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In this present study, we first establish Hermite-Hadamard type inequalities for r-convex functions via q*2-definite integrals.
Then, we prove some quantum inequalities of Hermite—-Hadamard type for product of two r-convex functions. Finally, by using
these established inequalities and the results given by (Brahim et al. 2015), we prove several quantum Hermite-Hadamard type
inequalities for coordinated r-convex functions and for the product of two coordinated r-convex functions.

1. Introduction

Quantum calculus research is an unlimited analysis of
calculus and is known as g-calculus. We get the initial
mathematical formulas in g-calculus as g reaches 17. The
commencement of the analysis of g-calculus was initiated by
Euler (1707-1783). The aforementioned results lead to an
intensive investigation on g-calculus in the twentieth cen-
tury. The concept of g-calculus is used in many areas in
mathematics and physics such as theory, orthogonal poly-
nomials, integration, basic hypergeometric functions, me-
chanical theory, and quantum and relativity theory. For
more information about g-calculus, one can refer to [1-10].

Mathematically, convexity is very simple and natural
which plays a very important role in various fields of pure
and applied science, such as in the field of practicality,
engineering science, and management science. In the recent
past, the classical concept of convexity has been extended
and generalized in different directions. Another factor that
makes the theory of the most popular convex works is its
relationship to the concept of inequality. Many inequalities
can be achieved using the definition of convex functions.
One of the widely studied inequalities involving convex
works is the Hermite-Hadamard inequality, which is the
first basic result of convex design with natural geometric

descriptions and multiple uses and has attracted great in-
terest in elementary mathematics. Many mathematicians
have devoted their efforts to generalization, refinement,
modelling, and multiplication of various fields of work such
as the use of convex mappings (see, e.g., [11], p.137, and
(12]).

The classical Hermite-Hadamard inequality states that if
r: I —> R is a convex function on the interval I of real
numbers and «,,x, € I with x; <x,, then

Ky + K 1 © F(Kl) + F(Kz)
F<T>Sx2—xl Lf“‘)d"gf' ()

The inequality holds in the reversed direction if £ is
concave. We see that the Hermite-Hadamard inequality can
be regarded as a refinement of the concept of integration and
is easily followed by Jensen’s inequality. The Hermi-
te-Hadamard inequality of convex works has received
renewed attention in recent years and has been studied in
significant and practical variations.

In [13], Pachpatte proved the following inequalities for
products of convex functions.

Theorem 1. Let r and &€ be real-valued, nonnegative, and
convex functions on [k, «,]. Then, we have
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1 1
o (ki) + 3 B (k1. 1),
(3)
where Q{(KI’ Kz) = F(Kl)?(Kl) + F(KZ)?(KZ) and

B (K, K,) = F (k)G (1) + F (,)F (k7).

A positive function is called r-convex on [, «,], if for all
%y € [ky,%,] and & € [0,1],
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It is obvious if 7 = 1, then the inequality classical convex
functions. It should be noted that if f is r-convex function,
then r is convex function. We have that 0-convex functions
are simply log-convex functions and 1-convex functions are
ordinary convex functions [14].

In [15], the definition of r-convex functions on coor-
dinates is given, such that

Definition 1. A function r: A: = [k, %,] X [K3, %] — R,
will be called r-convex on A for all &A1 € [0,1] and
(%, ¥), (u,v) € A, if the following inequality holds:

FEs (1-byy) < { (f(r{(n))r (+1 (; - (o), ifr#o,
FOO'F ()9, ifr = 0.
(4)
Flx+ (1 -8y, Au+(1-1)v)
3 { [EAF o) + E(L=D)F" (69) + (L= OAF (o) + (L= (L -V (5. 0)]"", ifr#0, (5)
- Fa(%,u)/:g(l_l)(%,v)/:(l_g))‘(y,u)/:(l_g)(l_”(y,v), ifr=0.

It is simply to see that if we choose r = 0, we have co-
ordinated log-convex functions and if we choose = 1, we
have coordinated convex functions. In [15], Ekinci et al. also
prove several Hermite—-Hadamard type inequalities for co-
ordinated r-convex functions. In literature, many studies
have been done on r-convex functions. For some of them,
one can see [16-23].

