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-e concepts of (commutative, transitive, left exchangeable, belligerent, antisymmetric) interior GE-algebras and bordered
interior GE-algebras are introduced, and their relations and properties are investigated. Many examples are given to support these
concepts. A semigroup is formed using the set of interior GE-algebras. An example is given that the set of interior GE-algebras is
not a GE-algebra. It is clear that if X is a transitive (resp., commutative, belligerent, and left exchangeable) GE-algebra, then the
interior GE-algebra (X, f) is transitive (resp., commutative, belligerent, and left exchangeable), but examples are given to show
that the converse is not true in general. An interior GE-algebra is constructed using a bordered interior GE-algebra with certain
conditions, and an example is given to explain this.

1. Introduction

In 1966, Imai and Iséki introduced BCK-algebras (see [1]) as
the algebraic semantics for a nonclassical logic possessing
only implication. Since then, the generalized concepts of
BCK-algebras have been studied by various scholars. Kim
and Kim introduced the notion of a BE-algebra as a gen-
eralization of a dual BCK-algebra (see [2]). Hilbert algebras
were introduced by Henkin and Skolem in the fifties for
investigations in intuitionistic and other nonclassical logics.
Diego proved that Hilbert algebras form a variety which is
locally finite (see [3]). Rezaei et al. discussed relations be-
tween Hilbert algebras and BE-algebras (see [4]). -e
generalization process in the study of algebraic structures is
also an important area of study. As a generalization of
Hilbert algebras, Bandaru et al. introduced the notion of GE-
algebras and investigated several properties (see [5–8]).

-e notion of the interior operator was introduced by
Vorster [9] in an arbitrary category, and it was used in [10] to
study the notions of connectedness and disconnectedness in

topology. Interior algebras are a certain type of algebraic
structures that encode the idea of the topological interior of a
set and are a generalization of topological spaces defined by
means of topological interior operators. Rachůnek and
Svoboda [11] studied interior operators on bounded
residuated lattices, and Svrcek [12] studied multiplicative
interior operators on GMV-algebras.

In this article, we apply the interior operator theory to GE-
algebras. We introduce the concepts of (commutative, tran-
sitive, left exchangeable, belligerent, antisymmetric) interior
GE-algebras and bordered interior GE-algebras, and investi-
gate their relations and properties. We find and present many
examples to illustrate these concepts. We use the set of interior
GE-algebras to make up a semigroup. We give examples to
show that the set of interior GE-algebras is not a GE-algebra. It
is clear that if X is a transitive (resp., commutative, belligerent
and left exchangeable) GE-algebra, then the interior GE-al-
gebra (X, f) is transitive (resp., commutative, belligerent and
left exchangeable), but we give examples to show that its
inverse is not established.Wemake up the internal GE-algebra
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using a bordered interior GE-algebra with certain conditions
and give examples describing this.

2. Preliminaries

Definition 1 (see [5]). By a GE-algebra, we mean a non-
empty set X with constant 1 and binary operation ∗ sat-
isfying the following axioms:

(GE1) u∗ u � 1,
(GE2) 1∗ u � u,
(GE3) u∗ (v∗w) � u∗ (v∗ (u∗w)),

for all u, v, w ∈ X.

In a GE-algebra X, a binary relation “≤ ” is defined by

(∀x, y ∈ X), (x≤y⟺x∗y � 1). (1)

Definition 2 (see [5, 6, 8]). A GE-algebra X is said to be

(i) transitive if it satisfies

(∀x, y, z ∈ X), (x∗y≤ (z∗x)∗ (z∗y)). (2)

(ii) commutative if it satisfies

(∀x, y ∈ X), ((x∗y)∗y � (y∗ x)∗x). (3)

(iii) left exchangeable if it satisfies

(∀x, y, z ∈ X), (x∗ (y∗ z) � y∗ (x∗ z)). (4)

(iv) belligerent if it satisfies

(∀x, y, z ∈ X), (x∗ (y∗ z) � (x∗y)∗ (x∗ z)). (5)

(v) antisymmetric if the binary relation “≤ ” is
antisymmetric.

