some results of Huang
et al. [19]. Additionally, for suitable choices of operators in
)eorems 1 and 2, one can obtain some results of Farajzadeh
and Harandi [30].

4. Existence and Convergence Result

In this section, we first establish the equivalence between the
generalized variational inequality problem involving XOR
operation (12) and a nonlinear equation. Based on this
equivalence, we construct an iterative algorithm for solving
generalized variational inequality problem involving XOR
operation (12).

Lemma 1. 5e generalized variational inequality problem
involving XOR operation (12) admits a solution (x, tt), x ∈ C

and t ∈ F(x), if and only if the following relation is satisfied:

x � J
zf
ρ [x + tρnt], (35)

where ρ> 0 is a constant, Jzf
ρ � [I + ρ zf]− 1 is the resolvent

operator associated with f, and I is the identity operator.

Proof. From the definition of resolvent operator Jzf
ρ as-

sociated with f and relation (35), we have

x � J
zf
ρ [x

� [I + ρ zf]
− 1

[x
(36)

which implies that x + ρt ∈ x + ρ zf(x), that is,

t ∈zf(x). (37)

By the definition of subdifferential operator zf(x) and
(37), we have

(f(y) − f(x))≥ 〈t, tyn − qx〉. (38)

Using (vi) of Proposition 1, we have

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 〈t

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0.
(39)

)us, the generalized variational inequality problem
involving XOR operation (12) is satisfied.

Conversely, suppose that generalized variational in-
equality problem involving XOR operation (12) is satisfied.
)at is,

〈t, tyn − qx〉⊕(f(y) − f(x))≥ 0,

〈t, tyn − qx〉⊕〈t
(40)

that is, (f(y) − f(x))≥ 〈t, tyn − qx〉, which implies that

t ∈zf(x),

ρt ∈ ρ zf(x),

x + ρt ∈ x + ρ zf

x + ρt ∈ [I + ρ zf](x),

x � [I + ρ zf]
− 1

[x

x � J
zf
ρ [x + ρt],

(41)

that is, the relation (35) is satisfied.
Based on Lemma 1, we develop the following iterative

algorithm for solving the generalized variational inequality
problem involving XOR operation (12). □

Iterative Algorithm 1. Let C ⊂ E be a pointed closed convex
positive cone. Suppose that tn∝ tn− 1, for n � 1, 2, . . .. Let for
x0 ∈ C, there exists t0 ∈ F(x0), such that

x1 � (1 − α)x0 + αJzf
ρ x0 + ρt0 . (42)

Since t0 ∈ F(x0) ∈ CB(E), by Nadler [31], there exists
t1 ∈ F(x1), using (iv) of Proposition 2, and as t0∝ t1, we
have

t0⊕t1
����

���� � t0 − t1
����

����≤D F x0( , F x1( ( . (43)

Continuing this way, compute the sequences xn  and
tn  by the following scheme:

xn+1 � (1 − α)xn + αJzf
ρ xn + ρtn , (44)

tn⊕tn− 1
����

���� � tn − tn− 1
����

����≤D F xn( , F xn− 1( ( , (45)

for n � 1, 2, . . ., where xn ∈ C, tn ∈ F(xn) can be chosen
arbitrarily, α ∈ [0, 1], D(., .) is the Hausdorff metric on
CB(E), and ρ> 0 is a constant.

Now, we prove our main result.

Theorem 3. Let E be a real ordered Banach space and C be a
pointed closed convex positive cone in E with partial ordering
“≤ .” Let f: C⟶ R∪ +∞{ } be a functional such that the
resolvent operator Jzf

ρ associated with f is strongly com-
parison and continuous. Suppose that F: C⟶ 2E∗∖ ∅{ } is a
multivalued mapping such that F is the relaxed Lipschitz
continuous with constant k> 0 and D-Lipschitz continuous
with constant λDF

> 0. Let xn∝ xn− 1 and tn∝ tn− 1, where
tn ∈ F(xn) and tn− 1 ∈ F(xn− 1), n � 1, 2, . . ., such that for
ρ> 0, the following condition is satisfied:
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ρ −
k

λ2DF




<

k

λ2DF

. (46)

)en, the sequences xn  and tn  strongly converge to
x∗ and t∗, respectively, the solutions of generalized varia-
tional inequality problem involving XOR operation (12).