2. Preliminaries of g-Calculus and
Some Inequalities

In this section, we present some required definitions and
related inequalities about g-calculus. For more information
about g-calculus, one can refer to [1-10, 24, 25]. Also, here
and further, we use the following notation (see [5]):

[n]qzl_—q=1+q+q2+---+q"’1,

g qe (0,1). (6)

In [4], Jackson gave the g-Jackson integral from 0 to «,
for 0<g<1 as follows:

| roodp=t-an Y drtes). @
n=0

provided the sum converges absolutely.

Jackson in [4] gave the g-Jackson integral in a generic
interval [x,,x,] as

j FOOd = jo FOOd - JO FOodpe (8)

Definition 2 (see [9]). For a continuous function
F: [k, %,] — R, then g-derivative of f at u € [, x,] for
0<g<1 is characterized by the expression

CFOO) = Fge+ (1 -q)xk,)
« DgF () = (-q -x)

Since r: [x;,k,] — R s a continuous function, thus we
haveKl Dyr(xy) = lim  Dyr(%). The function £ is said to
U—K;

. WFEK. (9)

be g-differentiable on [x;,x,] if X Dq,c(f) exists for all
% € [x,%,]. If k; = 01in (9), then oDgF (%) = DgF (), where
Dyr (%) is familiar g-derivative of f at x € [k, k,] defined
by the expression (see [5])

FOO = F(gn)

e n#0. (10)

Dr(0) =

Definition 3 (see [9]). Let r: [x,,x,] — R be a continuous
function. Then, the g, -definite integral on [x;,x,] and
0<g<1 are defined as
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Ky 5] 1
J F(M)Kldq}(:(l_q)(KZ_Kl)zan(qu2+(1_qn)K1) = (1, —1,) JOF((I_E)’Q +€K2)dq£' (11)
K n=0

In [26], Alp et al. proved the following g, -Hermi-
te-Hadamard inequality for convex functions in the setting
of quantum calculus.

Theorem 2. If r: [x,,k,] — R is a convex differentiable
function on [x,x,] and 0<q<]1. Then, q-Hermi-
te-Hadamard inequalities are as follows:

, qK, + K, < 1 JZF(%)Kd%SqF(K1)+F(K2)-
l+g Ky — K Ju 17 l+g

(12)

On the other hand, Bermudo et al. gave the following
new definition and related Hermite-Hadamard type
inequalities.

Definition 4 (see [27]). Let f: [k;,x,] — R be a contin-

uous function. Then, the g*2-definite integral on [x,, x,] for
0<g<1 is defined as

J 2 FO0"dgn = (1-q) (x, — %7) Z q'F(q'x +(1- "))
1 n=0

K

1
= (K, — %) JO F(&xy + (1 - f)Kz)dqf.

Theorem 3 (see [27]). If r: [k}, k,] — R is a convex dif-
ferentiable function on [x,,x,] and 0<q<1. Then, q-Her-
mite-Hadamard inequalities are as follows:

F<1c1+cp<2>S 1 JZF(%)szq%SF(Kl)Jqu(KZ)'
1+¢g K, 1 Jx 1+¢g

(14)

From Theorem 2 and Theorem 3, one can get the fol-
lowing inequalities.

Corollary 1 (see [27]). For any
F: [k, 6,] — R and 0<q<1, we have

convex  function

(13)
1 [ P
() e [
F<K1+K2)< ! JKZF(%) dx+JK2F(%)K2dx L) +F () (16)
2 _Z(KZ - Kl) K i Ky 1 - 2 '

Brahim et al. prove the following lemma and theorem for
r-convex functions.

Lemma 1 (see [28]). For p>1 and 0<q<1, the following
inequality is valid:

1
Y. 1
JO (1-9Pd< TSR (17)

Theorem 4 (see [28]). Let f: [k, %,] — R, be r,-convex
on [«, k,]. Then, the following inequality holds for 0 <r, <1
and 0<g<1:

J FOomdpes T ([ar (k)] + [F ()]

K — K J [Ur +1],

(18)



Theorem 5 (see [28]). Let £, @: [k, x,] — R, be
r,-convex and r,-convex functions, respectively, on [x;, k,].
Then, the following inequality holds for 0<r,,r,<2 and
O<g<1:

2 K2
p J F% (M)Kldq% <

([ ()] + PG (19)
+W( 478 (k)] + [?(Kz)]rz)%.