Proposition 1 (see [5]). Every GE-algebra X satisfies the
following items:

(∀u ∈ X), (u∗ 1 � 1),

(∀u, v ∈ X), (u∗ (u∗ v) � u∗ v),

(∀u, v ∈ X), (u≤ v∗ u),

(∀u, v, w ∈ X), (u∗ (v∗w)≤ v∗ (u∗w)),

(∀u ∈ X), (1≤ u⟹ u � 1),

(∀u, v ∈ X), (u≤ (v∗ u)∗ u),

(∀u, v ∈ X), (u≤ (u∗ v)∗ v),

(∀u, v, w ∈ X), (u≤ v∗w⟺v≤ u∗w).

(6)

If X is transitive, then

(∀u, v, w ∈ X), (u≤ v⟹ w∗ u≤w∗ v, v∗w≤ u∗w),

(7)

(∀u, v, w ∈ X), (u∗ v≤ (v∗w)∗ (u∗w)). (8)

Lemma 1 (see [5]). In a GE-algebra X, the following facts
are equivalent to each other:

(∀x, y, z ∈ X), (x∗y≤ (z∗ x)∗ (z∗y)),

(∀x, y, z ∈ X), (x∗y≤ (y∗ z)∗ (x∗ z)).
(9)

3. Interior GE-Algebras

Definition 3. By an interior GE-algebra, we mean a pair
(X, f) in which X is a GE-algebra and f: X⟶ X is a
mapping such that

(∀x ∈ X), (x≤f(x)), (10)

(∀x ∈ X), ((f ∘f)(x) � f(x)), (11)

(∀x, y ∈ X), (x≤y⟹ f(x)≤f(y)). (12)

Example 1. Consider a GE-algebra X � 1, a, b, c, d{ } with
the binary operation ∗ which is given in the following table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 c c

b 1 1 1 d d

c 1 a b 1 1

d 1 a a 1 1

. (13)

-en, it is routine to verify that (X, f) is an interior GE-
algebra, where

f: X⟶ X, x⟼
1, if x ∈ 1, c, d{ },

a, if x ∈ a, b{ }.
 (14)

It is clear that ifX is a GE-algebra, then (X, idX) and (X, 1)

are interior GE-algebras, where idX: X⟶ X, x⟼x and
1: X⟶ X, x⟼ 1.

In the following example, we know that there is a
constant map c: X⟶ X, x⟼ c, where c(≠1) ∈ X, on a
GE-algebra X such that (X, c) is not an interior GE-algebra.

Example 2. Consider a GE-algebra (X, ∗ , 1), where X �

1, a, b, c, d{ } and ∗ is a binary operation on X, which is given
in the following table:
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∗ 1 a b c d

1 1 a b c d

a 1 1 b 1 1

b 1 d 1 1 d

c 1 a 1 1 a

d 1 1 b c 1

. (15)

If we take a constant mapping c: X⟶ X, x⟼ c, then
d≰c � c(d). Hence, (X, c) is not an interior GE-algebra.

Let Int(X) be the set of all interior GE-algebras. For
every (X, f), (X, g) ∈ Int(X), we define

(X, f) � (X, g)⟺f � g, i.e, f(x) � g(x), for allx ∈ X,

(X, f) ∘ (X, g) ≔ (X, f ∘g),

(X, f)⊛ (X, g) ≔ (X, f⊛g),

(16)

where f ∘g: X⟶ X, x⟼f(g(x)) and f⊛g: X⟶ X,

x⟼f(x)∗g(x).
Let (X, f), (X, g) ∈ Int(X). -e following example

shows that the composition (X, f) ∘ (X, g) � (X, f ∘g) of
(X, f) and (X, g) may not be an interior GE-algebra, and
(X, f ∘g)≠ (X, g ∘f).

Example 3. Let X � 1, a, b, c, d{ } be a set with the binary
operation ∗ given in the following table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 c c

b 1 1 1 d d

c 1 1 b 1 1

d 1 1 1 1 1

. (17)

-en, X is a GE-algebra. Define two mappings:

f: X⟶ X, x⟼

1, if x � 1,

a, if x ∈ a, b{ },

d, if x ∈ c, d{ },

⎧⎪⎪⎨

⎪⎪⎩

g: X⟶ X, x⟼

1, if x � 1,

a, if x ∈ a, c{ },

b, if x ∈ b, d{ }.

