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We construct irreducible balanced nontransitive sets of n-sided dice for any positive integer n. Onemain tool of the construction is
to study so-called fair sets of dice. Furthermore, we also study the distribution of the probabilities of balanced nontransitive sets of
dice. For a lower bound, we show that the winning probability can be arbitrarily close to 1/2. We hypothesize that the winning
probability cannot be more than (1/2) + (1/9), and we construct a balanced nontransitive set of dice whose probability
is (1/2) + (13 −

���
153

√
/24) ≈ (1/2) + (1/9.12).

1. Introduction

A nontransitive triple of dice consists of three dice, la-
beled A, B, and C, with the property that all three
probabilities that A rolls higher than B, that B rolls higher
than C, and that C rolls higher than A are greater than 1/2.
We write this as P(A>B)> (1/2), P(B>C)> (1/2), and
P(C>A)> (1/2). It is called nontransitive because if we
define the relation X≻Y as P(X>Y)> (1/2) for
X, Y ∈ A, B, C{ }, then the relation ≻ is not transitive. For
example, the following set of 6-sided dice is nontransitive
since P(A>B) � P(B>C) � P(C>A) � (19/36):
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Note that nontransitive sets of dice are first introduced
by Gardner [1], further studied in [2, 3], and have been
generalized in several directions (see [4–14]). In [14],
Schaefer and Schweig constructed balanced nontransitive
sets of n-sided dice for any positive integer n≥ 3 (see below

for the definition of “balanced” and other terms).Main idea of
the construction in [14] is to combine several balanced
nontransitive sets of dice. ,erefore, the sets of dice that are
constructed in [14] are reducible, and Schaefer and Schweig
[14] question whether there exist balanced irreducible non-
transitive sets of n-sided dice for all n. One main purpose of
the paper is to construct irreducible nontransitive sets of
n-sided dice for any positive integer n. Our main idea of the
construction is to use so-called fair sets of 2-sided dice. Here,
being fair means that probabilities P(A>B), P(B>C), and
P(C>A) are all 1/2. Although we used 2-sided dice to
construct new sets of dice, understanding fair sets of n-sided
dice for any positive integer n seems to be an important step to
understand all irreducible balanced nontransitive dice. We
also study fair sets of n-sided dice for any positive integer n.

,e second purpose of the paper is to study possible
probabilities of balanced nontransitive sets of n-sided dice,
i.e., possible value of P(A>B). As far as we know, previous
known constructions of balanced nontransitive sets of dice
have probability (1/2)<P(A>B)< (3/5) � (1/2) + (1/10).
We first show that there exist balanced nontransitive sets of
dice such that P(A>B) − (1/2)> 0 is arbitrarily small, i.e.,
1/2 is a sharp lower bound for balanced nontransitive set of
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dice. We conjecture that, in general,
(1/2)<P(A>B)< (1/2) + (1/9). To support the conjecture,
we first explicitly calculate and prove that both the proba-
bility P(A>B) in our paper and the one in [14] are less than
(1/2) + (1/9). We also provide another new construction of
a balanced nontransitive set of dice such that
P(A>B) ≈ (1/2) + (1/9.12), which is less than
(1/2) + (1/9), and is, as far as we know, the maximum
among known constructions of balanced nontransitive sets
of dice.

Let us now describe the content of our paper. After we
introduce notation and preliminaries in Section 2, we study
fair sets of dice in Section 3. In Section 4, we provide
construction of irreducible balanced sets of n-sided dice for
any positive integer n using fair sets of 2-sided dice. In
Section 5, we calculate and study possible probability
P(A>B) for balanced nontransitive sets of dice.

2. Notation and Preliminaries

We briefly recall definitions and notations in [14] that we are
going to use.

Definition 1. Fix an integer n> 0. A set of n-sided dice is a
collection of three pairwise-disjoint sets A, B, and C with
|A| � |B| � |C| � n and A∪B∪C � 1, . . . , 3n{ }. We think of
dice A, B, and C as being labeled with the elements of A, B,
and C, respectively, and we assume that each die is fair (i.e.,
the probability of rolling any one of its numbers is 1/n).

