Research Article

A Novel of Ideals and Fuzzy Ideals of Gamma-Semigroups

Anusorn Simuen,1 Aiyared Iampan2, and Ronnason Chinram1

1Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
2Department of Mathematics, School of Science, University of Phayao, Mae Ka, Phayao 56000, Thailand

Correspondence should be addressed to Ronnason Chinram; ronnason.c@psu.ac.th

Received 15 December 2020; Revised 10 January 2021; Accepted 20 January 2021; Published 7 April 2021

Academic Editor: Elena Guardo

Copyright © 2021 Anusorn Simuen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we define new types of ideals, fuzzy ideals, almost ideals, and fuzzy almost ideals of \(\Gamma \)-semigroups by using the elements of \(\Gamma \). We investigate properties of them.

1. Introduction and Preliminaries

Ideal theory in semigroups, like all other algebraic structures, plays an important role in studying them. Bi-ideals in semigroups were introduced by Good and Hughes [1] in 1952. Steinfeld [2] gave a notion and studied quasi-ideals in semigroups in 1956. In 1965, Zadeh introduced the concept of fuzzy sets in groups in 1956. In 1965, Zadeh introduced the concept of fuzzy subsets of semigroups by using concepts of almost ideals and quasi-ideals in semigroups. Sen [9] introduced almost bi-ideals in semigroups by using concepts of almost ideals and quasi-ideals in semigroups. Sen [9] introduced \(\Gamma \)-semigroups where \(\Gamma \) is a set of their operations. This algebraic structure is generalization of semigroups. Many results in semigroup theory were generalized to the results in \(\Gamma \)-semigroup theory.

Definition 1 (see [15]). Let \(S \) and \(\Gamma \) be nonempty sets. Then, \(S \) is called a \(\Gamma \)-semigroup if there exists a mapping \(\times \Gamma \times \Gamma \rightarrow S \) written as \((a, \alpha, b) \mapsto ayb \) satisfying the axiom \((aab)bc = aax(b\beta c)\) for all \(a, b, c \in S \) and \(a, \beta \in \Gamma \).

Remark 1

(1) In case \(|\Gamma| = 1\), the definition of \(\Gamma \)-semigroup is a semigroup
(2) Every semigroup \(\langle S, \cdot \rangle \) can be considered to be a \(\Gamma \)-semigroup where \(\Gamma := \{\} \)
(3) If \(S \) is a \(\Gamma \)-semigroup, then for each \(a \in \Gamma \), \(\langle S, a \rangle \) is a semigroup

Let \(S \) be a \(\Gamma \)-semigroup. For nonempty subsets \(A, B \) of \(S \), let

\[\Gamma B = \{a \in A, b \in B, a \in \Gamma\}. \]

If \(x \in S \) and \(a \in \Gamma \), we let \(\Gamma x := \Gamma [x], x\Gamma A := \{x\} \Gamma A, \) and \(AaB := A[a]B. \)

Definition 2. Let \(S \) be a \(\Gamma \)-semigroup. A nonempty subset \(A \) of \(S \) is called

(1) A sub-\(\Gamma \)-semigroup of \(S \) if \(\Gamma A \subseteq A \)
(2) A left ideal of \(S \) if \(S \Gamma A \subseteq A \)
(3) A right ideal of \(S \) if \(A \Gamma S \subseteq A \)
(4) An ideal of \(S \) if it is both a left ideal and a right ideal of \(S \)
A quasi-ideal of S if $S\Gamma A \cap A \Gamma S \subseteq A$

A bi-ideal of S if A is a sub-Γ-semigroup of S and $A \Gamma S A \subseteq A$

Recently, Wattanatripop and Changphas [13] defined the concepts of left almost ideals and right almost ideals of Γ-semigroups. A Γ-semigroup containing no proper left (respectively, right) almost ideals was characterized.

Now, we recall the definitions and some notations of fuzzy subsets. A fuzzy subset of a set S (respectively, right) almost ideals was characterized.

For any two fuzzy subsets f and g of a set S,

1. $f \cap g$ is a fuzzy subset of S defined by

 \[(f \cap g)(x) = \min\{f(x), g(x)\} \quad \text{for all } x \in S. \]

2. $(f \cup g)$ is a fuzzy subset of S defined by

 \[(f \cup g)(x) = \max\{f(x), g(x)\} \quad \text{for all } x \in S. \]

3. $(f \circ g)$ is a fuzzy subset of S defined by

 \[(f \circ g)(x) = \begin{cases} \sup \{\min\{f(a), g(b)\} \mid x = ab\} & \text{if } x \in S^2, \\ 0 & \text{otherwise}. \end{cases} \]

4. $f \subseteq g$ if $f(x) \leq g(x)$ for all $x \in S$.

For a fuzzy subset f of a set S, the support of f is defined by

\[\text{supp}(f) = \{x \in S \mid f(x) \neq 0\}. \]

The characteristic mapping of a subset A of S is a fuzzy subset of S defined by

\[C_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise}. \end{cases} \]

The definition of fuzzy points was given by Pu and Liu [16]. For $x \in S$ and $t \in (0, 1]$, a fuzzy point x_t of a set S is a fuzzy subset of S defined by

\[x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{otherwise}. \end{cases} \]

Some basic concepts of fuzzy semigroup theory can be seen in [17].

For a Γ-semigroup S, let $\mathcal{F}(S)$ be the set of all fuzzy subsets of S. For each $a \in \Gamma$, define a binary operation \circ_a on $\mathcal{F}(S)$ by

\[(f \circ_a g)(x) = \begin{cases} \sup \{\min\{f(a), g(b)\} \mid x = ab\} & \text{if } x \in SaS, \\ 0 & \text{otherwise}. \end{cases} \]

Let $G_\Gamma := \{\circ_a \mid a \in \Gamma\}$. Then, $(\mathcal{F}(S), G_\Gamma)$ is a Γ-semigroup.

In 2017, Wattanatripop and Changphas [13] defined the concepts of left A-ideals and right A-ideals (almost left ideals and almost right ideals) of a Γ-semigroup as follows.

A nonempty subset $G_L [G_R]$ of a Γ-semigroup S is called a left (right) A-ideal of S if

\[sG_L \cap G_L \neq \emptyset [G_R s \cap G_R \neq \emptyset], \quad \text{for all } s \in S. \]

In 1981, Bogdanovic [8] gave the definition of almost bi-ideals of semigroups as follows.

A nonempty subset B of a semigroup S is called an almost bi-ideal of S if

\[BsB \cap B \neq \emptyset, \quad \text{for all } s \in S. \]

In 2018, Wattanatripop et al. [14, 18] introduced the notions of almost quasi-ideals, fuzzy almost bi-ideals, fuzzy almost left (right) ideals, and fuzzy almost quasi-ideals in semigroups as follows.

A nonempty subset Q of a semigroup S is called an almost quasi-ideal of S if

\[(sQ \cap Q) \cap Q \neq \emptyset, \quad \text{for all } s \in S. \]

Let f be a fuzzy subset of a semigroup S such that $f \neq 0$. Then, f is called

1. A fuzzy almost bi-ideal of S if for all $s \in S$,

 \[f \circ C_s \cap f \neq 0. \]

2. A fuzzy almost left ideal of S if for all $s \in S$,

 \[C_s f \cap f \neq 0. \]

3. A fuzzy almost right ideal of S if for all $s \in S$,

 \[f \circ C_s \cap f \neq 0. \]

4. A fuzzy almost quasi-ideal of S if for all $s \in S$,

 \[(C_s \circ f \cap f \circ C_s) \cap f \neq 0. \]

In 1981, Kuroki [4] introduced the notion of fuzzy ideals of semigroups as follows: A fuzzy subset f of a semigroup S is called:

1. A fuzzy left ideal of S if $f(ab) \geq f(b)$ for all $a, b \in S$.
2. A fuzzy right ideal of S if $f(ab) \geq f(a)$ for all $a, b \in S$.
3. A fuzzy ideal of S if it is both a fuzzy left ideal and a fuzzy right ideal of S.

The aim of this paper is to define new types of ideals and fuzzy ideals of a Γ-semigroup by using elements in Γ. In Section 2, we consider new types of ideals of S. In Section 3, we study new types of fuzzy ideals of S. In Section 4, we consider new types of almost ideals of S. In Section 5, we study new types of fuzzy almost ideals of S.

2. New Types of Ideals

In this section, we will focus on (a, b)-ideals, (a, b)-quasi-ideals, and (a, b)-bi-ideals of Γ-semigroups for $a, b \in \Gamma$.
2.1. (α, β)-Ideals. First, we will define (α, β)-ideals of Γ-semigroups as follows.

Definition 3. Let S be a Γ-semigroup, A be a nonempty subset of S, and α, β ∈ Γ. Then, A is called

1. A left α-ideal of S if SaA ⊆ A.
2. A right β-ideal of S if AβS ⊆ A.
3. An (α, β)-ideal of S if it is both a left α-ideal and a right β-ideal of S.
4. An α-ideal of S if it is an (α, α)-ideal of S.

Remark 2

1. Every left ideal of a Γ-semigroup S is a left α-ideal of S for all α ∈ Γ.
2. Every right ideal of a Γ-semigroup S is a right β-ideal of S for all β ∈ Γ.
3. Every ideal of a Γ-semigroup S is an (α, β)-ideal of S for all α, β ∈ Γ.

However, the converse of Example 1 is not generally true. We can see in the following example.

Example 1. Let S = Γ = ℤ and (a, b) → a + b for all a, b ∈ S and γ ∈ Γ. Then, S is a Γ-semigroup. Let A = {1} ∪ {6, 7, 8, 9, ...}. It is easy to show that A is a left 4-ideal but not a left ideal of S.

Theorem 1. The following statements are true:

1. If L is a left α-ideal of a Γ-semigroup S, then L is a left ideal of a semigroup (S, α).
2. If R is a right β-ideal of a Γ-semigroup S, then R is a right ideal of a semigroup (S, β).
3. If I is an α-ideal of a Γ-semigroup S, then I is an ideal of a semigroup (S, α).

For a nonempty subset A of a Γ-semigroup S, let (A)_l(α), (A)_r(β), and (A)_{l(α)r(β)} be the left α-ideal, the right β-ideal, and the (α, β)-ideal of S generated by A, respectively.

Theorem 2. Let A be a nonempty subset of a Γ-semigroup S. Then,

1. (A)_l(α) = A ∪ SaA.
2. (A)_r(β) = A ∪ AβS.
3. (A)_{l(α)r(β)} = A ∪ SaA ∪ AβS ∪ SaAβS.

Proof

1. Let L be a nonempty subset of a Γ-semigroup S. Let L = A ∪ SaA. Clearly, A ⊆ L. Since S is a Γ-semigroup, SaL = Sa(A ∪ SaA) = SaA ∪ SaSaA = SaA ∪ L. Therefore, L is a left α-ideal of S. Next, let C be any left α-ideal of S containing A. Since C is a left α-ideal of S and A ⊆ C, SaC ⊆ C. Therefore, L = A ∪ SaA ⊆ C. Hence, L is the smallest left α-ideal of S containing A. Therefore, (A)_{l(α)} = L = A ∪ SaA, as required.