⎧⎪⎪⎨

⎪⎪⎩

(18)

-en, (X, f) and (X, g) are interior GE-algebras, and
the composition g ∘f of f and g is calculated as follows:

g ∘f: X⟶ X, x⟼

1, if x � 1,

a, if x ∈ a, b{ },

b, if x ∈ c, d{ }.

⎧⎪⎪⎨

⎪⎪⎩
(19)

Since c∗ (g ∘f)(c) � c∗g(f(c)) � c∗g(d) � c∗ b �

b≠ 1, the composition (X, g) ∘ (X, f) of (X, f) and (X, g) is

not an interior GE-algebra. Also, (X, f ∘g)≠ (X, g ∘f)

since

(f ∘g)(c) � f(g(c)) � f(a) � a≠ b � g(d) � g(f(c))

� (g ∘f)(c).

(20)

We consider the following condition:

(X, f ∘g) � (X, g ∘f), (21)

for (X, f), (X, g) ∈ Int(X).
Denote by c Int(X) the set of all interior GE-algebras

satisfying condition (21).

Theorem 1. If X is a GE-algebra, then (c Int(X), ∘ ) is a
semigroup.

Proof. It is sufficient to show that c Int(X) is closed under ∘ .
Let (X, f), (X, g) ∈ c Int(X). Using (10), we have
x≤g(x)≤f(g(x)) � (f ∘g)(x) for all x ∈ X, and so, f ∘g
satisfies condition (10). Also,

((f ∘g) ∘ (f ∘g))(x) � ((f ∘f) ∘ (g ∘g))(x)

� (f ∘f)((g ∘g)(x))

� (f ∘f)(g(x)) � f(g(x))

� (f ∘g)(x),

(22)

for all x ∈ X, which shows that f ∘g satisfies condition (11).
For every x, y ∈ X, if x≤y, then g(x)≤g(y), and so,
(f ∘g)(x) � f(g(x)) ≤f(g(y)) � (f ∘g)(y). -is shows
that (X, f) ∘ (X, g) � (X, f ∘g) is an interior GE-algebra,
that is, c Int(X) is closed under ∘ .-erefore, (c Int(X), ∘ ) is
a semigroup. □

-e following example describes -eorem 1.

Example 4

(1) Consider a GE-algebra (X,∗, 1), where X � 1, a, b{ }

and ∗ is a binary operation on X, which is given in
the following Cayley table:

∗ 1 a b

1 1 a b

a 1 1 b

b 1 a 1

. (23)

-e set of all interior GE-algebras is
Int(X) � (X, 1), (X, idX), (X, f1), (X, f2) , where
the self-maps f1 and f2 are given by Table 1.
We can check cInt(X) � Int(X) by the following
Cayley table:
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∘ 1 idX f1 f2

1 1 1 1 1

idX
1 idX f1 f2

f1 1 f1 f1 1

f2 1 f2 1 f2

. (24)

And (c Int(X), ∘ ) is a semigroup.
(2) Consider a GE-algebra X � 1, a, b, c, d{ } with the

binary operation which is given in the following
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 d d

b 1 1 1 c c

c 1 1 b 1 1

d 1 1 b 1 1

. (25)

-e set of all interior GE-algebras Int(X) consists of

Int(X) � (X, 1), X, idX( , X, fi( | , i � 1, 2, . . . , 10 ,

(26)

in which each fi, i � 1, 2, . . . , 10, is given in Table 2.
-e operation “°” in Int(X) is calculated as follows:

∘ 1 idX f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 1 1 1 1 1 1 1 1 1 1 1 1

idX
1 idX f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f1 1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1 f1

f2 1 f2 f1 f2 f2 f4 f1 f6 f6 f6 f2 f2

f3 1 f3 f1 f2 f3 f4 f1 f6 f7 f8 f2 f4

f4 1 f4 f1 f4 f4 f4 f1 f8 f8 f8 f4 f4

f5 1 f5 f1 f1 f1 f1 f5 f11 f11 f11 f5 f5

f6 1 f6 1 f6 f6 f6 1 f6 f6 f6 f6 f6

f7 1 f7 1 f6 f7 f8 1 f6 f7 f8 f6 f8

f8 1 f8 1 f8 f8 f8 1 f8 f8 f8 f8 f8

f9 1 f9 f1 f2 f2 f2 f5 f6 f6 f6 f9 f9

f10 1 f10 f1 f4 f4 f4 f5 f8 f8 f8 f10 f10

. (27)

Table 1: Self-maps fi, i � 1, 2.

x 1 a b

f1(x) 1 1 b

f2(x) 1 a 1

Table 2: Self-maps fi, i � 1, 2, . . . , 10.

x 1 a b c d

f1(x) 1 a a a a

f2(x) 1 a a c c

f3(x) 1 a a c d

f4(x) 1 a a d d

f5(x) 1 a b a a

f6(x) 1 1 1 c c

f7(x) 1 1 1 c d

f8(x) 1 1 1 d d

f9(x) 1 a b c c

f10(x) 1 a b d d
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in which (X, f11), which is not contained in Int(X),
is given as follows:

We know that int(X) is not closed under the op-
eration “°,” and (c Int(X),°) is a semigroup, where
c Int(X) � 1, idX, f1, f2, f3, f4, f5 .

Let (X, f), (X, g) ∈ Int(X). -e following example
shows that (X, f)⊛ (X, g) may not be an interior
GE-algebra, and (X, f⊛g)≠ (X, g⊛f).

Example 5. Consider Int(X) in Example 4 (2). -en, the
operation “⊛ ” in Int(X) is calculated as follows:

⊛ 1 idX f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 1 idX f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

idX
1 1 1 1 1 1 1 1 1 1 1 1

f1 1 f8 1 f8 f8 f8 1 f8 f8 f8 f8 f8

f2 1 1 1 1 1 1 1 1 1 1 1 1

f3 1 1 1 1 1 1 1 1 1 1 1 1

f4 1 1 1 1 1 1 1 1 1 1 1 1

f5 1 f8 1 f8 f8 f8 1 ff8
f8 f8 f8 f8

f6 1 f6id f12 f12 f12 f12 f6id
1 1 1 f6id f6id

f7 1 f7id f12 f12 f12 f12 f7id
1 1 1 f7id f7id

f8 1 f8id f12 f12 f12 f12 f8id
1 1 1 f8id f8id

f9 1 1 1 1 1 1 1 1 1 1 1 1

f10 1 1 1 1 1 1 1 1 1 1 1 1

, (28)

in which f6id, f7id, f8id, f12 ∈ Int(X), and they are calcu-
lated as follows:

We also know that (X, f⊛g)≠ (X, g⊛f); for example,
f1 ⊛f7 � f8 ≠f12 � f7 ⊛f1.

Example 5 generally shows that (Int(X), ⊛ , 1) cannot be
a GE-algebra. However, the following example shows that
(Int(X), ⊛ , 1) becomes a GE-algebra sometimes.

Example 6. Consider Int(X) � (X, 1), (X, idX), (X, f1),

(X, f2)} in Example 4 (1). -en, the operation “⊛ ” in
Int(X) is calculated as follows:

⊛ 1 idX f1 f2

1 1 idX f1 f2

idX
1 1 1 1

f1 1 f2 1 f2

f2 1 f1 f1 1

. (29)

It is routine to verify that (Int(X), ⊛ , 1) is a GE-algebra.

For every (X, f), (X, g) ∈ Int(X), we define

(X, f)≪ (X, g)⟺(∀x ∈ X), (g(x)≤f(x)). (30)

For every (X, f) ∈ Int(X), the sets

I(f) ≔ x ∈ X|f(x) � x ,

ker(f) ≔ x ∈ X|f(x) � 1 
(31)

are called the identity part and the kernel of f, respectively.