Theorem 6 (see [28]). Let £, @: [k, x,] — R, be
r -convex and r,-convex functions, respectively, on [k, k,]
and 0 < g < 1. Then, the following inequality holds ifr, > 1 and
Vr +1/r,=1:

Ky

for (x, y) € A.

In [29], Latif et al. also proved a g-Hermite-Hadamard
inequality for coordinated convex functions.

By Definitions 4 and 5, Budak et al. defined the following
qx'> g and g** integrals.

K Jy

n

w Jy

respectively, for (x, y) € A.

Budak et al also proved some quantum Hermi-
te-Hadamard type inequalities for coordinated convex func-
tions. For other similar quantum inequalities, please see [31,32].

In this paper, we first prove the new variant of results of
Brahim et al. for g*2-integrals. We also obtain quantum
versions of the inequalities in [15].

3. Quantum Hermite-Hadamard Type
Inequalities for r-Convex Functions

In this section, we obtain some quantum inequalities of
Hermite-Hadamard type for r-convex functions and for
product of two r-convex functions.

Journal of Mathematics

Ky =Ky Ji

[ar (e)]" +[F ()] )””

| F00z 00, d s ( .

(laeters mmrz)”{
2],
(20)

In [29], Latif defined the g, -integral and related
properties for two variable functions as follows.

Definition 5. Suppose that f: A — R is continuous
function and 0<g,,q, <1. Then, the definite g, , -integral
on A is defined by

% [y 00 00
| "] FE9udysdy == a) (1= @) e ) (=) x Y. Y didle(@in+ (1= ey + (1-al)x). (1)

n=0 m=0

Definition 6 (see [30]). Suppose that ;: A — R is a con-
tinuous function and 0< gy, g, < 1. Then, the following gx',
qi> and g integrals on A are defined by

o0 o0

|9 dysdy§ = (0-a) (=@ e ) (e = ) x Y Y dlale(axr (1= a)wndiy + (1= g,

K (Y 0
7] FE90dys a6 =(1-a)0-a) (0 =0 (=) x Y Y dlalr (@t (1= andiy + (1= ),

|| rEoma,ta,e=(-a) (- @) ) (s -3)x Y. Y Gar(dnes (1)l + (1= g,

n=0 m(;O (22)
n=0 m=0
©
n=0 m=0
(23)

Theorem 7. Let r: [k;,k,] — R, be a r,-convex function
on [k, k,]. Then, the following inequality holds for 0 <r; <1:

1 L5 1 r ri\1/r;
K — i ,[ F(”)szqxsm([f'(“l)] [ar ()]
2 1 7% 1 q
(24)

where 0 < g < 1.

Proof. According to definition r,-convex, for all £ € [0, 1],
we have

FEx + (1= Ox,) < (E[F (k)] + (1= O [F (k)]
(25)

By integrating the inequality on [0, 1], we obtain
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J; F(EKI +(1- E)Kz)dqfﬁ J:) (‘E[F(Kl)]r' +(1-9) [F(Kz)]r')lmdqf-
(26)

From Definition 4, we get

" Foomdpes [ Elrel" + (- 9lr()]) " dg

(27)

Using Minkowski’s inequality for right side of inequality
(26),

[ et - a- 011 " a,g

<((foemaee) oo +( [ a-0"ag) reor)

(28)

1/ry

5
By Lemma 1, we have
1 1, " ~ 1 81
(Jog dq£> _<[1/r1+1]q> ’ (29)
! 1r " q "
(Jon-omas) () o

Thus, by substituting (29) and (30) in (28), we obtain

J: o ((m)n [F(e)]" +<[1/++1]q)rl ["—("2)]”)Ml

<t ()

The proof is completed. O

Remark 1. If we take the limit g — 17 in Theorem 7, then
Theorem 7 reduces to Theorem 2.1 in [33].

Ky — Ky
where 0<g< 1.