Definition 2. A set of dice is called as follows:

(i) Balanced if P(A>B) � P(B>C) � P(C>A)

(ii) Nontransitive if each of P(A>B), P(B>C), and
P(C>A) exceeds 1/2

(iii) Fair if P(A>B) � P(B>C) � P(C>A) � (1/2)

Definition 3. If D � (A, B, C) is a set of n-sided dice, define a
word σ(D) by the following rule: the ith letter of σ(D)

corresponds to the die on which the number i labels a side.

For a word σ, the number of letters in the word, which we
call the length of σ, is denoted by |σ|. A number of A (resp. B,
C) in σ is denoted by |A|σ (resp. |B|σ , |C|σ). For example, if σ
corresponds to a set of n-sided dice, |A|σ � |B|σ � |C|σ � n.

Let D � (A, B, C) be a set of n-sided dice and σ be its
corresponding word (Definition 3). ,en, we denote by
PD(A>B) or Pσ(A>B) the probability that the number
rolled on A is greater than the number rolled on B when we
roll A and B. Similarly, we define
PD(B>C), Pσ(B>C), PD(C>A), and Pσ(C>A).

Definition 4. For a set of n-sided dice D (and its corre-
sponding word σ with length 3n), we let
ND(A>B) ≔ n2PD(A>B), ND(B>C) ≔ n2PD(B>C) and
ND(C>A) ≔ n2PD(C>A). Similarly, we also define
Nσ(A>B), Nσ(B>C), and Nσ(C>A).

It is by definition that D � (A, B, C) is balanced if
ND(A>B) � ND(B>C) � ND(C>A), and D � (A, B, C)

is nontransitive if ND(A>B), ND(B>C), ND(C>A)>
(n2/2).

Remark 1. ND(A>B) in Definition 4 represents the
number of consequences that a die A beats a die B when we
consider all possible outcomes when we roll A and B. Note
that ND(A>B) is the same as the notation si�Aq+

σ(D)(si) in
[14].

Example 1. Let D be the following set of 3-sided dice:

A � 9 5 1 ,

B � 8 4 3 ,

C � 7 6 2 .

(1)

,en, σ(D) � ACBBACCBA and P(A>B) � P(B>C)

� P(C>A) � (5/9). ,erefore, this set of dice is balanced
and nontransitive.

Definition 5. ,e concatenation of two words σ and τ is
simply the word σ followed by τ, denoted by στ.

We recall a recursive relation of N(A>B), N(B>C),
and N(C>A). ,e following is in the proof of Lemma 2.4 in
[14].

Lemma 1 (see (1) in [14]). Let σ and τ be two words that
correspond to two sets of dice, respectively. Let |σ| � 3m and
|τ| � 3n (i.e., corresponding dice are m-sided and n-sided,
respectively). 1en, we have

Nστ(A>B) � Nσ(A>B) + Nτ(A>B) + mn. (2)

3. Fair Sets of Dice

In the following two lemmas “probabilities” mean P(A>B),
P(B>C), and P(C>A) and x, y, or z is one of A, B, or C.

Lemma 2. Assume that σ(D) has xy and yx, i.e.,
σ(D) � · · · xy · · · yx · · ·. 1en, exchanging the orders of xy

and yx at the same time, i.e., σ( D) � · · · yx · · · xy · · · does not
change the “probabilities.”

Lemma 3. Assume that σ(D) is a word having three different
letters, say x, y, and z. 1en, xyzσ(D) and σ(D)xyz have
the same “probabilities” if and only if σ(D) has the same
numbers of x, y, and z.

Definition 6. Two words are called similar, σ(D1) ∼ σ(D2),
if σ(D1) can be rewritten to σ(D2) by exchanging the orders
as allowed by virtue of Lemmas 2 and 3.

Note that, if σ(D1) ∼ σ(D2), then two words have the
same length and PD1

(A>B) � PD2
(A>B),

PD1
(B>C) � PD2

(B>C), and PD1
(C>A) � PD2

(C>A).
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Example 2. Lemmas 2 and 3 indicate that
· · · xy · · · yx · · · ∼ · · · yx · · · xy · · · and xyzσ(D) ∼ σ(D)xy

z if and only if |x|σ(D) � |y|σ(D) � |z|σ(D).