Proposition 2. Let X be an antisymmetric and transitive
GE-algebra. For every (X, f), (X, g) ∈ Int(X), we have

(i) (X, f)≪ (X, g)⟺ (X, f) ∘ (X, g) � (X, f)

(ii) (X, f) � (X, g)⟺I(f) � I(g)

Proof

(i) If (X, f)≪ (X, g), then g(x)≤f(x) for all x ∈ X,
and so, (f ∘g)(x)≤ (f ∘f)(x) � f(x) for all x ∈ X.
Also, x≤g(x) � (g ∘g)(x) ≤ (f ∘g)(x) which im-
plies that f(x)≤ (f ∘ (f ∘g))(x) � (f ∘f)(g(x)) �

(f ∘g)(x) for all x ∈ X. Hence, (f ∘g)(x) � f(x)

for all x ∈ X, and therefore, (X, f ∘g) � (X, f).

x 1 a b c d

f11(x) 1 1 1 a a

x 1 a b c d

f6id(x) 1 a b 1 1
f7id(x) 1 a b 1 1
f8id(x) 1 a b 1 1
f12(x) 1 a a 1 1
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Conversely, assume that (X, f ∘g) � (X, f). -en,
g(x)≤ (f ∘g)(x) � f(x) for all x ∈ X. -us, (X,

f)≪ (X, g).
(ii) It is clear that if (X, f) � (X, g), thenI(f) �I(g).

Suppose thatI(f) � I(g). Condition (11) induces
f(x) ∈ I(f) � I(g), and so, g(f(x)) � f(x) for
all x ∈ X. Hence, g ∘f � f. Similarly, f ∘g � g.
Using (10) and (12), we have g(x)≤ (g ∘f)(x) �

f(x) and f(x)≤ (f ∘g)(x) � g(x). -us, f(x) �

g(x) for all x ∈ X, and therefore,
(X, f) � (X, g). □

Lemma 2 (see [5]). Every GE-algebra X satisfies

(i) x≤y∗ x,
(ii) x≤ (x∗y)∗y,
(iii) x≤ (y∗ x)∗ x,
(iv) x≤ (x∗y)∗ x,
(v) x≤y∗ (y∗ x),
(vi) x∗ (y∗ z)≤y∗ (x∗ z),

for all x, y, z ∈ X.

Proposition 3. If (X, f) is an interior GE-algebra, then

(i) f(1) � 1
(ii) (∀x, y ∈ X), (f(x)≤f(y∗x))

(iii) (∀x, y ∈ X), (f(x)≤f((x∗y)∗y))

(iv) (∀x, y ∈ X ), ( f( x )≤f( ( y∗x )∗ x)

(v) (∀x, y ∈ X ), ( f( x )≤f( ( x∗y )∗ x)

(vi) (∀x, y ∈ X ), ( f( x )≤f( y∗ ( y∗x ))

(vii) (∀x, y, z ∈ X ), ( f( x∗ ( y∗ z ) )≤
f( y∗ ( x∗ z ))

Proof. (i) is straightforward, and (ii)–(vii) follow from (12)
and Lemma 2. □

Question 1. If (X, f) is an interior GE-algebra, will the next
items be established?

(∀x, y, z ∈ X), (f(x ∗y)≤f((z∗x)∗ (z∗y))), (32)

(∀x, y ∈ X), (f((x∗y)∗y) � f((y∗ x)∗x)), (33)

(∀x, y, z ∈ X), (f(x∗ (y∗ z)) � f((x∗y)∗ (x∗ z))),

(34)

(∀x, y, z ∈ X ), ( f( x∗ ( y∗ z ) ) � (f( y∗ ( x∗ z ) ) ).

(35)

-e following example shows that the answer to the
above question is negative.

Example 7

(1) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b 1 1

b 1 a 1 1 1

c 1 a b 1 1

d 1 1 1 c 1

. (36)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

b, if x � b,

d, if x ∈ a, c, d{ }.