The proofs of (2) and (3) are similar to the proof of (1).

Theorem 3. Let L a left α-ideal and R a right β-ideal of a Γ-semigroup S. Then, LyR is an (α, β)-ideal of S for all γ ∈ Γ.

Proof. Let L and R be a left α-ideal and a right β-ideal of S, respectively, and let γ ∈ Γ. Clear that LyγR ⊆ γLγR. We have Sa(γLγR) = (SaLγR)γR ⊆ LyR ∩ γLγR. Therefore, LyR is an (α, β)-ideal of S.

Theorem 4. Let L_1 and L_2 be two left α-ideals of a Γ-semigroup S. The following statements are true:

1. L_1 ∪ L_2 is a left α-ideal of S.
2. L_1 ∩ L_2 is a left α-ideal of S, where L_1 ∩ L_2 ≠ ∅.

Proof.

1. Let L_1 and L_2 be two left α-ideals of S. Clear that L_1 ∪ L_2 ≠ ∅. Then, Sa(L_1 ∪ L_2) ⊆ (SaL_1 ∪ SaL_2) ⊆ L_1 ∪ L_2. Hence, L_1 ∪ L_2 is a left α-ideal of S.
2. Since L_1 ∩ L_2 ≠ ∅, we have Sa(L_1 ∩ L_2) ⊆ (SaL_1 ∩ SaL_2) ⊆ L_1 ∩ L_2. Hence, L_1 ∩ L_2 is a left α-ideal of S.

Theorem 5. Let R_1 and R_2 be two right β-ideals of a Γ-semigroup S. Then,

1. R_1 ∪ R_2 is a right β-ideal of S.
2. R_1 ∩ R_2 is a right β-ideal of S, where R_1 ∩ R_2 ≠ ∅.

Proof. It is similar to Theorem 4.

Theorem 6. Let I_1 and I_2 be two (α, β)-ideals of a Γ-semigroup S. Then,

1. I_1 ∪ I_2 is an (α, β)-ideal of S.
2. I_1 ∩ I_2 is an (α, β)-ideal of S, where I_1 ∩ I_2 ≠ ∅.

Proof. It follows by Theorems 4 and 5.

2.2. (α, β)-Quasi-Ideals. We define (α, β)-quasi-ideals of Γ-semigroups as follows.

Definition 4. Let S be a Γ-semigroup. A nonempty subset Q of S is called

1. An (α, β)-quasi-ideal of S if SaQ ∩ AβS ⊆ Q.
2. An α-quasi-ideal of S if it is an (α, α)-quasi-ideal of S.

Theorem 7. Let S be a Γ-semigroup and Q, an (α, β)-quasi-ideal of S for all i ∈ I. If ∩_{i∈I} Q_i ≠ ∅, then ∩_{i∈I} Q_i is an (α, β)-quasi-ideal of S.

Proof. Let S be a Γ-semigroup and Q_i, an (α, β)-quasi-ideal of S for all i ∈ I. Then, (Sa ∩_{i∈I} Q_i) ∩ (AβS ∩_{i∈I} Q_i) ⊆ Q_i ∩ AβS.
Theorem 8. Let A be a nonempty subset of a Γ-semigroup S. Let $(A)_{q(\alpha,\beta)}$ be the (α,β)-quasi-ideal of S generated by A.

$$(16)$$

$$Q_i \beta S \subseteq Q_i \text{ for all } i \in I, \text{ so } (S \cap \cap_{i \in I} Q_i) \cap (\cap_{i \in I} Q_i \beta S) \subseteq \cap_{i \in I} Q_i.$$ Therefore, $\cap_{i \in I} Q_i$ is an (α,β)-quasi-ideal of S.

Let A be a nonempty subset of a Γ-semigroup S. Let $(A)_{q(\alpha,\beta)}$ be the (α,β)-quasi-ideal of S generated by A.

Theorem 8. Let A be a nonempty subset of a Γ-semigroup S. Then,

$$(16)$$

$$(A)_{q(\alpha,\beta)} = A \cup (S \cap A \beta S).$$

Proof. Let A be a nonempty subset of a Γ-semigroup S. Let $Q = A \cup (S \cap A \beta S)$. Clearly, $A \subseteq Q$. We have $S \cap Q \beta S = S[A \cup (S \cap A \beta S)] \cap (A \cup (S \cap A \beta S)] \beta S \subseteq Q$. Therefore, Q is an (α,β)-quasi-ideal of S.

Let C be any (α,β)-quasi-ideal of S containing A. Since C is an (α,β)-quasi-ideal of S and $A \subseteq C$, $S \cap A \beta S \subseteq C$. Therefore, $Q = A \cup (S \cap A \beta S) \subseteq C$.

Hence, Q is the smallest (α,β)-quasi-ideal of S containing A. Therefore, $(A)_{q(\alpha,\beta)} = Q = A \cup (S \cap A \beta S)$, as required.

Theorem 9. Let S be a Γ-semigroup. Let L and R be a left α-ideal and right β-ideal of S, respectively. If $L \cap R \neq \emptyset$, then $L \cap R$ is an (α,β)-quasi-ideal of S.

Proof. Let L and R be a left α-ideal and a right β-ideal of a Γ-semigroup S, respectively. Then, $S \cap (L \cap R) \beta S \subseteq S \cap (L \cap R) \subseteq S \cap L \cap R$. Hence, $L \cap R$ is an (α,β)-quasi-ideal of S.

Corollary 1. Let S be a Γ-semigroup. Let L and R be a left α-ideal and right α-ideal of S, respectively. Then, $L \cap R$ is an α-quasi-ideal of S.

Proof. We have $R \alpha L \subseteq L \cap R$; this implies $L \cap R \neq \emptyset$. By Theorem 9, $L \cap R$ is an α-quasi-ideal of S.

Theorem 10. Every (α,β)-quasi-ideal Q of a Γ-semigroup S is the intersection of a left α-ideal and a right β-ideal of S.

Proof. Let Q be an (α,β)-quasi-ideal of a Γ-semigroup S. Let $L = Q \cup S \cap Q$ and $R = Q \cup Q \beta S$. Then, $S \cap L = S \cap (Q \cup S \cap Q) = S \cap Q \cup S \cap S \cap Q \subseteq S \cap L$, and also, $R \beta S \subseteq R$. We have that $L \cap R = (Q \cup S \cap Q) \cap (Q \cup Q \beta S) = Q \cup (S \cap Q \cap Q \beta S) = Q$. Therefore, $Q = L \cap R$.

Definition 5. A Γ-semigroup S is called (α,β)-quasi-simple if S does not contain proper (α,β)-quasi-ideals.

A Γ-semigroup S is called α-quasi-simple if S is (α,α)-quasi-simple.

Theorem 11. Let S be a Γ-semigroup. Then, S is α-quasi-simple if and only if $S \cap \cap_{i \in I} Q_i$ is an (α,β)-quasi-ideal of S.

Proof. Assume that S is α-quasi-simple. Let $s \in S$; we claim that $S \cap \cap_{i \in I} Q_i$ is an (α,β)-quasi-ideal of S. We have $s \alpha s \subseteq S \cap \cap_{i \in I} Q_i$, this implies $S \cap \cap_{i \in I} Q_i \alpha S$. Moreover, $S \cap (S \cap \cap_{i \in I} Q_i) \subseteq S \cap S \cap \cap_{i \in I} Q_i$, which implies $S \cap \cap_{i \in I} Q_i \alpha S \subseteq S \cap (S \cap \cap_{i \in I} Q_i) \alpha S$.

Conversely, assume that $S \cap \cap_{i \in I} Q_i = S \cap \cap_{i \in I} Q_i$ is an (α,β)-quasi-ideal of S. Since S is α-quasi-simple, we have $S = S \cap \cap_{i \in I} Q_i$.

Theorem 12. Let S be a Γ-semigroup and Q an (α,β)-quasi-ideal of S. If Q is (α,β)-quasi-simple, then Q is a minimal (α,β)-quasi-ideal of S.

Proof. Assume that S is a Γ-semigroup and Q an (α,β)-quasi-ideal of S. Let C be an (α,β)-quasi-ideal of S such that $C \subseteq Q$. Then, $Q \subseteq C \subseteq S \cap \cap_{i \in I} Q_i \subseteq S \cap \cap_{i \in I} Q_i \subseteq C$. Therefore, C is an (α,β)-quasi-ideal of Q. Since Q is (α,β)-quasi-simple, $C = Q$. Hence, Q is a minimal (α,β)-quasi-ideal of S.

2.3. (α,β)-Bi-Ideals. We will define (α,β)-bi-ideals of Γ-semigroups as follows.

Definition 7. Let S be a Γ-semigroup and $\alpha, \beta \in \Gamma$. A nonempty subset B of S is called

(1) An (α,β)-bi-ideal of S if $B \alpha \beta B \subseteq B$.

(2) An α-bi-ideal of S if it is an (α,α)-bi-ideal of S.

Theorem 13. Every (α,β)-quasi-ideal of a Γ-semigroup S is a (β,α)-bi-ideal of S.

Proof. Let Q be an (α,β)-quasi-ideal of S. Then,

$$Q \beta S \alpha Q \subseteq Q \beta S \cap S \alpha Q \subseteq Q \cap S \alpha Q = Q.$$ Therefore, $Q = L \cap R$.

Hence, Q is a (α,β)-bi-ideal of S.

Theorem 14. Let S be a Γ-semigroup and B_i an (α,β)-bi-ideal of S for all $i \in I$. If $\cap_{i \in I} B_i \neq \emptyset$, then $\cap_{i \in I} B_i$ is an (α,β)-bi-ideal of S.

Proof. Let S be a Γ-semigroup and B_i an (α,β)-bi-ideal of S for all $i \in I$. Then, $(\cap_{i \in I} B_i) \alpha S \beta (\cap_{i \in I} B_i) \subseteq B_i \alpha S \beta B_i \subseteq B_i$ for all $i \in I$, so $(\cap_{i \in I} B_i) \alpha S \beta (\cap_{i \in I} B_i) \subseteq \cap_{i \in I} B_i$. Therefore, $\cap_{i \in I} B_i$ is an (α,β)-bi-ideal of S.

Let A be a nonempty subset of a Γ-semigroup S, and let $(A)_{b(\alpha,\beta)}$ denote the (α,β)-bi-ideal of S generated by A.

Theorem 15. Let A be a nonempty subset of a Γ-semigroup S and $\alpha, \beta \in \Gamma$. Then,

$$(18)$$

$$(A)_{b(\alpha,\beta)} = A \cup (A S \beta A).$$

Journal of Mathematics
Proof. Let A be a nonempty subset of a Γ-semigroup S. Let $B = A \cup (AaS\beta A)$. Clearly, $A \subseteq B$. We have that $BaS\beta B = [A \cup (AaS\beta A)]aS\beta [A \cup (AaS\beta A)] \subseteq B$. Therefore, B is an (α, β)-bi-ideal of S.

Let C be any (α, β)-bi-ideal of S containing A. Since C is an (α, β)-bi-ideal of S and $A \subseteq C$, $AaS\beta A \subseteq C$. Therefore, $B = A \cup (AaS\beta A) \subseteq C$.