Conjecture 1. (fair dice). If D is fair, then the length of D is a
multiple of 6 and it is similar to an iterated concatenation of
xyzzyx.

Note that τ ≔ ABCCBA is a fair set of 2-sided dice,
which will be used in Section 4.

Example 3. Let σ(D) be AABBCCCCBBAA. It is fair and

AABBCCCCBBAA ∼ ABABCCCCBABA ∼ ABACBCCBC
ABA ∼ ABCABCCBACBA ∼ ABCCBAABCCBA � (AB

CCBA)2.

To support Conjecture 1, let us consider only two-die
case, i.e., a fair word with only two letters A and B. In this
case, a set of dice and a corresponding word are called fair if
P(A>B) � P(B>A) � (1/2).

Theorem 1. Assume that a given fair word σf has 4m letters
with |A| � |B| � 2m. 1en, σf ∼ (ABBA)m.

Proof. We may assume that σf starts with A (if not, we
exchange the notations of A and B). ,en, let us claim that
the factor ABBA can be extracted to the front without
changing probabilities, i.e., σf ∼ ABBAωf, where ωf is a fair
word having 4(m − 1) letters with |A| � |B| � 2(m − 1).
Mathematical induction with this fact leads us to the result
that σf ∼ (ABBA)m.

Observe first that σf ∼ ABω0, whereω0 is a word such that
ABω0 is fair. If σf � ABω0, then we are done. Suppose not, i.e.,
σf � A · · · ABω1. We would like to see that ω1 contains a
subword BA. If ω1 would not have BA, then the given fair dice
should be expressed by σf � A · · · ABA · · · AB · · · B, which is
not fair at all. Due to having BA in ω1, exchanging AB and BA

together will hold probabilities, i.e., σf ∼ A · · · BAω2, whereω2
is the word obtained fromω1 by replacing BA byAB. A similar
argument works to reveal that ω2 has BA and therefore
σf ∼ A · · · BAAω3. Keep doing this procedure until
σf ∼ ABω0.

Next see that σf ∼ ABBAωf as claimed. If ω0 starts with
BA, then we are done. If not, there are three cases, that is, ω0
is one of ABω4, A · · · ABω5, B · · · BAω6. Since a similar
argument can be applied, let us consider the first case when
ω0 � ABω4. If ω4 would not have BA, then it should be
expressed by A · · · AB · · · B. ,is means that
σf ∼ ABABA · · · AB · · · B, which is impossible to be fair. So,
ω4 contains a subword BA. Exchanging BA (in ω4) for AB

(in front of ω4 ) shows that σf ∼ ABBAωf. As mentioned, in
the other two cases, a similar argument reveals that
σf ∼ ABBAωf as claimed. □

4. Irreducible Sets of Dice

In this section, we construct irreducible balanced non-
transitive sets of n-sided dice for any positive integer n. Note
that this answers Question 5.2 in [14].

Definition 7. A balanced nontransitive word (and a corre-
sponding set of dice) is called irreducible if there do not exist
balanced nontransitive words σ1 and σ2 (both nonempty)
such that σ � σ1σ2.

Lemma 4. Let σ be a balanced nontransitive word and
τ � ABCCBA. 1en, τσ is balanced and nontransitive.

Proof. τ is balanced but not nontransitive since
P(A>B) � P(B>C) � P(C>A) � (1/2). Lemma 2.4 in
[14] implies that τσ is balanced. It remains to prove that it is
nontransitive. Let |σ| � 3n. Equation (2) implies

Nτσ(A>B) � 2 + Nσ(A>B) + 2n> 2 +
n
2

2
+ 2n �

(n + 2)
2

2
.