⎧⎪⎪⎨

⎪⎪⎩
(37)

-en, (X, f) is an interior GE-algebra, but (X, f)

does not satisfy (32) and (33) since

f(b∗ c)∗f((d∗ b)∗ (d∗ c)) � f(1)∗f(1∗ c) � 1∗f(c) � 1∗ d � d≠ 1,

f((b∗ c)∗ c) � f(1∗ c) � f(c) � d≠ 1 � f(1) � f(b∗ b) � f((c∗ b)∗ b).
(38)

(2) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley table:

∗ 1 a b c d

1 1 a b c d

a 1 1 c c 1
b 1 d 1 1 d

c 1 1 1 1 1
d 1 1 c c 1

. (39)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

c, if x ∈ b, c{ },

d, if x ∈ a, d{ }.

⎧⎪⎪⎨

⎪⎪⎩
(40)

-en, (X, f) is an interior GE-algebra, but (X, f)

does not satisfy (34) since

f(b∗ (c∗d)) � f(b∗ 1) � f(1) � 1≠d � f(d)

� f(1∗ d) � f((b∗ c)∗ (b∗ d)).

(41)

6 Journal of Mathematics



(3) Consider a GE-algebra X � 1, a, b, c, d{ } with the bi-
nary operation ∗ given in the following Cayley table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 c c

b 1 1 1 d d

c 1 a a 1 1
d 1 a a 1 1

. (42)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

a, if x ∈ a, b{ },

c, if x � c,

d, if x � d.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

-en, (X, f) is an interior GE-algebra, but (X, f)

does not satisfy (35) since

f(a∗ (b∗ c)) � f(a∗ d) � f(c) � c≠d � f(d)

� f(b∗ c) � f(b∗ (a∗ c)).

(44)

Definition 4. An interior GE-algebra (X, f) is said to be
transitive (resp., commutative, belligerent, and left ex-
changeable) if it satisfies (32) (resp., (33), (34), and (35)).

Example 8

(1) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 c d

b 1 a 1 d d

c 1 1 b 1 1
d 1 1 b 1 1

. (45)

Define f: X⟶ X by

f( x ) �
1, if x ∈ 1, a, b{ },

c, if x � c, d.
 (46)

-en, (X, f) is a transitive interior GE-algebra.
(2) Consider a GE-algebra X � 1, a, b, c, d{ } with the bi-

nary operation ∗ given in the following Cayley table:

∗ 1 a b c d

1 1 a b c d

a 1 1 a b c

b 1 a 1 c 1
c 1 a b 1 1
d 1 1 1 c 1

. (47)

Define f: X⟶ X by

f( x ) �
1, if x ∈ 1, a, b, d{ },

c, if x � c.
 (48)

-en, (X, f) is a commutative interior GE-algebra.
(3) Consider a GE-algebra X � 1, a, b, c, d{ } with the

binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 1 1 c d

c 1 1 1 1 d

d 1 a b c 1

. (49)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

a, if x � a,

b, if x ∈ b, c{ },

d, if x � d.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

-en, (X, f) is a belligerent interior GE-algebra.
(4) Consider a GE-algebra X � 1, a, b, c, d{ } with the

binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 1 d

b 1 c 1 c 1
c 1 b b 1 1
d 1 b b 1 1

. (51)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

b, if x ∈ a, b{ },

d, if x ∈ c, d{ }.

⎧⎪⎪⎨

⎪⎪⎩
(52)

-en, (X, f) is a left exchangeable interior GE-
algebra.

It is clear that if X is a transitive (resp., commutative,
belligerent, and left exchangeable) GE-algebra, then the
interior GE-algebra (X, f) is transitive (resp., commutative,
belligerent, and left exchangeable), but the converse is not
true in general as seen in the following example.

Example 9

(1) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley
table:
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∗ 1 a b c d

1 1 a b c d

a 1 1 1 c d

b 1 1 1 1 d

c 1 a b 1 d

d 1 a a c 1

. (53)

Define f: X⟶ X by

f( x ) �
1, if x ∈ 1, c, d{ },

a, if x ∈ a, b{ }.
 (54)

-en, (X, f) is a transitive interior GE-algebra, but
X is not transitive GE-algebra since

(b∗ c)∗ ((d∗ b)∗ (d∗ c)) � 1∗ (a∗ c) � a∗ c � c≠ 1.