Proof. Since xn+1∝ xn, for n � 1, 2, . . ., using (iii) of
Proposition 1, we evaluate

0≤xn+1⊕xn

� (1 − α)xn + αJzf
ρ xn + ρtn  ⊕ (1 − α)xn− 1 + αJzf

ρ xn− 1 + ρtn− 1  

≤ (1 − α) xn⊕xn− 1(  + α J
zf
ρ xn + ρtn ⊕Jzf

ρ xn− 1 + ρtn− 1  .

(47)

From (47), it follows that

xn+1⊕xn

����
���� � (1 − α) xn⊕xn− 1(  + α J

zf
ρ xn + ρtn ⊕Jzf

ρ xn− 1 + ρtn− 1  
�����

�����

≤ (1 − α) xn⊕xn− 1
����

���� + α J
zf
ρ xn + ρtn ⊕Jzf

ρ xn− 1 + ρtn− 1 
�����

�����.
(48)

As xn∝xn− 1, tn∝ tn− 1, obviously,
xn + ρtn∝ xn− 1 + ρtn− 1, for n � 1, 2, . . .. Since the resolvent
operator Jzf

ρ is strongly comparison, we have

J
zf
ρ xn + ρtn ∝Jzf

ρ xn− 1 + ρtn− 1 . (49)

Using above facts, (iv) of Proposition 2 and non-
expansiveness of Jzf

ρ , (48) becomes

xn+1 − xn

����
����≤ (1 − α) xn − xn− 1

����
���� + α J

zf
ρ xn + ρtn  − J

zf
ρ xn− 1 + ρtn− 1 

�����

�����

≤ (1 − α) xn − xn− 1
����

���� + α xn + ρtn  − xn− 1 + ρtn− 1 
����

����

� (1 − α) xn − xn− 1
����

���� + α xn − xn− 1 + ρ tn − tn− 1( 
����

����.

(50)

Since the multivalued mapping F is the relaxed Lipschitz
continuous with constant k> 0, D-Lipschitz continuous

with constant λDF
> 0, and using (45) of Iterative Algorithm

1, we have

xn − xn− 1 + ρ tn − tn− 1( 
����

����
2

� xn − xn− 1
����

����
2

+ 2ρ〈tn − tn− 1, xn − xn− 1〉 + ρ2 tn − tn− 1
����

����
2

≤ xn − xn− 1
����

����
2

− 2ρk xn − xn− 1
����

����
2

+ ρ2λ2DF
xn − xn− 1

����
����
2

� 1 − 2ρk + ρ2λ2DF
  xn − xn− 1

����
����
2
,

(51)

thus,

xn − xn− 1 + ρ tn − tn− 1( 
����

����≤
���������������

1 − 2ρk + ρ2λ2DF
 



xn − xn− 1
����

����

� θ xn − xn− 1
����

����,

(52)

where θ �
�������������
1 − 2ρk + ρ2λ2DF


.

Combining (50) and (52), we have

xn+1 − xn

����
����≤ (1 − α) xn − xn− 1

����
���� + αθ xn − xn− 1

����
����

≤ (1 − α + αθ) xn − xn− 1
����

����,
(53)

thus, we have

xn+1 − xn

����
����≤ c

n
x1 − x0

����
����, (54)

where c � (1 − α + αθ). Hence, for m> n> 0, we have

xn − xm

����
����≤ 

m− 1

i�n

xi+1 − xi

����
����≤ x1 − x0

����
���� 

m− 1

i�n

c
i
. (55)

It is clear from condition (46) that 0< c< 1, and con-
sequently, we have ‖xn − xm‖⟶ 0, as n⟶∞. )us, xn 

is a Cauchy sequence in E, and as E is complete,
xn⟶ x∗ ∈ E, as n⟶∞. From (45) of Iterative Algo-
rithm 1, we have

tn⊕tn− 1
����

���� � tn − tn− 1
����

����

≤D F xn( , F xn− 1( ( 

≤ λDF
xn − xn− 1

����
����,

(56)

thus, tn  is also a Cauchy sequence in E such that
tn⟶ t∗ ∈ E, as n⟶∞. Now, we will show that (x∗, t∗) is
a solution of generalized variational inequality problem
involving XOR operation (12). As xn⟶ x∗, tn⟶ t∗, and
resolvent operator Jzf