Hence, B is the smallest (α, β)-bi-ideal of S containing A. Therefore, $(A)_b(\alpha, \beta) = B = A \cup (AaS\beta A)$.

Theorem 16. Let S be a Γ-semigroup, A a nonempty subset of S, and B an (α, β)-bi-ideal of S. The following statements are true:

1. BaA is an (α, β)-bi-ideal of S.
2. $A\beta B$ is an (α, β)-bi-ideal of S.

Proof. We have that

$$\text{(BaA)}aS\beta (BaA) = Ba (AaS)\beta (BaA) \subseteq (BaS\beta B)aA \subseteq BaA.$$ (19)

Then, BaA is an (α, β)-bi-ideal of S. Similarly, $A\beta B$ is an (α, β)-bi-ideal of S.

Theorem 17. Let S be a Γ-semigroup. Assume that $B_1, B_2,$ and B_3 are (α, β)-bi-ideals of S. Then, $B_1aB_2\beta B_3$ is an (α, β)-bi-ideal of S.

Proof. Since $B_1, B_2,$ and B_3 are (α, β)-bi-ideals of S, we have

$$\text{(B_1aB_2\beta B_3)A}a(B_1aB_2\beta B_3) \subseteq B_1aB_2\beta B_3,$$

$$\text{(B_1aB_2\beta B_3)B}a(B_1aB_2\beta B_3) \subseteq B_1aB_2\beta B_3.$$ (20)

Then,

$$B_1aB_2\beta B_3 \subseteq (B_1aS\beta B_1)AaB_2\beta B_3,$$

$$\subseteq B_1aB_2\beta B_3.$$ (21)

Therefore, $B_1aB_2\beta B_3$ is an (α, β)-bi-ideal of S.

Definition 8. A Γ-semigroup S is called an (α, β)-bi-simple if S does not contain proper (α, β)-bi-ideals.

Theorem 18. Let S be a Γ-semigroup. Then, S is an (α, β)-bi-simple if and only if $\text{saS\beta s} = S$ for all $s \in S$.

Proof. Assume that S is (α, β)-bi-simple. Let $s \in S$. We claim that saS\beta s is an (α, β)-bi-ideal of S. We have $saS\beta s \subseteq saS\beta s$; this implies that $saS\beta s \neq \emptyset$. Moreover, $\text{(saS\beta s)aS\beta (saS\beta s) \subseteq (saS\beta saS\beta s) \subseteq saS\beta s}$. Therefore, saS\beta s is an (α, β)-bi-ideal of S. Since S is (α, β)-bi-simple, $S = \text{saS\beta s}$.

Conversely, assume that $\text{saS\beta s} = S$ for all $s \in S$. Let B be an (α, β)-bi-ideal of S and $b \in B$. By assumption, $S = baS\beta b$. Since B is an (α, β)-bi-ideal of S, $baS\beta b \subseteq baS\beta b \subseteq B$. Therefore, $B = S$. Therefore, S is (α, β)-bi-simple.

Definition 9. An (α, β)-bi-ideal B of a Γ-semigroup S is called minimal if for all (α, β)-bi-ideal C of S, if $C \subseteq B$, then $C = B$.

Theorem 19. Let S be a Γ-semigroup and B an (α, β)-bi-ideal of S. If B is (α, β)-bi-simple, then B is a minimal (α, β)-bi-ideal of S.

Proof. Assume that S is a Γ-semigroup and B an (α, β)-bi-ideal of S. Let $B = (\alpha, \beta)$-bi-simple. Let C be an (α, β)-bi-ideal of S such that $C \subseteq B$. Then, $CaB\beta C \subseteq CaS\beta C \subseteq C$. Therefore, C is an (α, β)-bi-ideal of B. Since B is (α, β)-bi-simple, $C = B$. Thus, B is a minimal (α, β)-bi-ideal of S.

3. New Types of Fuzzy Ideals

3.1. Fuzzy (α, β)-Ideals

We will define fuzzy (α, β)-ideals of Γ-semigroups as follows.

Definition 10. Let $\alpha, \beta \in \Gamma$ and f be a fuzzy subset of a Γ-semigroup S. Then, f is called

1. A fuzzy left α-ideal of S if $f(xay) \geq f(y)$ for all $x, y \in S$.
2. A fuzzy right β-ideal of S if $f(x\beta y) \geq f(x)$ for all $x, y \in S$.
3. A fuzzy (α, β)-ideal of S if it is both a fuzzy left α-ideal and a fuzzy right β-ideal of S.

The following theorems show the relationship between (α, β)-ideals and fuzzy (α, β)-ideals.

Theorem 20. Let A be a nonempty subset of a Γ-semigroup S. Then, the following statements are true:

1. A is a left α-ideal of S if and only if $C_A(xay) = C_A(xay) \geq C_A(y)$ for all $x, y \in S$.
2. A is a right β-ideal of S if and only if $C_A(x \beta y) = C_A(x \beta y) \geq C_A(y)$ for all $x, y \in S$.
3. A is an (α, β)-ideal of S if and only if C_A is a fuzzy (α, β)-ideal of S.

Proof.

(1) Suppose that A is a left α-ideal of S. Let $x, y \in S$.

If $y \notin A$, then $xay \notin A$. Thus, $C_A(xay) = 1$ so that $C_A(xay) \geq C_A(y)$. If $y \notin A$, then $C_A(y) = 0 \leq C_A(xay)$. Therefore, C_A is a fuzzy left α-ideal of S.

Conversely, assume that C_A is a fuzzy left α-ideal of S. Let $x \in S$ and $y \in A$. Then, $C_A(y) = 1$. Since $C_A(xay) \geq C_A(y)$, we have $xay \in A$. Hence, A is a left α-ideal of S.

(2) is similar to (1).

(3) follows by (1) and (2).

Theorem 21. Let f be a fuzzy subset of a Γ-semigroup S. Then, the following properties hold:

1. f is a fuzzy left α-ideal of S if and only if $S \subseteq f \subseteq \bar{f}$.
2. f is a fuzzy right β-ideal of S if and only if $f \subseteq f \beta \subseteq \bar{f}$.

(3) \(f\) is a fuzzy \((\alpha, \beta)\)-ideal of \(S\) if and only if \(S \circ_a f \subseteq f\) and \(f \circ_b S \subseteq f\).

Proof. Assume that \(f\) is a fuzzy left \(\alpha\)-ideal of a \(\Gamma\)-semigroup \(S\). Let \(x \in S\) and \(\alpha \in \Gamma\). If \(x \not\in \text{SaS}\), then \((S \circ_a f)(x) = 0\). So, \((S \circ_a f)(x) \leq f(x)\). Hence, \(f \circ \text{SaS} \subseteq f\). Conversely, assume that \((S \circ_a f) \subseteq f\). Let \(x, y, z \in S\) be such that \(x = yz\). Then,

\[
(\circ_a S)(x) = \sup_{y \in \text{yaz}} \{\min[S(y), f(z)]\}
\]

\[
\leq \min[S(y), f(z)] = f(z)
\]

\[
\leq f(yaz) = f(x).
\]

We conclude that \((S \circ_a f) \subseteq f\).

Theorem 22. Let \(f\) and \(g\) be fuzzy left \(\alpha\)-ideals of a \(\Gamma\)-semigroup \(S\). Then,

(1) \(f \cap g\) is a fuzzy left \(\alpha\)-ideal of \(S\).

(2) \(f \cup g\) is a fuzzy right \(\beta\)-ideal of \(S\).

Proof. It is similar to Theorem 22.

Theorem 24. Let \(f\) and \(g\) be fuzzy \((\alpha, \beta)\)-ideals of a \(\Gamma\)-semigroup \(S\). Then,

(1) \(f \cap g\) is a fuzzy \((\alpha, \beta)\)-ideal of \(S\).

(2) \(f \cup g\) is a fuzzy \((\alpha, \beta)\)-ideal of \(S\).

Proof. It follows by Theorems 22 and 23.

Theorem 25. Let \(f\) be a nonzero fuzzy subset of a \(\Gamma\)-semigroup \(S\) and \(f_t = \{x \in S \mid f(x) \geq t\}\). The following statements are true:

(1) \(f\) is a fuzzy left \(\alpha\)-ideal of \(S\) if and only if for all \(t \in (0, 1]\), \(f_t\) is a left \(\alpha\)-ideal of \(S\).

(2) \(f\) is a fuzzy right \(\beta\)-ideal of \(S\) if and only if for all \(t \in (0, 1]\), \(f_t\) is a right \(\beta\)-ideal of \(S\).

(3) \(f\) is a fuzzy \((\alpha, \beta)\)-ideal of \(S\) if and only if for all \(t \in (0, 1]\), \(f_t\) is a \((\alpha, \beta)\)-ideal of \(S\).

Proof. (1) Suppose that \(f\) is a fuzzy left \(\alpha\)-ideal of \(S\). Then, \(f(xy) \geq f(x)\) for all \(x, y \in S\). Let \(t \in (0, 1]\) be such that \(f_t \neq \emptyset\). Let \(x \in f_t\) and \(s \in S\). Since \((x \geq t) \subseteq f(sx) \geq f(x) \geq t\). Thus, \(sx \in f_t\). Hence, \(f_t\) is a left \(\alpha\)-ideal of \(S\). Conversely, assume that \(f_t\) is a left \(\alpha\)-ideal of \(S\) if \(t \in (0, 1]\) and \(f_t \neq \emptyset\). Let \(x, y \in S\) and \(t = f(y)\). Since \(f(y) \geq t\), we have \(y \in f_t\), so that \(f_t \neq \emptyset\). Thus, \(f_t\) is a left \(\alpha\)-ideal of \(S\). Since \(y \in f_t\) and \(x \in S\), we have \(xy \in f_{t}\). Then, \(f(xy) \geq t = f(y)\). Hence, \(f\) is a fuzzy left \(\alpha\)-ideal of \(S\).

(2) is similar to (1).

(3) follows by (1) and (2).

3.2. Fuzzy \((\alpha, \beta)\)-Quasi-Ideals. We will define fuzzy \((\alpha, \beta)\)-quasi-ideals of \(\Gamma\)-semigroups as follows.

Definition 11. Let \(\alpha, \beta \in \Gamma\) and \(f\) be a fuzzy subset of a \(\Gamma\)-semigroup \(S\). Then, \(f\) is called a fuzzy \((\alpha, \beta)\)-quasi-ideal of \(S\) if \(S \circ_a f \subseteq f\) and \((S \circ_a f) \subseteq f\).

A fuzzy subset \(f\) of \(S\) is called a fuzzy \(\alpha\)-quasi-ideal of \(S\) if \(f\) is a fuzzy \((\alpha, \beta)\)-quasi-ideal of \(S\).

Theorem 26. Let \(S\) be a \(\Gamma\)-semigroup. Let \(f\) and \(g\) be a fuzzy left \(\alpha\)-ideal and a fuzzy right \(\beta\)-ideal of \(S\), respectively. Then, \(f \cap g\) is a fuzzy \(\alpha\)-quasi-ideal of \(S\).