(55)

(2) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 c d

b 1 1 1 c d

c 1 b b 1 d

d 1 b b 1 1

. (56)

Define f: X⟶ X by

f( x ) �

1, if x ∈ 1, c{ },

b, if x ∈ a, b{ },

d, if x � d.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(57)

-en, (X, f) is a commutative interior GE-algebra,
but X is not commutative GE-algebra since

(a∗ b)∗ b � 1∗ b � b≠ a � 1∗ a � (b∗ a)∗ a. (58)

(3) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 c c 1

b 1 a 1 1 d

c 1 a 1 1 a

d 1 1 c c 1

. (59)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

d, if x ∈ a, d{ },

c, if x ∈ b, c{ }.

⎧⎪⎪⎨

⎪⎪⎩
(60)

-en, (X, f) is a belligerent interior GE-algebra, but X

is not belligerent GE-algebra since

b∗ (c∗d) � b∗ a � a≠d � 1∗ d � (b∗ c)∗ (b∗d).

(61)

(4) Consider a GE-algebra X � 1, a, b, c, d{ } with the
binary operation ∗ given in the following Cayley
table:

∗ 1 a b c d

1 1 a b c d

a 1 1 c c 1
b 1 d 1 1 d

c 1 a 1 1 a

d 1 1 c c 1

. (62)

Define f: X⟶ X by

f( x ) �

1, if x � 1,

c, if x ∈ b, c{ },

d, if x ∈ a, d{ }.

⎧⎪⎪⎨

⎪⎪⎩
(63)

-en, (X, f) is a left exchangeable interior GE-al-
gebra, but X is not left exchangeable GE-algebra
since

b∗ (c∗ d) � b∗ a � d≠ a � c∗ d � c∗ (b∗ d). (64)

-e following example shows that any interior GE-al-
gebra (X, f) does not satisfy the following:

(∀x, y ∈ X), (f(x)∗y≤x∗f(y)), (65)

(∀x, y ∈ X), (f(x)∗y≤f(x ∗y)). (66)

Example 10. Consider a GE-algebra X � 1, a, b, c, d{ } with
the binary operation ∗ given in the following Cayley table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c 1
b 1 1 1 c 1
c 1 d b 1 d

d 1 1 b 1 1

. (67)

Define f: X⟶ X by
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f( x ) �

1, if x � 1,

a, if x � a,

c, if x � c,

d, if x ∈ b, d{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(68)

-en, (X, f) is an interior GE-algebra, but X does not
satisfy (65) and (66) since

(f(b)∗ c)∗ (b∗f(c)) � (d∗ c)∗ (b∗ c) � 1∗ c � c≠ 1,

(f(b)∗ c)∗ (f(b∗ c)) � (d∗ c)∗f(c) � 1∗ c � c≠ 1.

(69)

Proposition 4. Every transitive interior GE-algebra (X, f)

satisfies (65) and (66).

Proof. Let x, y ∈ X. Using (7) and (10) induces
f(x)∗y≤f(x)∗f(y) ≤x∗f(y) which proves (65). Since
x∗y≤f(x∗y) and x≤f(x), it follows from (7) that
f(x)∗y≤x∗y≤f(x∗y). Hence, (66) is valid. □

Definition 5 (see [7]). If a GE-algebra X has a special ele-
ment, say 0, which satisfies 0≤ x for all x ∈ X, we call X the
bordered GE-algebra.

Definition 6 (see [7]). By a duplex bordered element in a
bordered GE-algebra X, we mean an element x of X which
satisfies x00 � x.

-e set of all duplex bordered elements of a bordered
GE-algebra X is denoted by 02(X) and is called the duplex
bordered set of X. It is clear that 0, 1 ∈ 02(X).

Definition 7 (see [7]). A bordered GE-algebra X is said to be
duplex if every element of X is a duplex bordered element,
that is, X � 02(X).

Definition 8 By a bordered interior GE-algebra, we mean an
interior GE-algebra (X, f) in which X is a bordered GE-
algebra.