ρ is continuous, we can write
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x
∗

� lim
n⟶∞

xn+1

� lim
n⟶∞

(1 − α)xn + αJzf
ρ xn + ρtn  

� (1 − α) lim
n⟶∞

xn + αJzf
ρ lim

n⟶∞
xn + ρ lim

n⟶∞
tn 

� (1 − α)x
∗

+ αJzf
ρ x
∗

+ ρt
∗

 .

(57)

)us, the relation (35) is satisfied. It remains to show that
t∗ ∈ F(x∗). Since tn ∈ F(xn), we have

d t
∗
, F x
∗

( ( ≤ t
∗

− tn

����
���� + d tn, F x

∗
( ( 

≤ t
∗

− tn

����
���� + D F xn( , F x

∗
( ( 

≤ t
∗

− tn

����
���� + λDF

xn − x
∗����
����⟶ 0, as n⟶∞.

(58)

Hence d(t∗, F(x∗))⟶ 0, t∗ ∈ F(x∗) as F(x∗) ∈
CB(E). By Lemma 1, x∗ ∈ C, t∗ ∈ F(x∗) is a solution of
generalized variational inequality problem involving XOR
operation (12). )is completes the proof. □

Remark 2. Combining )eorems 1 and 3, we assert that the
solution x ∈ C, t ∈ F(x) of generalized variational inequality
involving XOR operation (12) is also a solution of gener-
alized complementarity problem involving XOR operation
(9).

5. Numerical Example

In this section, we construct a numerical example in support
of )eorem 3. Finally, the convergence graphs and the
computation tables are provided for the sequences generated
by Iterative Algorithm 1.

Example 1. Let E � E∗ � R with the usual inner product and
norm. Let C � x ∈ tRn: q0h≤ xx ≤ 71  be a pointed closed
convex positive cone in R. Let f: C⟶ R∪ +∞{ } be a
functional, zf : R⟶ 2R be the subdifferential of f,
F: C⟶ 2R∖ ∅{ } be a multivalued mapping, and Jzf

ρ be the
resolvent operator associated with f such that

f(x) � 2x
2

+ 1,

F(x) � −
x

7
 , ∀x ∈ C.

(59)

)en,

zf(x) � 4x{ },

J
zf
ρ (x) �

x

1 + 4ρ
 , ∀x ∈ C.

(60)

One can easily verify that the resolvent operatorJzf
ρ is a

strongly comparison mapping and continuous.
For x, y ∈ C, w1 ∈ F(x), and w2 ∈ F(y), we have

〈w1 − w2, x − y〉 �〈 −
x

7
+

y

7
, x − y〉

� −
1
7
‖x − ty‖

2

≤ −
1
10

‖x − ty‖
2
,

(61)

that is,

〈w1 − w2, x − y〉 ≤ −
1
10

‖x − ty‖
2
. (62)

)us, F is the relaxed Lipschitz continuous with constant
k � (1/10).

Also,

D(F(x), F(y)) � max sup
x∈F(x)

d(x, tFn(y)), sup
y∈F(y)

d(F(x), y)
⎧⎨

⎩

⎫⎬

⎭

≤max −
x

7
+

y

7

�������

�������
, −

y

7
+

x

7

�������

�������
 

�
1
7
max ‖x − ty

����, ‖x − y‖}

≤
1
7

‖x − y‖

≤
1
5

‖x − y‖,

(63)

that is,

D(F(x), F(y))≤
1
5

‖x − ty‖. (64)

)us, F is the D-Lipschitz continuous with constant
λDF

� (1/5).
Let us take ρ � 1, then for k � (1/10) and λDF

� (1/5),
the condition (46)

ρ −
k

λ2DF




<

k

λ2DF

, (65)

is satisfied.
Furthermore, for ρ � 1 and α � (1/3), we obtain the

sequences xn  and tn  generated by the Iterative Algorithm
1 as

xn+1 � (1 − α)xn + αJzf
ρ xn + ρtn 

�
2
3
xn +

1
15

xn + tn ,

(66)

where tn ∈ F(xn), and thus, tn � − (xn/7). It is clear that the
sequence xn  converges to x∗ � 0, and consequently, the
sequence tn  also converges to t∗ � 0.