Proof. By the assumptions that  is an r,-convex function
and @ is an r,-convex function, we can write

P& + (1= 8,) < E[r (k)] + (1= O[F ()],
(33)

Y (& + (1= 9x,) < (E[€ ()] + (1= H[Z ()] )",
(34)

2 Ky © 1 r "
. le)?(x) s G LG0T ol e )

(31)

r I8 riy\1/1
+q" [F(x)]")

Remark 2. 1f we choose r; = 1 in Theorem 7, then inequality
(24) reduces to the second inequality in (14).

Theorem 8. Let r,%: [x,k,] — R, be r,-convex and
ro-convex functions, respectively, on [x,,x,]. Then, the fol-
lowing inequality holds for 0 <r ,r, <2:

2/r, 1

i (F O+ [ )] )"

for all £ € [0,1] and r|,7, > 0.
Then,

F(EKl +(1- f)Kz)g(f"l +(1- E)Kz)
< E[r(e)]" + A= O[F ()]
CE[ ()] + 1 -D[F (5)])".

Integrating both sides with respect to & on [0,1] and
from Definition 4, we obtain

(35)



— [ 00 0

Ky
0

Using Cauchy’s inequality for right side of inequality
(36), we obtain
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(36)

< [ G 0= DR €15 ()] + (- O[5 ()]) ¢

J; CElr()]™ + (=D [F (k)] E[Z (k)] + (1 - O)[E (k))]?) "d &

(37)

S% j; (Slr(e)]™ + (1= f)[F(Kz)]rl)Z/rldqf+% j; E[9 (k)] + (1= §[Z (k,)]") " &

By using Minkowski’s inequality, we have

J, Glr +a=Blr )"

1 /2 1 /2 2/ry
< ((joz”“dqf> ) o [, 007 [f(m]“) 69

Similarly, we have

[ @z r +a-ols Iy a

< <(m>w (% (x,)]” (39)

Thus, from the inequalities (36)-(39), we obtain the
desired result. O

Remark 3. If we take the limit g — 1~ in Theorem 8, then
Theorem 8 reduces to Theorem 2.3 in [33].

Corollary 2. If we choose r| = r, = 2 in Theorem 8, then we
have the inequality

2/ry

— j FOO% (Oryd
- [F(x)]* +alF (k)] . [% ()] +a[% ()]
= 2l, 2, '

(40)

Particularly, if F (x) = & (x) forall x € [k, x,], then we get

KZ 2 2
J [F OOV Ry < ) [;]q[F(KZ)] . (4D
) .

Ky — Ky

Theorem 9. Let r,&: [k, k,] — R, be r,-convex and
r,-convex functions, respectively, on [k, k,]. Then, we get the
following inequality:

1 2 ©
J F(0)E (n) qux
Ky =K Jx

< ( [r (o))" +lar ()]" > ( [9 ()] + [q?<x2>1’z>”ﬁ

2], 2],

(42)

where 0<q<1 and 1/r, + 1/ry = 1 with r; > 1.
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Proof. From (36), we have

1 2 .
” J FO)% (n) dqx

0

Using Hoélder inequality for quantum integrals, we have

rz F% (x)xqux

Ky =Ky Jxy

0

<(JL et +o-atreariag) ([ eeer va-oserag)

(43)

< Jl Elr ()] + (1= O ()] E[Z (0] + (1= D[F (k)]) " 8.

1
(44)

=<[F(K1)]” + [qF(Kz)]”)W‘([?(Kl)]”
2], [
This completes the proof. O

Remark 4. If we take the limit g — 17 in Theorem 9, then
Theorem 9 reduces to Theorem 2.6 in [33].

+[qz<xz)rz>“f{

Corollary 3. If we choose r| = r, = 2 in Theorem 9, then we
have the inequality

[F ()] +[ar (k)4 | [9 ()] + (9% ()]

sz F(x)?(%)xquxs

Ky =Ky Ji

Particularly, if £ (x) = & (x) for all x € [k}, k,], then we
get

1 2 2, [F(Kl)]z + [QF(KZ)]Z
PR Ll [F OO dn < 2, -

4. Quantum Hermite-Hadamard Type
Inequalities for Coordinated r
-Convex Functions

In this section, we present several Hermite-Hadamard type
inequalities for coordinated r-convex functions via g*, g,
q¢, and 9y, integrals. We also prove some quantum in-
equalities of Hermite—-Hadamard type for the product of two
coordinated r-convex functions.where 0<r;<1land
0<qg1,q,<1.