Example 11. Consider a bordered GE-algebra X � 0, 1, a,{

b, c} with the binary operation ∗ given in the following
Cayley table:

∗ 0 1 a b c

0 1 1 1 1 1
1 0 1 a b c

a 1 1 1 b 1
b a 1 a 1 1
c 0 1 0 b 1

. (70)

Define f: X⟶ X by

f( x ) �

0, if x ∈ 0, a{ },

1, if x � 1,

c, if x ∈ b, c{ }.

⎧⎪⎪⎨

⎪⎪⎩
(71)

It is routine to verify that (X, f) is a bordered interior
GE-algebra.

Proposition 5. In a bordered interior GE-algebra (X, f) in
which X is transitive, we have

(∀x ∈ X), f(x)
0 ≤f x

0
  ,

(∀x, y ∈ X), x∗y≤f y
0 ∗x

0
  .

(72)

Proof. If we take y � 0 in (66), then
f(x)0 � f(x)∗ 0≤f(x∗ 0) � f(x0). Taking u � x, v � y,
and w � 0 in (8) induces x∗y≤y0 ∗ x0, and so,
x∗y≤f(x ∗y)≤f(y0 ∗x0) by (10) and (12). □

Lemma 3 (see [7]). ?e duplex bordered set 02(X) of a
transitive and antisymmetric bordered GE-algebra X is closed
under the binary operation ∗ in X, that is, it is a GE-sub-
algebra of X and is also bordered.

Theorem 2. Let (X, f) be a transitive and antisymmetric
bordered interior GE-algebra. ?en, (02(X), f) is an interior
GE-algebra, where

f: 02(X)⟶ 02(X), x⟼f(x)
00

. (73)

Proof. Let x ∈ 02(X). -en, x � x00 ≤f(x)00 � f(x) by (7),
and

(f ∘ f)(x) � f f(x)
00

  � f(x)
0000

� f(x)
00

� f(x).

(74)

Let x, y ∈ 02(X) be such that x≤y. -en, f(x)≤f(y)

by (12), and thus, f(x) � f(x)00 ≤f(y)00 � f(y). -is
completes the proof. □

-e following example describes -eorem 2.

Example 12. Consider a GE-algebra X � 0, 1, a, b, c, d, e{ }

with the binary operation ∗ given in the following Cayley
table:

∗ 0 1 a b c d e

0 1 1 1 1 1 1 1

1 0 1 a b c d e

a c 1 1 1 c c 1

b 0 1 a 1 c d e

c a 1 a 1 1 e e

d a 1 a 1 1 1 1

e 0 1 a 1 c c 1

. (75)

Define f: X⟶ X by
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f( x ) �

0 if x � 0

1 if x � 1,

b if x ∈ a, b, e{ },

c if x ∈ c, d{ }.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(76)

-en, (X, f) is a transitive and antisymmetric bordered
interior GE-algebra, and (02(X),∗, 1) is a GE-algebra, where
02(X) � 0, 1, a, c{ }. We know that f: 02(X)⟶ 02(X) is
calculated as follows:

f( x ) �

0, if x � 0,

1, if x ∈ 1, a{ },

c, if x � c,

⎧⎪⎪⎨

⎪⎪⎩
(77)

and it is routine to observe that (02(X), f) is an interior GE-
algebra.

4. Conclusions

We have introduced the concepts of (commutative, tran-
sitive, left exchangeable, belligerent, antisymmetric) interior
GE-algebras and bordered interior GE-algebras, and in-
vestigated their relations and properties. We have found and
presented many examples to illustrate these concepts. We
have formed a semigroup using the set of interior GE-al-
gebras. We have provided examples to show that the set of
interior GE-algebras is not a GE-algebra. It is clear that if X

is a transitive (resp., commutative, belligerent, and left ex-
changeable) GE-algebra, then the interior GE-algebra (X, f)

is transitive (resp., commutative, belligerent, and left ex-
changeable), but we have considered examples to show that
its inverse is not established. We have provided examples of
how to construct and explain interior GE-algebra using a
bordered interior GE-algebra under certain conditions. In
the future work, we will use the idea and results given in this
paper to study other (hyper) algebraic structures, for ex-
ample, (hyper) hoop, (hyper) BCH-algebra, (hyper) equality
algebra, and (hyper) MV-algebra.
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