Proof. Let \(f\) and \(g\) be a fuzzy left \(\alpha\)-ideal and a fuzzy right \(\beta\)-ideal of \(S\), respectively. We have \(g \circ_a f \subseteq f \cap g\); this implies \(f \cap g \neq \emptyset\). Then, \(S \circ_a (f \cap g) \subseteq S \circ_a f \subseteq f \cap g\). Hence, \(f \cap g\) is a fuzzy \(\alpha\)-quasi-ideal of \(S\).
Theorem 27. Every fuzzy (α, β)-quasi-ideal of a Γ-semigroup S is the intersection of a fuzzy left α-ideal and a fuzzy right β-ideal of S.

Proof. Let f be a fuzzy (α, β)-quasi-ideal of a Γ-semigroup S. Let $g = f \cup (S \circ g)$ and $h = f \cup (f \circ g)$. Then, $S \circ g = S \circ (f \cup (S \circ g)) = (S \circ g) \cup (S \circ (S \circ g)) \subseteq S \circ f \subseteq g$, and also, $h \subseteq g$. Thus, g and h are a fuzzy left α-ideal and a fuzzy right β-ideal of S, respectively. We claim that $f = g \cap h$. That is, $(f \cup (S \circ g)) \cap (f \cup (f \circ g)) \subseteq f \cap g \cap h$, and conversely, $g \cap h = (f \cup (S \circ g)) \cap (f \cup (f \circ g)) \subseteq f \cup ((S \circ f) \cap (f \circ g)) \subseteq f$. Therefore, $f = g \cap h$.

Theorem 28. Let Q be a nonempty subset of a Γ-semigroup S. Then, Q is an (α, β)-quasi-ideal of S if and only if C_Q is a fuzzy (α, β)-quasi-ideal of S.

Proof. Assume that Q is an (α, β)-quasi-ideal of a Γ-semigroup S. If $y \notin (C_Q \cap (Q \circ S))$, then $(S \circ C_Q) \cap (C_Q \circ S)) = 0 \subseteq C_Q(y)$. Let $y \in (C_Q \cap (Q \circ S))$. Then, $y \in Q$. So $C_Q(y) = 1$. Hence, $(S \circ C_Q) \cap (C_Q \circ S)) = C_Q$. Therefore, Q is a fuzzy (α, β)-quasi-ideal of S.

Conversely, assume that C_Q is a fuzzy (α, β)-quasi-ideal of S. Then, $(S \circ C_Q) \cap (C_Q \circ S)) \subseteq C_Q$. Let $x \in (S \circ C_Q) \cap (Q \circ S)$. Then, $[(S \circ C_Q) \cap (C_Q \circ S))](x) = 1$, and this implies that $C_Q(x) = 1$. So, $(S \circ Q) \cap (Q \circ S)) \subseteq Q$. Consequently, Q is an (α, β)-quasi-ideal of S.

3.3. Fuzzy (α, β)-Bi-Ideals

Definition 12. Let $\alpha, \beta \in \Gamma$ and f be a fuzzy subset of a Γ-semigroup S. Then, f is called a fuzzy (α, β)-bi-ideal of S if $f \circ \alpha \ast \beta \subseteq f$.

Theorem 29. Let S be a Γ-semigroup, g a fuzzy subset of S, and f a fuzzy (α, β)-bi-ideal of S. Then, the following statements are true:

1. $f \circ \alpha \ast \beta$ is a fuzzy (α, β)-bi-ideal of S.
2. $g \circ \beta \ast \alpha$ is a fuzzy (α, β)-bi-ideal of S.

Proof

1. Let x_i be a fuzzy point of S. Then,

\[
(f \circ \alpha \ast \beta) \circ \alpha \ast \beta = f \circ \alpha \ast \beta \circ \alpha \ast \beta \subseteq f \circ \alpha \ast \beta \circ \alpha \ast \beta
\]

Hence, $f \circ \alpha \ast \beta$ is a fuzzy (α, β)-bi-ideal of S.

(2) is similar to (1).

Theorem 30. Let S be a Γ-semigroup. If f_1, f_2, and f_3 are fuzzy (α, β)-bi-ideals of S, then $f_1 \circ \alpha \ast \beta \ast \alpha \ast \beta f_2 \ast \beta f_3$ is a fuzzy bi-(α, β)-ideal of S.

Proof. Let x_i be a fuzzy point of S. Then,

\[
(f_1 \circ \alpha \ast \beta) \circ \alpha \ast \beta \ast \alpha \ast \beta (f_2 \circ \beta \ast \alpha)(f_3 \circ \beta \ast \alpha)
\]

\[
\subseteq f_1 \circ \alpha \ast \beta \ast \alpha \ast \beta f_2 \ast \beta f_3\]

(27)

Hence, $f_1 \circ \alpha \ast \beta \ast \alpha \ast \beta f_2 \ast \beta f_3$ is a fuzzy (α, β)-bi-ideal of S.

Theorem 31. Let S be a Γ-semigroup and B a nonempty subset of S. Then, B is an (α, β)-bi-ideal of S if and only if C_B is a fuzzy (α, β)-bi-ideal of S.

Proof. Assume that B is an (α, β)-bi-ideal of S. Then, $B \subseteq (S \circ B) \subseteq B \circ B$. Thus, $S \subseteq B \subseteq B \circ B$. Therefore, C_B is a fuzzy (α, β)-bi-ideal of S.

Conversely, assume that C_B is a fuzzy (α, β)-bi-ideal of S. Then, $((S \circ C_B) \cap (C_B \circ S)) = C_B$. Let $z \in B \circ B$. Then, $((S \circ z) \cap (z \circ S)) = C_B$. Thus, $B \subseteq B \circ B$. Hence, B is an (α, β)-bi-ideal of S.

Theorem 32. Let f and g be two fuzzy (α, β)-bi-ideals of a Γ-semigroup S. If $f \cap g \neq \emptyset$, then $f \cap g$ is a fuzzy (α, β)-bi-ideal of S.

Proof. Let f and g be fuzzy (α, β)-bi-ideals of a Γ-semigroup S. Then, $(f \cap g) \circ \alpha \ast \beta \ast \alpha \ast \beta (f \cap g) \cap \geq f \circ \alpha \ast \beta g \cap f \cap \alpha \ast \beta g \subseteq f \cap g$. Hence, $f \cap g$ is a fuzzy (α, β)-bi-ideal of S.

4. New Types of Almost Ideals

4.1. Almost (α, β)-Ideals

Definition 13. Let S be a Γ-semigroup and L, R, and I be nonempty subsets of S. Let $\alpha, \beta \in \Gamma$. Then,

1. L is called an almost left α-ideal of S if $S \alpha L \cap L \neq \emptyset$.
2. R is called an almost right β-ideal of S if $S \beta R \cap R \neq \emptyset$.
3. I is called an almost (α, β)-ideal of S if it is both an almost left α-ideal and an almost right β-ideal of S.

Theorem 33. Let S be a Γ-semigroup. If L is an almost left α-ideal of S, then L is an almost left α-ideal of S.

Proof. Let L be an almost left α-ideal of S. Then, $S \alpha L \subseteq L$ so that $S \alpha \subseteq L \neq \emptyset$. Thus, L is an almost left α-ideal of S.

Theorem 34. Let S be a Γ-semigroup. If R is a right β-ideal of S, then R is an almost right β-ideal of S.

Proof. It is similar to Theorem 33.

Theorem 35. Let S be a Γ-semigroup. If I is an almost (α, β)-ideal of S, then I is an almost (α, β)-ideal of S.

Proof. It follows by Theorems 33 and 34.
Theorem 36. Let S be a Γ-semigroup. If L is an almost left α-ideal of S and $L \subseteq H \subseteq S$, then H is an almost left α-ideal of S.

Proof. Let L be an almost left α-ideal of S and $L \subseteq H \subseteq S$. Since $SaL \cap L \neq \emptyset$ and $SaL \cap \subseteq SaH \cap H$, we have $SaH \cap H \neq \emptyset$. Therefore, H is an almost left α-ideal of S.

Theorem 37. Let S be a Γ-semigroup. If R is an almost right β-ideal of S and $R \subseteq H \subseteq S$, then H is an almost right β-ideal of S.

Proof. It is similar to Theorem 36.

Theorem 38. Let S be a Γ-semigroup. If I is an almost (α, β)-ideal of S and $I \subseteq H \subseteq S$, then H is an almost (α, β)-ideal of S.

Proof. It follows by Theorems 36 and 37.

Corollary 2. Let S be a Γ-semigroup. If L_1 and L_2 are almost left α-ideals of S, then $L_1 \cup L_2$ is an almost left α-ideal of S.

Corollary 3. Let S be a Γ-semigroup. If R_1 and R_2 are almost right β-ideals of S, then $R_1 \cup R_2$ is an almost right β-ideal of S.

Corollary 4. Let S be a Γ-semigroup. If I_1 and I_2 are almost (α, β)-ideals of S, then $I_1 \cup I_2$ is an almost (α, β)-ideal of S.

Example 2. Consider a Γ-semigroup $S = \{a, b, c, d, e\}$ with $\Gamma = \{\alpha, \beta\}$ and

<table>
<thead>
<tr>
<th>α</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>a, b, c, d, e</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>α</td>
<td>b, c, d, e, a</td>
<td>b, c, d, e, a</td>
</tr>
<tr>
<td>α</td>
<td>c, d, e, a, b</td>
<td>c, d, e, a, b</td>
</tr>
<tr>
<td>α</td>
<td>d, e, a, b, c</td>
<td>d, e, a, b, c</td>
</tr>
<tr>
<td>α</td>
<td>e, a, b, c, d</td>
<td>e, a, b, c, d</td>
</tr>
<tr>
<td>β</td>
<td>a, b, c, d, e</td>
<td>a, b, c, d, e</td>
</tr>
<tr>
<td>β</td>
<td>b, c, d, e, a</td>
<td>b, c, d, e, a</td>
</tr>
<tr>
<td>β</td>
<td>c, d, e, a, b</td>
<td>c, d, e, a, b</td>
</tr>
<tr>
<td>β</td>
<td>d, e, a, b, c</td>
<td>d, e, a, b, c</td>
</tr>
<tr>
<td>β</td>
<td>e, a, b, c, d</td>
<td>e, a, b, c, d</td>
</tr>
</tbody>
</table>

We have $\{a, b, d\}$ and $\{a, c, d\}$ are almost left α-ideals of S. However, $\{a, b, d\} \cap \{a, c, d\} = \{a, d\}$ is not an almost left α-ideal of S.

Remark 3. The intersection of two almost left α-ideals of a Γ-semigroup S need not be an almost left α-ideal of S.

Remark 4. The intersection of two almost right β-ideals of a Γ-semigroup S need not be an almost right β-ideal of S.

Remark 5. The intersection of two almost (α, β)-ideals of a Γ-semigroup S need not be an almost (α, β)-ideal of S.

Definition 14. A Γ-semigroup S is called

1. Almost left α-simple if S does not contain proper almost left α-ideals.
2. Almost right β-simple if S does not contain proper almost right β-ideals.
3. Almost (α, β)-simple if S does not contain proper almost (α, β)-ideals.