Theorem 10. Suppose that f: A — R_ is a positive coor-
dinated r\-convex function on A. Then, one has the inequality

2, 2, (45)
1 Ky (Ka .
(k2 = #0) (k2 — 53 [ ] roendy sy
< 1 1
(46) _[1/r1+1]q22(1<2—1<1)
[ (rbeml +laar o) e )

1 1
Ury+ 1], 2(ky = &3)

i

[ Ut +lanp G )

K3

Proof. Since f: A — R, is a coordinated 7 -convex
function, then the partial mappings,

Fui (K38 — Ry, F (V) = FO4,0), (48)

Fy: (K] — Ry, Fy () = £(u, ), (49)



are r -convex. By inequality (24), we can write
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1 [
” L} FO6L y)egdyy

1 “ Ky = K3
- J Fr(Y)addy,y (51)
R 1 r ro\1/r
1 (50) <t (el + Lo o)) ™
< e (el + e )™ e
! S Dividing both sides of the inequality (x, —x;) and
ie., q"-integrating with respect to »# on [k, k,], we get
1 J . J " P ), cid
%, uK
(1 = #1) (k4 = #3) Jo Voo FUe7da et
. X . (52)
2 r ri\Urix,
T i | (Gl +lase bl ) e |
By a similar argument for the mapping we have
Fy: [KI’KZ] S |:R+’ Fy (u) = F(M, )/)> (53)
! " Fooyred, e
(1 = 1) (K4 = K3) JKI Ls FOOYIRd, My
(54)

— Ky
K3

<
[1/r, + I]q1

By adding inequalities (52) and (54), we can obtain
inequality (47). O

Remark 5. If we take the limit g, — 17 andg, — 1~ in
Theorem 10, then Theorem 10 reduces to Theorem 5 in [15].

Remark 6. If we choose r; =1 in Theorem 10, then in-
equality (47) reduces to the third inequality of Theorem 3.6
in [30].

Theorem 11. Suppose that r;: A — R, is a positive coor-
dinated r|-convex function on A. Then, one has the inequality

1 Ky Ky
(Kz — K]) (K4 — K3) JKI JK3 F(M’ y)xld%m%d%y

1 1 J'KZ
<
[1/r, + l]q2 2(ky — 1) ),

(g o) + PGk e Y

1 1 J’C‘l
+
[1/r, +1]q1 2(ky = #3)

“([aur (ks )] +[F (2 y)]rl)lm xdg,Y>

1 lml [ (Urn)1 +laur (o)1) |

where 0<r <land 0<q,,q, < 1.

Proof. The proof is similar to the proof of Theorem 10 by
using Theorem 4. O

Theorem 12. Suppose that i A — R, is a positive coor-
dinated convex function on A. Then, one has the inequality

1 Ky [Ky
(K2 _ KI) (K4 _ KS) Jxl J’K3 F(%, y)K1dqlxK4dq2y

1 1 J'KZ
<
[1/1’1+1]q2 2(ky —%1) J

(g o)™ + Pk e O

1 1 J’K‘l
+
[1/r + l]q1 2(ky—13) J iy

([F (e )] + [%F(Kz’)’)]rl)l/rlmdqzy’

where 0<r, <1 and 0<q,,q,<1.

Proof. The proof is similar to the proof of Theorem 10 by
using Theorems 4 and 7. O
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Theorem 13. Suppose that ;: A — R_ is a positive coor-
dinated r\-convex function on A. Then, one has the inequality

1 Ky Ky "
CECES J . I , POy xid,y

1 1 J'KZ
<
[1/r, + l]q2 2(xy — %) J

(LF G res)]™ + [ (i k)] )", (57)

N 1 1 JK4
[1/r) + l]q] 2(ky —13) J

1/r,

([g1F (ki T +[F (k2 ™), 'y

where 0<r,; <1 and 0<q,,q, < 1.