For initial values x0 � 5, 10, and 15, we have the fol-
lowing convergence graphs, which ensure that the sequences
xn  and tn  converge to 0. Two computation tables are
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Table 1: )e values of xn with initial values x0 � 5, x0 � 10, and x0 � 15.

No. of For x0 � 5 For x0 � 10 For x0 � 15
Iteration xn xn xn

n� 1 5 10 15
n� 2 3.61904761904762 7.23809523809524 10.8571428571429
n� 3 2.61950113378685 5.23900226757370 7.85850340136055
n� 4 1.89601986826477 3.79203973652953 5.68805960479430
n� 5 1.37235723798212 2.74471447596423 4.11707171394635
n� 6 0.993325238920389 1.98665047784078 2.97997571676117
n� 7 0.718978268170948 1.43795653634190 2.15693480451284
n� 10 0.272639416260542 0.545278832521084 0.817918248781626
n� 14 0.0748317352528748 0.149663470505750 0.224495205758624
n� 18 0.0205391747010088 0.0410783494020177 0.0616175241030265
n� 21 0.00778853666217476 0.0155770733243495 0.0233656099865243
n� 25 0.00213773093232492 0.00427546186464984 0.00641319279697477
n� 26 0.00154731000815899 0.00309462001631798 0.00464193002447697
n� 27 0 0 0
n� 28 0 0 0

Table 2: )e values of tn with initial values x0 � 5, x0 � 10, and x0 � 15.

No. of For x0 � 5 For x0 � 10 For x0 � 15
Iteration tn tn tn

n� 1 − 0.714285714285714 − 1.42857142857143 − 2.14285714285714
n� 2 0.102040816326531 0.204081632653061 0.306122448979592
n� 3 − 0.0145772594752187 − 0.0291545189504373 − 0.0437317784256560
n� 4 0.00208246563931695 0.00416493127863390 0.00624739691795085
n� 5 − 0.000297495091330993 − 0.000594990182661986 − 0.000892485273992979
n� 6 4.24992987615704e − 05 8.49985975231408e − 05 0.000127497896284711
n� 7 − 6.07132839451006e − 06 − 1.21426567890201e-05 − 1.82139851835302e − 05
n� 10 − 1.23904661112450e − 07 3.54013317464143e − 08 5.31019976196215e − 08
n� 14 − 5.16054398635777e − 11 1.47444113895936e − 11 2.21166170843905e − 11
n� 18 − 2.14933110635476e − 14 6.14094601815645e − 15 9.21141902723467e − 15
n� 21 6.26627144709842e − 17 − 1.79036327059955e − 17 − 2.68554490589932e − 17
n� 25 2.60985899504307e − 20 5.21971799008614e − 20 7.82957698512922e − 20
n� 26 − 3.72836999291867e − 21 − 7.45673998583735e − 21 − 1.11851099787560e − 20
n� 27 0 0 0
n� 28 0 0 0

0 5 10 15 20 25 30 35
0

5

10

15

Xn

x0 = 5
x0 = 10
x0 = 15

Figure 1: )e convergence graph of the sequence xn  with initial values x0 � 5, x0 � 10, and x0 � 15.
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provided for the iterations (Tables 1 and 2) of the sequences
xn  and tn  (Figures 1, and 2).

6. Conclusion

In this study, we introduce and study a generalized com-
plementarity problem involving XOR operation with three
classes of generalized variational inequalities involving XOR
operation. Some equivalence relations are established be-
tween them. Finally, a generalized variational inequality
problem involving XOR operation (12) is solved in real
ordered Banach spaces. A numerical example is constructed
with convergence graphs and computation tables for illus-
tration of our main result.

We remark that our results may be further extended
using other tools of functional analysis.
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