Theorem 39. Let S be a Γ-semigroup. Then, S is almost left α-simple if and only if for each $a \in S$ there exists $s \in S$ such that $sa(S\setminus \{a\}) = \{a\}$.

Proof. Assume that S is almost left α-simple. Then, S has no proper almost left α-ideals. Let $a \in S$. Then, $S\setminus \{a\}$ is not an almost left α-ideal of S. Thus, there exists $s \in S$ such that $sa(S\setminus \{a\}) \cap (S\setminus \{a\}) = \emptyset$; this implies that $sa(S\setminus \{a\}) = \{a\}$.

Conversely, for each $a \in S$, there exists $s \in S$ such that $sa(S\setminus \{a\}) = \{a\}$. Assume that L is a proper almost left α-ideal of S, and let $a \in S\setminus L$. Since $L \subseteq S\setminus \{a\}$, we have $S\setminus \{a\}$ is an almost left α-ideal of S by Theorem 36. Thus, $sa(S\setminus \{a\}) \cap (S\setminus \{a\}) \neq \emptyset$; we get a contradiction. Hence, S has no proper left almost α-ideals. Therefore, S is almost left α-simple.

Theorem 40. Let S be a Γ-semigroup. Then, S is almost right β-simple if and only if for each $a \in S$, there exists $s \in S$ such that $(S\setminus \{a\})s = \{a\}$.

Proof. It is similar to Theorem 39.

4.2. Almost (α, β)-Quasi-Ideals

Definition 15. A nonempty subset Q of a Γ-semigroup S is called an almost (α, β)-quasi-ideal of S if $saQ \cap Q \beta s \subseteq Q$ for all $s \in S$.

Proposition 1. Every (α, β)-quasi-ideal of a Γ-semigroup S is either $saQ \cap Q \beta s = \emptyset$ for some $s \in S$ or an almost (α, β)-quasi-ideal of S.

Proof. Assume that Q is an (α, β)-quasi-ideal of a Γ-semigroup S. Assume that $saQ \cap Q \beta s \neq \emptyset$ for all $s \in S$. Let $s \in S$. Then, $saQ \cap Q \beta s \subseteq SaQ \cap Q \beta s \subseteq Q$. That is, $(saQ \cap Q \beta s) \cap Q \neq \emptyset$. Hence, Q is an almost (α, β)-quasi-ideal of S.

Theorem 41. Every almost (α, β)-quasi-ideal of a Γ-semigroup S is an almost left α-ideal of S.

Proof. Assume that Q is an almost (α, β)-quasi-ideal of a Γ-semigroup S. Let $s \in S$. Then, $\emptyset \neq (saQ \cap Q \beta s) \cap Q \subseteq saQ \cap Q$. Hence, Q is an almost left α-ideal of S.

Similarly, every almost (α, β)-quasi-ideal of a Γ-semigroup S is an almost right β-ideal of S, but the converse is not true.

Theorem 42. If Q is an almost (α, β)-quasi-ideal of a Γ-semigroup S and $Q \subseteq H \subseteq S$, then H is an almost (α, β)-quasi-ideal of S.
Proof. Assume that \(Q \) is an almost \((\alpha,\beta)\)-quasi-ideal of a \(\Gamma \)-semigroup \(S \) and \(Q \subseteq S \). Let \(s \in S \). Then, \(\emptyset \neq (saQ \cap Qb) \cap Qc \subseteq (saH \cap Hb) \cap H \). Therefore, \(H \) is an almost \((\alpha,\beta)\)-quasi-ideal of \(S \).

Corollary 5. The union of two almost \((\alpha,\beta)\)-quasi-ideals of a \(\Gamma \)-semigroup \(S \) is an almost \((\alpha,\beta)\)-quasi-ideal of \(S \).

Example 3. Consider a \(\Gamma \)-semigroup \(S = \{a, b, c, d, e\} \) with \(\Gamma = \{\alpha, \beta\} \) and

\[
\begin{array}{cccccc}
 a & b & c & d & e \\
 a & b & c & d & e \\
 b & b & c & d & e \\
 c & c & d & e & a \\
 d & d & e & a & b \\
 e & e & a & b & c \\
\end{array}
\]

We have \(\{b, c, e\} \) and \(\{b, d, e\} \) are almost \((\alpha,\beta)\)-quasi-ideals of \(S \).

Remark 6. The intersection of two almost \((\alpha,\beta)\)-quasi-ideals of a \(\Gamma \)-semigroup \(S \) need not be an almost \((\alpha,\beta)\)-quasi-ideal of \(S \).

Definition 16. A \(\Gamma \)-semigroup \(S \) is called almost \((\alpha,\beta)\)-quasi-simple if \(S \) does not contain proper almost \((\alpha,\beta)\)-quasi-ideals.

Theorem 43. A \(\Gamma \)-semigroup \(S \) is almost \((\alpha,\beta)\)-quasi-simple if and only if for any \(a \in S \), there exists \(\varepsilon_a \) such that \(s_{\varepsilon_a}(S\{a\}) \cap (S\{a\} \beta s_{\varepsilon_a} \subseteq \{a\} \).

Proof. Assume that a \(\Gamma \)-semigroup \(S \) is almost \((\alpha,\beta)\)-quasi-simple and \(S\{a\} \) is not an almost \((\alpha,\beta)\)-quasi-ideal of \(S \). Then, there exists \(\varepsilon_a \) such that \(s_{\varepsilon_a}(S\{a\}) \cap (S\{a\} \beta s_{\varepsilon_a} \supseteq \{a\} \). Conversely, assume that, for any \(a \in S \), there exists \(s_a \) such that \(s_{s_a}(S\{a\}) \cap (S\{a\} \beta s_{s_a} \subseteq \{a\} \). Then, \(s_{s_a}(S\{a\}) \cap (S\{a\} \beta s_{s_a} \supseteq \{a\} \). Hence, \(S\{a\} \) is not an almost \((\alpha,\beta)\)-quasi-ideal of \(S \). Let \(A \) be a proper almost \((\alpha,\beta)\)-quasi-ideal of \(S \). Then, \(\exists c \in \{a\} \subseteq \{a\} \). This is a contradiction. Therefore, \(S \) has no proper almost \((\alpha,\beta)\)-quasi-ideals. Hence, \(S \) is almost \((\alpha,\beta)\)-quasi-simple.

4.3. Almost \((\alpha,\beta)\)-Bi-Ideals

Definition 17. A nonempty subset \(B \) of a \(\Gamma \)-semigroup \(S \) is called an almost \((\alpha,\beta)\)-bi-ideal of \(S \) if \(BasB \cap B \neq \emptyset \) for all \(s \in S \).

Theorem 44. If \(B \) is an almost \((\alpha,\beta)\)-bi-ideal of a \(\Gamma \)-semigroup \(S \) and \(B \subseteq C \subseteq S \), then \(C \) is an almost \((\alpha,\beta)\)-bi-ideal of \(S \).

Proof. Let \(B \) be an almost \((\alpha,\beta)\)-bi-ideal of a \(\Gamma \)-semigroup \(S \) and \(B \subseteq C \subseteq S \). Since \(BasB \cap B \neq \emptyset \) for all \(s \in S \) and \(BasB \cap B \subseteq BasB \cap C \subseteq C \), we have \(BasB \cap C \neq \emptyset \). Therefore, \(C \) is an almost \((\alpha,\beta)\)-bi-ideal of \(S \).

Corollary 6. The union of two almost \((\alpha,\beta)\)-bi-ideals of a \(\Gamma \)-semigroup \(S \) is also an almost \((\alpha,\beta)\)-bi-ideal of \(S \).

Example 4. Consider a \(\Gamma \)-semigroup \(S = \{a, b, c, d, e\} \) with \(\Gamma = \{\alpha, \beta\} \) and

\[
\begin{array}{cccccc}
 a & a & b & c & d & e \\
 a & a & b & c & d & e \\
 b & b & c & d & e & a \\
 c & c & d & e & a & b \\
 d & d & e & a & b & c \\
 e & e & a & b & c & d \\
\end{array}
\]

We have \(\{b, c, e\} \) and \(\{b, d, e\} \) are almost \((\alpha,\beta)\)-bi-ideals of \(S \).

Remark 7. The union of two almost \((\alpha,\beta)\)-bi-ideals of a \(\Gamma \)-semigroup \(S \) need not be an almost \((\alpha,\beta)\)-bi-ideal of \(S \).

Theorem 45. A \(\Gamma \)-semigroup \(S \) has a proper almost \((\alpha,\beta)\)-bi-ideal if and only if there exists an element \(a \in S \) such that \((S\{a\}) \alpha S \beta (S\{a\}) \cap (S\{a\}) \neq \emptyset \) for all \(a \in S \).

Proof. Assume that a \(\Gamma \)-semigroup \(S \) contains a proper almost \((\alpha,\beta)\)-bi-ideal \(B \) and \(a \notin B \). Then, \(B \subseteq S\{a\} \subseteq S \). By Theorem 44, \(S\{a\} \) is a proper almost \((\alpha,\beta)\)-bi-ideal of \(S \), that is, \((S\{a\}) \alpha S \beta (S\{a\}) \cap (S\{a\}) \neq \emptyset \) for all \(s \in S \). Conversely, let \(a \in S \) such that \((S\{a\}) \alpha S \beta (S\{a\}) \cap (S\{a\}) \neq \emptyset \) for all \(s \in S \). Since \(S\{a\} \subseteq S \), we have \(S\{a\} \) is a proper almost \((\alpha,\beta)\)-bi-ideal of \(S \).

Theorem 46. A \(\Gamma \)-semigroup \(S \) is almost \((\alpha,\beta)\)-bi-simple if and only if for all \(a \in S \), there exists \(s \in S \) such that \(S\{\sim \} \alpha S \beta (S\{\sim \}) \subseteq \{a\} \).

Proof. Assume that a \(\Gamma \)-semigroup \(S \) is almost \((\alpha,\beta)\)-bi-simple. Then, \(S \) has no proper almost \((\alpha,\beta)\)-bi-ideals, and let \(a \in S \). Then, \(S\{\sim \} \) is not an almost \((\alpha,\beta)\)-bi-ideal of \(S \). Thus, there exists \(s \in S \) such that \((S\{\sim \}) \alpha S \beta (S\{\sim \}) \cap (S\{\sim \}) \neq \emptyset \). This implies that \((S\{\sim \}) \alpha S \beta (S\{\sim \}) = \{a\} \).