Proof. The proof is similar to the proof of Theorem 10 by
using Theorems 4 and 7. O

Theorem 14. Suppose that r, &: A — R, is a coordinated
1 -convex function and coordinated r,-convex function, re-
spectively, on A. Then, we have the inequality

1 Ky Ky " "
CEES J . J , FO0G 06 ) g,y oy

< 1 1
TA[2r + 1], K -

2/ry

[ (1ol + a2 Gox)] )",

Ky

1 1
+
4[2/ry + 1], K, — %

| (1 6um)r™ + [ Gum)] ) d x

Ky

1 1
+
4[2/r) + 1], k4= K

[ (o1 <[t ]

K3

N 1 1
4[2/ry + 1], K4 =15

[R(EICS I P CN%) 5 R

K3

(58)

where 0<r, r,<2, and 0<q;,q, < 1.

Proof. Since ;: A — R, is a coordinated r,-convex on A,
then the partial mappings,
Fy [K3’K4] - |:R+’ Fn(v) = F(%) V);

(59)
F}’: [KI’KZ] - |:R+’Fy(u) = F(u)y))

are r,-convex on A. On the other hand, if & is a coordinated
r,-convex function, then the partial mappings,

?M: [K3’ K4] - R+’ gM(V) = g(M) V)) (60)
G, k] — RLG,(w) = 9w, y),
are r,-convex on A. From inequality (32), we get
2 r‘ (NG, (N dy y <
Ky — Ky K3F% I qzy_[Z/r1+1]q2
r r1\2/7
(LR ()] + [4:"Fc (50)] ") (61)
1 r 1/2 r2\2/7
+m([?n(’<3)] +[@* % (x)]7) s
ie,
2 j (% )€ (6 y)K,d
Ky — K3 K;F Y » V)Kylg, Y

< ey, (ol ey

1 r 12 r2\2/7;

+m([f(%)’<3)] 2+ (3" (0xy)] 7).

(62)

Dividing both sides of the inequality (x, —x;) and
q*-integrating with respect to » on [k, x,], we have

1

(13 = #1) (g = 3)

[ "] Foun® e dy i, x

Ky J K3

<1 1 1
T2 2+ 1], [k -5y

sz ([FOux)]" +[a " F (% K4)]’1)2/f1,<2dq1%]

Ky

+1 1 1
2 20y + 1], (% — Ky

JKZ ([206m)] +[43°% (%, K4)]r2)2/rzkqu1%].

Ky

(63)

By a similar argument, we obtain
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1 Ky Ky
) ) 4d . yed
CETES J . | , 00T 00 ) g,y ey

1 1 1 . .
<= ) , ‘d
T2 [2/r 1], |k K J([F(Kl »)] +[q1 Fx, y)] ) qzyjl (64)
L K3
11 1 " ran r\2Irag
= G (ki y)]? G (xyy ‘d, y|.
S [ ) (S [ o n)]) qzy}
L K3
By adding inequalities (63) and (64), we obtain the re- Particularly, if F(n, y) = & (%, y) for all (x,y) € A, then
quired result. O we get
1 [ 2k, K
Remark 7. If we take the limit g, — 1~ and g, — 1~ in (6 =) (5 —12) J J [F (6 y)17d gy d,
Theorem 14, then Theorem 14 reduces to Theorem 6 in [15]. Ko =) \Ke = K5) o T
1 % ([r 0o k)] + s [F (0 50)]°
Corollary 4. If we chooser, = r, = 2 in Theorem 14, then we < J ( FOLKS)] + 9 [FO6Ky >sz %
have the inequality 2(k = 11) J iy (2], B
e it
FOL )% (6 ) dg y2d, n 1 J'K“([F(pr)] +q,[F (1, 9)] >K
Ky, — K1) (K4 — K L 2 1 + 1
( 2 1)( 4 3) Ky JK 2(K4 — KS) [z]ql qzy
Flors)]’ + ‘12[ CEAN Bd (66)
4(K2 Q

(%,13)]” + qz [g(%, k)] . Theorem 15. Syppose that F, ? A—R,isa coorc?inated
d,n r,-convex function and coordinated r,-convex function, re-
spectively, on A. Then, we have the inequality

o d‘izy

K“dqzy.

IS

J (*
_K)J ( F (k)] +q1[F(K2’ )])

J.(*

()] + ch (& (K2>)’)]2>

(65)

1 Ky (K4
, V)€ (%, d_y“d
(13 — K1) (4 — 3) JKI Ls FO62)E y)K3 w) Ca

1 1 3 r 12 N2/
> ! ol zd
S4[2/r1 +1], % — K J ([FOom))” + |4 °FGorg)]") @
1 1 JK ([?(% " ) r2 +[ 1/2?(% " )]Tz)z/fzkzd o
4(2/ry + l]q2 x—x )i >3 9 > 4 q (67)
1 1 Kq 12 r r\2/T
bl bl ! d
i w2 )y
1 1 J‘M([ 1/2?(1( ))’)] + ?(Kz’ )]rz)Z/rz d, y,
4[2/ry + 1], K- x5 L ! 5o
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where 0<ry, r,<2, and 0<q;,g, < 1.

Proof. The proof is similar to the proof of Theorem 14 by
using Theorems 5 and 8. O

1
(1, = 1) (K4 = K5)
1 1
<
4[2/r + 1], 1, - K

K Jx

Ky
1

1 1
+
4(2/ry + l]q2

Ky =Ky Iy

1 1
+
42/, + 1], x4 = K3

where 0<r,, r,<2, and 0<q;,g, < 1.

Proof. The proof is similar to the proof of Theorem 14 by
using Theorem 5. O

Theorem 17. Suppose that f,&: A — R, is a coordinated
r -convex function and coordinated r,-convex function, re-
spectively, on A. Then, we have the inequality

[ s
FOLY)E (0, y)™d, v, d, n
(2 =) (g — 1) g S P07 0077
1 1
<
4[2/r + 1], &, = &

2/ry

Ky
k, d%%
K

| (a2 r )] + [FGer))”)

1
1 1
+
4[2/ry + 1], &, —

[ (2 o] +12 6o

N 1 1
4[2/ry + 1], Ky =Ky

JM ([F (e )V + a2 ()] )

K3

1 1
+
4[2/ry + 1], x4 K3

| (18 00 + (47 (e )]y 3

K3

(69)

[* (o))" #lrem]")

([ o )] + (€ 00r)]?) " dy

J
i Iy [ (e e ]
J

" ([0 (k0 9)]” + 12 (e 9)]7)
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Theorem 16. Suppose that F,G: A — R, is a coordinated
r,-convex function and coordinated r,-convex function, re-
spectively, on A. Then, we have the inequality

[ 7] o0 n® 0 dyyi

2/ry
kld%x

(68)

2/r,
K3 ‘by

2/r,

K3 d‘by’

where 0>r,, r,<2, and 0<q;,g, <1.

Proof. The proof is similar to the proof of Theorem 14 by
using Theorems 5 and 8. O

Theorem 18. Suppose that r, &: A — R, is a coordinated
r -convex function and coordinated r, -convex function,
respectively, on A. Then, we have the inequality

1 N K K
[ 7] Foun® oy, x

(1 = 11) (14 = 13) 3

1 2 ([FO6x3)]" +[qF (6] 1 %
(Kz - K JK[ < [2]q2 > d%%
X 1 rz <[?(“ x3)]"” +[4.9 (o K4)]r2>mz’<zd b
K, — K J (21, g

L0 TG +ar (e )Y
+E(K4—x3 J( 21, ) dy,

L5 (€0 )])” + [0 (ko )]\,
(e [ (e ey ey )
(70)

1
<—
2

where 0<q,,q,<1, and 1/r, + 1/r, = 1 with r; > 1.