Conversely, suppose that \(S \) has a proper almost \((\alpha,\beta)\)-bi-ideal \(B \), that is, \(B \subseteq S \). Since \(B \subseteq S\{\sim \} \subseteq S \), we have \(S\{\sim \} \) is an almost \((\alpha,\beta)\)-bi-ideal of \(S \) by Theorem 44; this is a contradiction. Hence, \(S \) has no proper almost \((\alpha,\beta)\)-bi-ideals. Therefore, \(S \) is almost \((\alpha,\beta)\)-bi-simple.
5. New Types of Fuzzy Almost Ideals

5.1. Fuzzy Almost \((a, \beta)\)-Ideals

Definition 19. Let \(a, \beta \in \Gamma\). Let \(f\) be a fuzzy subset of a \(\Gamma\)-semigroup \(S\). Then, \(f\) is called

1. A fuzzy almost left \(a\)-ideal of \(S\) if \(\left(x_{i} \ast f\right) \cap f \neq 0\) for all fuzzy point \(x_{i}\) of \(S\).
2. A fuzzy almost right \(\beta\)-ideal of \(S\) if \(\left(f \ast x_{i}\right) \cap f \neq 0\) for all fuzzy point \(x_{i}\) of \(S\).
3. A fuzzy almost \((a, \beta)\)-ideal of \(S\) if it is both a fuzzy almost left \(a\)-ideal and a fuzzy almost right \(\beta\)-ideal of \(S\).

Theorem 47. Let \(f\) be a fuzzy almost left \(a\)-ideal of a \(\Gamma\)-semigroup \(S\) and \(g\) be a fuzzy subset of \(S\) such that \(f \subseteq g\). Then, \(g\) is a fuzzy almost left \(a\)-ideal of \(S\).

Proof. Assume that \(f\) is a fuzzy almost left \(a\)-ideal of a \(\Gamma\)-semigroup \(S\) and \(g\) is a fuzzy subset of \(S\) such that \(f \subseteq g\). Then, for each fuzzy point \(x\), \((x \ast f) \cap f \neq 0\). We have \((x \ast g) \cap f \subseteq (x \ast g) \cap (x \ast g)\); this implies \((x \ast g) \cap g \neq 0\). Therefore, \(g\) is a fuzzy almost left \(a\)-ideal of \(S\).

Theorem 48. Let \(f\) be a fuzzy almost right \(\beta\)-ideal of a \(\Gamma\)-semigroup \(S\) and \(g\) be a fuzzy subset of \(S\) such that \(f \subseteq g\). Then, \(g\) is a fuzzy almost right \(\beta\)-ideal of \(S\).

Proof. It is similar to Theorem 47.

Theorem 49. Let \(f\) be a fuzzy almost \((a, \beta)\)-ideal of a \(\Gamma\)-semigroup \(S\) and \(g\) be a fuzzy subset of \(S\) such that \(f \subseteq g\). Then, \(g\) is a fuzzy almost \((a, \beta)\)-ideal of \(S\).

Proof. It follows by Theorem 47 and Theorem 48.

Corollary 7. The union of two fuzzy almost left \(a\)-ideals of a \(\Gamma\)-semigroup \(S\) is a fuzzy almost left \(a\)-ideal of \(S\).

Corollary 8. The union of two fuzzy almost right \(\beta\)-ideals of a \(\Gamma\)-semigroup \(S\) is a fuzzy almost right \(\beta\)-ideal of \(S\).

Corollary 9. The union of two fuzzy almost \((a, \beta)\)-ideals of a \(\Gamma\)-semigroup \(S\) is a fuzzy almost \((a, \beta)\)-ideal of \(S\).

Theorem 50. Let \(A\) be a nonempty subset of a \(\Gamma\)-semigroup \(S\). Then,

1. \(A\) is an almost left \(a\)-ideal of \(S\) if and only if \(C_{A}\) is a fuzzy almost left \(a\)-ideal of \(S\).
2. \(A\) is an almost right \(\beta\)-ideal of \(S\) if and only if \(C_{A}\) is a fuzzy almost right \(\beta\)-ideal of \(S\).
3. \(A\) is an almost \((a, \beta)\)-ideal of \(S\) if and only if \(C_{A}\) is a fuzzy almost \((a, \beta)\)-ideal of \(S\).

Proof.

1. Assume that \(A\) is an almost left \(a\)-ideal of a \(\Gamma\)-semigroup \(S\). Then, \(x A \cap A \neq \emptyset\) for all \(x \in S\). Thus, there exists \(y \in xA\), and \(y \in A\). So, \((x_i \ast C_{A})\) \((y) = 1\) and \(C_{A}\) \((y) = 1\). Hence, \((x_i \ast C_{A}) \cap C_{A} \neq 0\). Therefore, \(C_{A}\) is a fuzzy almost left \(a\)-ideal of \(S\).

Conversely, assume that \(C_{A}\) is a fuzzy almost left \(a\)-ideal of \(S\). Let \(x \in S\). Then, \((x \ast C_{A}) \cap C_{A} \neq 0\). Then, there exists \(e \in S\) such that \((x_i \ast C_{A}) \cap C_{A}\) \((a) \neq 0\). Hence, \(a \in xA\). Consequently, \(A\) is an almost left \(a\)-ideal of \(S\).

The proofs of (2) and (3) are similar to the proof of (1).

Theorem 51. Let \(f\) be a fuzzy subset of a \(\alpha\)-semigroup \(S\). Then,

1. \(f\) is a fuzzy almost left \(\alpha\)-ideal of \(S\) if and only if \(\text{supp}(f)\) is an almost left \(\alpha\)-ideal of \(S\).
2. \(f\) is a fuzzy almost right \(\beta\)-ideal of \(S\) if and only if \(\text{supp}(f)\) is an almost right \(\beta\)-ideal of \(S\).
3. \(f\) is a fuzzy almost \((a, \beta)\)-ideal of \(S\) if and only if \(\text{supp}(f)\) is an almost \((a, \beta)\)-ideal of \(S\).

Proof.

1. Assume that \(f\) is a fuzzy almost left \(\alpha\)-ideal of a \(\Gamma\)-semigroup \(S\). Let \(x \in S\). Then, \((x_i \ast f) \cap f \neq 0\). Hence, there exists \(e \in S\) such that \((x_i \ast f) \cap f \neq 0\). So, there exists \(b \in S\) such that \(a = xab\), \((f(a) \neq 0, \(f(b) \neq 0\)). That is, \(a, b \in \text{supp}(f)\). Thus, \((x_i \ast C_{\text{supp}(f)})\) \((a) \neq 0\) and \(C_{\text{supp}(f)}\) \((a) \neq 0\). Therefore, \((C_{\ast C_{\text{supp}(f)})} \cap C_{\text{supp}(f)}\) \((a) \neq 0\). Hence, \(C_{\text{supp}(f)}\) is a fuzzy almost left \(\alpha\)-ideal of \(S\). By Theorem 50, \(\text{supp}(f)\) is an almost left \(\alpha\)-ideal of \(S\).

Conversely, assume that \(\text{supp}(f)\) is an almost left \(\alpha\)-ideal of \(S\). By Theorem 50, \(C_{\text{supp}(f)}\) is a fuzzy almost left \(\alpha\)-ideal of \(S\). Then, \((x_i \ast C_{\text{supp}(f)}) \cap C_{\text{supp}(f)} \neq 0\) for all \(x \in S\). Then, there exists \(e \in S\) such that \((x_i \ast C_{\text{supp}(f)}) \cap C_{\text{supp}(f)}\) \((a) \neq 0\). Hence, \((x_i \ast C_{\text{supp}(f)})\) \((a) \neq 0\) and \(C_{\text{supp}(f)}\) \((a) \neq 0\). Then, there exists \(y \in S\) such that \(a = xay\), \((f(a) \neq 0, \(f(y) \neq 0\)). This means \((x_i \ast f) \cap f \neq 0\). Therefore, \(f\) is a fuzzy almost left \(\alpha\)-ideal of \(S\).

The proofs of (2) and (3) are similar to the proof of (1).

Definition 20. A fuzzy almost left \(\alpha\)-ideal \(f\) of a \(\Gamma\)-semigroup \(S\) is minimal if for all fuzzy almost left \(\alpha\)-ideal \(g\) of \(S\) such that \(g \subseteq f\), we obtain \(\text{supp}(g) = \text{supp}(f)\).

Theorem 52. Let \(A\) be a nonempty subset of a \(\Gamma\)-semigroup \(S\). Then,

1. \(A\) is a minimal almost left \(\alpha\)-ideal of \(S\) if and only if \(C_{A}\) is a minimal fuzzy almost left \(\alpha\)-ideal of \(S\).
2. \(A\) is a minimal almost right \(\beta\)-ideal of \(S\) if and only if \(C_{A}\) is a minimal fuzzy almost right \(\beta\)-ideal of \(S\).
3. \(A\) is a minimal almost \((a, \beta)\)-ideal of \(S\) if and only if \(C_{A}\) is a minimal fuzzy almost \((a, \beta)\)-ideal of \(S\).

Proof.

1. Assume that \(A\) is a minimal almost left \(\alpha\)-ideal of a \(\Gamma\)-semigroup \(S\). By Theorem 50 (1), \(C_{A}\) is a fuzzy almost left \(\alpha\)-ideal of \(S\). Let \(g\) be a fuzzy almost left \(\alpha\)-ideal of \(S\) such that...
$g \subseteq C_A$. By Theorem 51 (1), $\text{supp}(g)$ is an almost left α-ideal of S. Then, $\text{supp}(g) \subseteq \text{supp}(C_A) = A$. Since A is minimal, $\text{supp}(g) = A = \text{supp}(C_A)$. Therefore, C_A is minimal.

Conversely, assume that C_A is a minimal fuzzy almost left α-ideal of S. By Theorem 50 (1), A is an almost left α-ideal of S. Let L be an almost left α-ideal of S such that $L \subseteq A$. By Theorem 50 (1), C_L is a fuzzy almost left α-ideal of S such that $C_L \subseteq C_A$. Hence, $L = \text{supp}(C_L) = \text{supp}(C_A) = A$. Therefore, A is minimal.

(2) and (3) can be proved similarly.

Corollary 10. Let A be a sub-Γ-semigroup of a Γ-semigroup S. Then,

1. A is almost left α-simple if and only if for each fuzzy almost left α-ideal f of S, $\text{supp}(f) = A$.
2. A is almost right β-simple if and only if for each fuzzy almost right β-ideal f of S, $\text{supp}(f) = A$.
3. A is almost (α, β)-simple if and only if for each fuzzy almost (α, β)-ideal of S, $\text{supp}(f) = A$.

5.2. Fuzzy Almost (α, β)-Quasi-Ideals

Definition 21. Let $a, \beta \in \Gamma$ and f be a fuzzy subset of a Γ-semigroup S. Then, f is called a fuzzy almost (α, β)-quasi-ideal of S if $[(f \circ \alpha x) \cap (x \circ \beta f)] \cap f \neq \emptyset$ for all fuzzy points x of S.

Theorem 53. Let f be a fuzzy almost (α, β)-quasi-ideal of a Γ-semigroup S and g a fuzzy subset of S such that $f \subseteq g$. Then, g is a fuzzy almost (α, β)-quasi-ideal of S.

Proof. Assume that f is a fuzzy almost (α, β)-quasi-ideal of a Γ-semigroup S and g is a fuzzy subset of S such that $f \subseteq g$. Then, for all fuzzy point x of S, $[(f \circ \alpha x) \cap (x \circ \beta f)] \cap f \neq \emptyset$. We have that $[(f \circ \alpha x) \cap (x \circ \beta f)] \cap f \subseteq [(g \circ \alpha x) \cap (x \circ \beta g)] \cap g$. This implies that $[(g \circ \alpha x) \cap (x \circ \beta g)] \cap g \neq \emptyset$. Therefore, g is a fuzzy almost (α, β)-quasi-ideal of S.