Proof. By applying inequality (42) for the partial mapping r,,
and @,, we can write
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1 2 .
) o OOy

< < [F 0t k3)]" +[qoF (0 0)]" >1/r1

2],

+[a% s )])

2],

(71)

2

_ <[?(m x)]”

2

By using g*2-integral, we obtain
1

(16 = #1) (14 = &3)

- <(K2 i k) J: <[F(%) ol [Z][ZZF(%’ ok )Url Kqu'M)

( - ! - J:( (% (o))" [;][:zfe(m >1>d)
(72)

[ 7] poeng o d,yd,x

Similarly, by applying inequality (42) for the partial
mapping £, and g, we can write
1

| Fee 06 ), yd, %
(KZ_KI)(K4_K3) ‘[Kl Ls 7 ) %) %

< ( o [l [;][qwocz,y)rl)"ud%y)

1

X<(K41K3) [ (el sy w),

(73)

By adding inequalities (72) and (73), we obtain the
desired result (70). O

Remark 8. If we take the limit g, — 1~ and g, — 1™ in
Theorem 18, then Theorem 18 reduces to Theorem 7 in [15].

Corollary 5. If we chooser, = r, = 2 in Theorem 18, then we
have the inequality

1 Ky (K4
- L E (O, y)d, yod
o Tl I IRACR LGSR

A 1 rz [F (0 63)]” + [ (5]
2 Ky, — Ky Jx [z]q

sz R%

« 1 rz [ (% Ks)] +[4,9 (% x4)] de x
K, — K Jx (21,
1 sy [F (k)] +@F (e )] s,
+2<K4—K3 LBQ 2], dqzy)

1 & [?("p)’)]z+[‘11?(K21)’)]2x4
X(K4-K3 JQ 2, et |

(74)

2
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Theorem 19. Suppose that F,G: A — R, is a coordinated
r,-convex function and coordinated r,-convex function, re-
spectively, on A. Then, we have the inequality

ﬁjj

1 [F(% k)]" +[a0r 0o )]\
“2 < — %) "' (21, ) dql%)
?(%Ka)]rz +[q% (% &))" 1/r2KZ %
< o ) )

[2]‘12

FOLY)IE 06 Y dg,y “d, %

Ky ks )]+ [F (50 ¥)]™ Hn
(mim JK3<[q1F( ) kﬁ”)

1

( s [ ([l )

(75)

where 0<q,,q, <1, and 1/r{ + 1/r, =1 with r; > 1.

Proof. The proof is similar to the proof of Theorem 18 by
using Theorems 6 and 9. O

Theorem 20. Suppose that r,&: A — R, is a coordinated
r -convex function and coordinated r,-convex function, re-
spectively, on A. Then, we have the inequality

1 Ky (K .
(e ceral M NS

K3

<1 1 % (42 0o 5)]" +[F (% "z;)]r1 i
_2<(K2_K1) Ln < (21, g% )
1 [ [ng(%’ K3)] [?(%, K4 rz 1/r,
X((KZ_Kl) JK,( [2][12 K % )
L5 Lrteao )™ +air (k00 y ] Y
( (K4 - K3) J;@ < [2]q1 dflzy>

1 [ (k)] + @9 (k2 )] ”’Zmd
8 ( (K4 - Ks) Ls < [z]ql )

(76)
where 0<q,,q,<1, and 1/r, + 1/r, = 1 with r; > 1.

Proof. The proof is similar to the proof of Theorem 18 by
using Theorems 6 and 9. O

Theorem 21. Suppose that r, &: A — R, is a coordinated
r -convex function and coordinated r, -convex function,
respectively, on A. Then, we have the inequality
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1 Ky (K4
| J g 00 dyp,dy e

(Kz - Kl)(K4 —K3) Ji Sy

* %, %5)]" n, Ky i
Sl(( L <[‘12F( I + [ ( )1

2 [2]q2 K %

% % 163)]" % k3)] 1/rZ

X((K;KI) M[qu( )1[2];[?< L )
1r,

+;<(K41K3) L}([qlf( py)][ +[r (e )" ) Aoy )

(il (s )

(77)

where 0<q,,q, <1, and 1/r| + 1/r, =1 with r| > 1.

Proof. The proof is similar to the proof of Theorem 18 by
using Theorem 6. O

5. Conclusions

In this study, we present several quantum Hermi-
te-Hadamard type inequalities for r-convex functions and
coordinated r-convex functions. We also give some quan-
tum inequalities for the product of two r-convex functions
and for the product of two coordinated r-convex functions.
In the future work, we can establish the similar quantum
inequalities by using generalized r-convex functions.
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