Corollary 11. Let f and g be fuzzy almost (α, β)-quasi-ideals of a Γ-semigroup S. Then, $f \cup g$ is a fuzzy almost (α, β)-quasi-ideal of S.

Proof. Since $f \subseteq f \cup g$, by Theorem 53, $f \cup g$ is a fuzzy almost (α, β)-quasi-ideal of S.

Example 5. Consider the Γ-semigroup Z_5, where $\Gamma = \{0, 1, 2, 3, 4\}$ and $\pi_1 \pi_2 = \pi + \gamma + \bar{\beta}$, where $\pi, \bar{\beta} \in Z_5$ and $\gamma \in \Gamma$. Let $f: Z_5 \rightarrow [0, 1]$ defined by

- $f(0) = 0$
- $f(1) = 0.6$
- $f(2) = 0$
- $f(3) = 0.4$
- $f(4) = 0.4$

and $g: Z_5 \rightarrow [0, 1]$ defined by

- $g(0) = 0$
- $g(1) = 0.3$
- $g(2) = 0.6$
- $g(3) = 0$
- $g(4) = 0.8$

We have f and g are fuzzy almost $(\bar{0}, \bar{0})$-quasi-ideals of Z_5, but $f \cap g$ is not a fuzzy almost $(\bar{0}, \bar{0})$-quasi-ideal of Z_5.

Theorem 54. Let Q be a nonempty subset of a Γ-semigroup S. Then, Q is an almost (α, β)-quasi-ideal of S if and only if C_Q is a fuzzy almost (α, β)-quasi-ideal of S.

Proof. Assume that Q is an almost (α, β)-quasi-ideal of a Γ-semigroup S, and let x_i be a fuzzy point of S. Then, $[\{Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap Q \neq \emptyset$. Thus, there exists $y \in (Q \cap x_i \cap x_i \cap \beta Q)$ and $y \in Q$. So, $[\{C_Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap y \neq 0$ and $C_Q(y) = 1$. Hence, $[\{C_Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap C_Q \neq 0$. Therefore, C_Q is a fuzzy almost (α, β)-quasi-ideal of S.

Conversely, assume that C_Q is a fuzzy almost (α, β)-quasi-ideal of S. Let $x \in S$. Then, $[\{C_Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap C_Q \neq 0$. Then, there exists $x \in S$ such that $[\{C_Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap (x_i \cap x_i \cap \beta Q) \neq 0$. Hence, $x \in [\{Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap Q$. So, $[\{Q \cap (x_i \cap x_i \cap \beta Q)\}] \cap Q \neq \emptyset$. Consequently, Q is an almost (α, β)-quasi-ideal of S.

Theorem 55. Let f be a fuzzy subset of a Γ-semigroup S. Then, f is a fuzzy almost (α, β)-quasi-ideal of S if and only if $\text{supp}(f)$ is an almost (α, β)-quasi-ideal of S.

Proof. Assume that f is a fuzzy almost (α, β)-quasi-ideal of a Γ-semigroup S. Let $x \in S$ and $t \in (0, 1)$. Then, $[(f \circ \alpha s_t) \cap (s_t \circ \beta f)] \cap f \neq \emptyset$. Hence, there exists $x \in S$ such that $[\{f \circ \alpha s_t \cap (s_t \circ \beta f) \cap f\}] \cap x \neq \emptyset$.

So, there exist $y_1, y_2 \in S$ such that $x = y_1 \alpha s_t \beta y_2 \beta f \cap f \neq \emptyset$, $f(y_1) \neq 0$, and $f(y_2) \neq 0$. That is, $x, y_1, y_2 \in \text{supp}(f)$. Thus, $[\{C_{\text{supp}(f) \circ \alpha s_t} \cap (s_t \circ \beta C_{\text{supp}(f)})\}] \cap x \neq 0$ and $C_{\text{supp}(f)}(x) \neq 0$. Therefore, $[\{C_{\text{supp}(f) \circ \alpha s_t} \cap (s_t \circ \beta C_{\text{supp}(f)})\}] \cap C_{\text{supp}(f)} \neq 0$. Hence, $C_{\text{supp}(f)}$ is a fuzzy almost (α, β)-quasi-ideal of S. By Theorem 54, supp (f) is an almost (α, β)-quasi-ideal of S.

Conversely, assume that $\text{supp}(f)$ is an almost (α, β)-quasi-ideal of S. By Theorem 54, $C_{\text{supp}(f)}$ is a fuzzy almost (α, β)-quasi-ideal of S. Then, for each fuzzy point s_t of S, we have $[\{C_{\text{supp}(f) \circ \alpha s_t} \cap (s_t \circ \beta C_{\text{supp}(f)})\}] \cap C_{\text{supp}(f)} \neq 0$. Then, there exists $x \in S$ such that $[\{C_{\text{supp}(f) \circ \alpha s_t} \cap (s_t \circ \beta C_{\text{supp}(f)})\}] \cap C_{\text{supp}(f)} \neq 0$.

Hence, $[\{C_{\text{supp}(f) \circ \alpha s_t} \cap (s_t \circ \beta C_{\text{supp}(f)})\}] \cap C_{\text{supp}(f)} \neq 0$ and $C_{\text{supp}(f)}(x) \neq 0$. Then, there exist $y_1, y_2 \in S$ such that $x = y_1 \alpha s_t \beta y_2 \beta f \cap f \neq \emptyset$, $f(y_1) \neq 0$, and $f(y_2) \neq 0$. This means that $[(f \circ \alpha s_t) \cap (s_t \circ \beta f)] \cap f \neq \emptyset$. Therefore, f is a fuzzy almost (α, β)-quasi-ideal of S.

Next, we define minimal fuzzy almost (α, β)-quasi-ideals in Γ-semigroups and give some relationship between

\[\text{Journal of Mathematics 11}\]
minimal almost \((a, \beta)\)-quasi-ideals and minimal fuzzy almost \((a, \beta)\)-quasi-ideals of \(\Gamma\)-semigroups.

Definition 22. A fuzzy almost \((a, \beta)\)-quasi-ideal \(f\) of a \(\Gamma\)-semigroup is called minimal if for each fuzzy almost \((a, \beta)\)-quasi-ideal \(g\) of \(S\) such that \(g \leq f\), we have
\[
supp(g) = supp(f).
\]

Theorem 56. Let \(Q\) be a nonempty subset of a \(\Gamma\)-semigroup \(S\). Then, \(Q\) is a minimal almost \((a, \beta)\)-quasi-ideal of \(S\) if and only if \(C_Q\) is a minimal fuzzy almost \((a, \beta)\)-quasi-ideal of \(S\).

Proof. Assume that \(Q\) is a minimal almost \((a, \beta)\)-quasi-ideal of a \(\Gamma\)-semigroup \(S\). By Theorem 54, \(C_Q\) is a fuzzy almost \((a, \beta)\)-quasi-ideal of \(S\). Let \(g\) be a fuzzy almost \((a, \beta)\)-quasi-ideal of \(S\) such that \(g \leq C_Q\). Then, \(supp(g) \subseteq supp(C_Q) = Q\). Since \(g \subseteq C_{supp(g)}\) and by Theorem 54, we have \(C_{supp(g)}\) is a fuzzy almost \((a, \beta)\)-quasi-ideal of \(S\). By Theorem 54, \(supp(g)\) is an almost \((a, \beta)\)-quasi-ideal of \(S\). Since \(Q\) is minimal, \(supp(g) = Q = supp(C_Q)\). Therefore, \(C_Q\) is minimal.

Conversely, assume that \(C_Q\) is a minimal fuzzy almost \((a, \beta)\)-quasi-ideal of \(S\). Let \(Q'\) be an almost \((a, \beta)\)-quasi-ideal of \(S\) such that \(Q' \subseteq C_Q\). By Theorem 54, \(C_{Q'}\) is a fuzzy almost \((a, \beta)\)-quasi-ideal of \(S\) such that \(C_{Q'} \subseteq C_Q\). Since \(C_Q\) is minimal, \(Q' = supp(C_{Q'}) = supp(C_Q) = Q\). Therefore, \(Q\) is minimal.

Corollary 12. Let \(Q\) be a sub \(\Gamma\)-semigroup of a \(\Gamma\)-semigroup \(S\). Then, \(Q\) is almost \((a, \beta)\)-quasi-simple if and only if for all fuzzy almost \((a, \beta)\)-quasi-ideal \(f\) of \(S\), \(supp(f) = Q\).

5.3. Fuzzy Almost \((a, \beta)\)-Bi-Ideals

Definition 23. Let \(a, \beta \in \Gamma\) and \(f\) be a fuzzy subset of a \(\Gamma\)-semigroup \(S\). Then, \(f\) is called a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\) if \((f \circ_a x \circ_\beta f) \cap f \neq \emptyset\) for all fuzzy point \(x\) of \(S\).

Theorem 57. Let \(f\) be a fuzzy almost \((a, \beta)\)-bi-ideal of a \(\Gamma\)-semigroup \(S\) and \(g\) be a fuzzy subset of \(S\) such that \(f \leq g\). Then, \(g\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\).

Proof. Assume that \(f\) is a fuzzy almost \((a, \beta)\)-bi-ideal of a \(\Gamma\)-semigroup \(S\) and \(g\) is a fuzzy subset of \(S\) such that \(f \leq g\). Then, for each fuzzy point \(x\), \((f \circ_a x \circ_\beta f) \cap f \neq \emptyset\). We have \((f \circ_a x \circ_\beta f) \cap f \subseteq (g \circ_a x \circ_\beta g) \cap g\). This implies \((g \circ_a x \circ_\beta g) \cap g \neq \emptyset\). Therefore, \(g\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\).

Corollary 13. Let \(f\) and \(g\) be fuzzy almost \((a, \beta)\)-bi-ideals of a \(\Gamma\)-semigroup \(S\). Then, \(f \cup g\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\).

Example 6. Consider the \(\Gamma\)-semigroup \(\mathbb{Z}_5\) where \(\Gamma = [0, 1]\) and \(\pi \beta = \pi + \gamma + \beta\), where \(\pi, \beta \in \mathbb{Z}_5\) and \(\gamma \in \Gamma\). Let \(f: \mathbb{Z}_5 \to [0, 1]\) defined by

\[
f(0) = 0, \quad f(1) = 0.7, \quad f(2) = 0, \quad f(3) = 0.6, \quad f(4) = 0.4,
\]

and \(g: \mathbb{Z}_5 \to [0, 1]\) defined by

\[
g(0) = 0, \quad g(1) = 0.1, \quad g(2) = 0.6, \quad g(3) = 0, \quad g(4) = 0.8.
\]

We have \(f\) and \(g\) are fuzzy almost \((\overline{0}, \overline{1})\)-bi-ideals of \(\mathbb{Z}_5\).

Remark 8. The intersection of two fuzzy almost \((a, \beta)\)-bi-ideals of a \(\Gamma\)-semigroup \(S\) need not be a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\).

Theorem 58. Let \(B\) be a nonempty subset of a \(\Gamma\)-semigroup \(S\). Then, \(B\) is an almost \((a, \beta)\)-bi-ideal of \(S\) if and only if \(C_B\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\).

Proof. Assume that \(B\) is an almost \((a, \beta)\)-bi-ideal of a \(\Gamma\)-semigroup \(S\). Then, \(Bx \beta B \cap B \neq \emptyset\) for all \(x \in S\). Thus, there exists \(y \in Bx \beta B\) and \(y \in B\). So, \((C_B \circ_a x \circ_\beta C_B)(y) = 1\) and \(C_B(y) = 1\). Hence, \((C_B \circ_a x \circ_\beta C_B) \cap C_B \neq 0\). Therefore, \(C_B\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\).

Conversely, assume that \(C_B\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\). Let \(s \in S\). Then, \((C_B \circ_a x \circ_\beta C_B) \cap C_B \neq 0\). Thus, there exists \(x \in S\) such that \((C_B \circ_a x \circ_\beta C_B)(x) = 0\). Hence, \(x \in Bx \beta B \cap B \neq \emptyset\). Consequently, \(B\) is an almost \((a, \beta)\)-bi-ideal of \(S\).

Theorem 59. Let \(f\) be a fuzzy subset of a \(\Gamma\)-semigroup \(S\). Then, \(f\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\) if and only if \(supp(f)\) is an almost \((a, \beta)\)-bi-ideal of \(S\).

Proof. Assume that \(f\) is a fuzzy almost \((a, \beta)\)-bi-ideal of a \(\Gamma\)-semigroup \(S\). Let \(s \in S\). Then, \((f \circ a s \circ_\beta f) \cap f \neq \emptyset\). Hence, there exists \(x \in S\) such that \((f \circ a s \circ_\beta f)(x) \neq 0\). So, there exist \(y_1, y_2 \in S\) such that \(x = y_1 \circ a s \circ_\beta y_2, f(x) \neq 0, f(y_1) \neq 0, f(y_2) \neq 0\). That is, \(x, y_1, y_2 \in supp(f)\).

Thus, \((C_{supp(f)} \circ_a s \circ_\beta C_{supp(f)})(x) \neq 0\) and \(C_{supp(f)}(x) \neq 0\). Therefore, \((C_{supp(f)} \circ_a s \circ_\beta C_{supp(f)}) \cap C_{supp(f)} \neq 0\). Hence, \(C_{supp(f)}\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\). By Theorem 58, \(supp(f)\) is an almost \((a, \beta)\)-bi-ideal of \(S\).

Conversely, assume that \(supp(f)\) is an almost \((a, \beta)\)-bi-ideal of \(S\). By Theorem 58, \(C_{supp(f)}\) is a fuzzy almost \((a, \beta)\)-bi-ideal of \(S\). Then, \((C_{supp(f)} \circ_a s \circ_\beta C_{supp(f)}) \cap C_{supp(f)} \neq 0\) for all \(s \in S\). Then, there exists \(x \in S\) such that
\[\{C_{\text{supp}}(f)^* \circ \alpha \circ \beta \circ C_{\text{supp}}(f)\} \cap C_{\text{supp}}(f)(x) \neq 0.\] Hence, \(C_{\text{supp}}(f)^* \circ \alpha \circ \beta \circ C_{\text{supp}}(f)(x) \neq 0\) and \(C_{\text{supp}}(f)(x) \neq 0\). Then, there exist \(y_1, y_2 \in S\) such that \(x = y_1 \alpha \beta y_2, f(x) \neq 0, f(y_1) \neq 0\), and \(f(y_2) \neq 0\). This means \((f \circ \alpha \circ \beta)(f) \cap f \neq 0\). Therefore, \(f\) is a fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\).

We define minimal fuzzy almost \((\alpha, \beta)\)-bi-ideals in \(\Gamma\)-semigroups and give some relationship between minimal almost \((\alpha, \beta)\)-bi-ideals and minimal fuzzy almost \((\alpha, \beta)\)-bi-ideals of \(\Gamma\)-semigroups.

Definition 24. A fuzzy almost \((\alpha, \beta)\)-bi-ideal \(f\) of a \(\Gamma\)-semigroup \(S\) is called minimal if for all fuzzy almost \((\alpha, \beta)\)-bi-ideal \(g\) of \(S\) such that \(g \leq f\), we have \(\text{supp}(g) = \text{supp}(f)\).

Theorem 60. Let \(B\) be a nonempty subset of a \(\Gamma\)-semigroup \(S\). Then, \(B\) is a minimal almost \((\alpha, \beta)\)-bi-ideal of \(S\) if and only if \(C_B\) is a minimal fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\).

Proof. Assume that \(B\) is a minimal almost \((\alpha, \beta)\)-bi-ideal of a \(\Gamma\)-semigroup \(S\). By Theorem 58, \(C_B\) is a fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). Let \(g\) be a fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\) such that \(g \leq C_B\). Then, \(\text{supp}(g) \subseteq \text{supp}(C_B) = B\). Since \(g \leq C_{\text{supp}}(g)\) and by Theorem 57, we have \(C_{\text{supp}}(g)\) is a fuzzy almost bi-ideal of \(S\). By Theorem 58, \(\text{supp}(g)\) is an almost \((\alpha, \beta)\)-bi-ideal of \(S\). Since \(B\) is minimal, \(\text{supp}(g) = B = \text{supp}(C_B)\). Therefore, \(C_B\) is minimal.

Conversely, assume that \(C_B\) is a minimal fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). Let \(B'\) be an almost \((\alpha, \beta)\)-bi-ideal of \(S\) such that \(B' \subseteq \text{supp}(C_B)\). Then, \(C_{B'}\) is a fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\) such that \(C_{B'} \subseteq C_B\). Hence, \(B' = \text{supp}(C_{B'}) = \text{supp}(C_B) = B\). Therefore, \(B\) is minimal.

Corollary 14. Let \(B\) be a sub-\(\Gamma\)-semigroup of a \(\Gamma\)-semigroup \(S\). Then, \(B\) is almost \((\alpha, \beta)\)-bi-simple if and only if for all fuzzy almost \((\alpha, \beta)\)-bi-ideal \(f\) of \(S\), \(\text{supp}(f) = B\).

Next, we give the relationship between \(a\)-prime almost \((\alpha, \beta)\)-bi-ideals and \(a\)-prime fuzzy almost \((\alpha, \beta)\)-bi-ideals.

Definition 25. Let \(S\) be a \(\Gamma\)-semigroup and \(y \in \Gamma\).

1. An almost \((\alpha, \beta)\)-bi-ideal \(A\) of \(S\) is called \(y\)-prime if for all \(x, y \in S\), \(xyy \in A\) implies \(x \in A\) or \(y \in A\).

2. A fuzzy almost \((\alpha, \beta)\)-bi-ideal \(f\) of \(S\) is called \(y\)-prime if for all \(x, y \in S\), \(f(xyy) \leq \max\{f(x), f(y)\}\).

Theorem 61. Let \(A\) be a nonempty subset of a \(\Gamma\)-semigroup \(S\). Then, \(A\) is a \(y\)-prime almost \((\alpha, \beta)\)-bi-ideal of \(S\) if and only if \(C_A\) is a \(y\)-prime fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\).

Proof. Assume that \(A\) is a \(y\)-prime almost \((\alpha, \beta)\)-bi-ideal of \(S\). By Theorem 58, \(C_A\) is a fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). Let \(x, y \in S\) be considered two cases:

Case 1: \(xyy \in A\). So, \(x \in A\) or \(y \in A\). Then, \(\max\{C_A(x), C_A(yy)\} = 1 \geq C_A(xyy)\).

Case 2: \(xyy \notin A\). Then, \(C_A(xyy) = 0 \leq \max\{C_A(x), C_A(y)\}\).

Thus, \(C_A\) is a \(y\)-prime fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). Conversely, assume that \(C_A\) is a \(y\)-prime fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). By Theorem 58, \(A\) is an almost \((\alpha, \beta)\)-bi-ideal of \(S\). Let \(x, y \in S\) be such that \(xyy \in A\). Then, \(C_A(xyy) = 1\). By assumption, \(C_A(xyy) \leq \max\{C_A(x), C_A(y)\}\). Therefore, \(\max\{C_A(x), C_A(y)\} = 1\). Hence, \(x \in A\) or \(y \in A\). Thus, \(A\) is a \(y\)-prime almost \((\alpha, \beta)\)-bi-ideal of \(S\).

In this section, we give the relationship between \(y\)-semiprime almost \((\alpha, \beta)\)-bi-ideals and \(y\)-semiprime fuzzy almost \((\alpha, \beta)\)-bi-ideals.

Definition 26. Let \(S\) be a \(\Gamma\)-semigroup and \(\alpha \in \Gamma\).

1. An almost \((\alpha, \beta)\)-bi-ideal \(A\) of \(S\) is called a \(y\)-semiprime if for all \(x \in S\), \(xyx \in A\) implies \(x \in A\).

2. A fuzzy almost \((\alpha, \beta)\)-bi-ideal \(f\) of \(S\) is called a \(y\)-semiprime if for all \(x \in S\), \(f(xyx) \leq f(x)\).

Theorem 62. Let \(A\) be a nonempty subset of \(S\). Then, \(A\) is a \(y\)-semiprime almost \((\alpha, \beta)\)-bi-ideal of \(S\) if and only if \(C_A\) is a \(y\)-semiprime fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\).

Proof. Assume that \(A\) is a \(y\)-semiprime almost \((\alpha, \beta)\)-bi-ideal of \(S\). By Theorem 58, \(C_A\) is a fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). Let \(x \in S\). We consider two cases:

Case 1: \(xyx \in A\). Then, \(x \in A\). So, \(C_A(x) = 1\). Hence, \(C_A(x) \geq C_A(xyx)\).

Case 2: \(xyx \notin A\). Then, \(C_A(xyx) = 0 \leq C_A(x)\).

Thus, \(C_A\) is a \(y\)-semiprime fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\).

Conversely, assume that \(C_A\) is a \(y\)-semiprime fuzzy almost \((\alpha, \beta)\)-bi-ideal of \(S\). By Theorem 58, \(A\) is an almost \((\alpha, \beta)\)-bi-ideal of \(S\). Let \(x \in S\) be such that \(xyx \in A\). Then, \(C_A(xyx) = 1\). By assumption, \(C_A(xyx) \leq C_A(x)\). Since \(C_A(xyx) = 1\), \(C_A(x) = 1\). Hence, \(x \in A\). Thus, \(A\) is a \(y\)-semiprime almost \((\alpha, \beta)\)-bi-ideal of \(S\).

6. Discussion and Conclusion

In this paper, we define new types of ideals and fuzzy ideals by using elements in \(\Gamma\). We show interesting properties of these ideals and fuzzy ideals. Moreover, we show the relationships between these ideals and their fuzzifications.

Data Availability

No data were used to support this research.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Faculty of Science Research Fund, Prince of Songkla University (contract no. 1-2562-02-013).
References