(4)

Similarly, we have Nτσ(B>C), Nτσ(C>A)> ((n + 2)2/
2). ,erefore, τσ is also nontransitive (Definition 4). □

Lemma 5. Let σ be an irreducible balanced nontransitive
word that corresponds to a set of either 3-sided or 4-sided dice
and τ � ABCCBA. 1en, (τ)kσ is an irreducible balanced
nontransitive word.

Proof. Applying Lemma 4 k times, we conclude that (τ)kσ
is balanced and nontransitive. It remains to prove that it is
irreducible. Suppose that (τ)kσ is reducible. ,en, we can
write (τ)kσ as ππ′ where π is an irreducible balanced
nontransitive word and π′ is a balanced nontransitive
word. Since (τ)n is fair (so not nontransitive) and (τ)nABC

is not balanced for any nonnegative integer n, π should be
of the form (τ)kπ″ (π″ is not empty). We write (τ)kσ as
(τ)kπ″π‴. Since |π‴|< 12, π‴ is irreducible. ,is implies
that σ � π″π‴ corresponds to a balanced nontransitive set
of 4-sided dice and it contains a balanced nontransitive
word π‴ of length less than 12, which contradicts that σ is
irreducible. □

We are now ready to construct an irreducible balanced
nontransitive set of n-sided dice.

Theorem 2. For any n≥ 3, there exists an irreducible bal-
anced nontransitive set of n-sided dice.

Proof. We first consider the following two sets of dice:
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A3 � 9 5 1 ,

B3 � 8 4 3 ,

C3 � 7 6 2 ,

A4 � 10 7 5 4 ,

B4 � 12 9 3 2 ,

C4 � 11 8 6 1 .

(5)

Both D3 � (A3, B3, C3) and D4 � (A4, B4, C4) are irre-
ducible, balanced, and nontransitive. As before, we consider
τ � ABCCBA. We now construct an irreducible balanced
nontransitive set of n-sided dice for any n≥ 3. We already
constructed such a set of dice when n � 3 and n � 4. When
n≥ 5 is odd, we write n � 3 + 2k, k≥ 1.,en, (τ)kσ(D3) is an
irreducible balanced nontransitive set of n-sided dice due to
Lemma 5. When n≥ 5 is even, we write n � 4 + 2k, k≥ 1.
,en, (τ)kσ(D4) is an irreducible balanced nontransitive set
of n-sided dice due to Lemma 5. □

5. Possible Probability

Let (A, B, C) be a balanced nontransitive set of n-sided dice
with P(A>B) � P(B>C) � P(C>A)> (1/2). In this sec-
tion, our interest is in a possible probability P(A>B). Let us
state what is on our mind.

Conjecture 2. If (A, B, C) is a balanced nontransitive set of
n-sided dice such that P(A>B)> (1/2), then

1
2
< P(A>B)<

1
2

+
1
9
. (6)

5.1. Probabilities of Our Construction in 1eorem 2. To
support Conjecture 2, we first calculate all possible proba-
bilities of the set of dice which are constructed in Section 4.

Lemma 6. Let σ (resp. τ) be a word of length 3m (resp. 3n)
that corresponds to a set of dice. 1en,

Pστ(A>B) �
1
2

+
Nσ(A>B) − m

2/2   + Nτ(A>B) − n
2/2  

(m + n)
2 .

(7)

Similarly, we have

Pστ(B>C) �
1
2

+
Nσ(B>C) − m

2/2   + Nτ(B>C) − n
2/2  

(m + n)
2 ,

Pστ(C>A) �
1
2

+
Nσ(C>A) − m

2/2   + Nτ(C>A) − n
2/2  

(m + n)
2 .

(8)

Proof. It is an easy consequence of equation (2) since
Nστ(A>B) � (m + n)2Pστ(A>B). □

Remark 2. Note that Nσ(A>B) represents the number of
consequences that a die A beats a die B. ,erefore,
(Nσ(A>B) − (m2/2)) in Lemma 5.2 represents how far σ is
from being fair. For example, if Nσ(A>B) − (m2/2) � 0,
then Pσ(A>B) � (1/2).

Lemma 7. Let σ and τ be as in Lemma 6. Assume that
(1/2)<Pσ(A>B)< a and (1/2)<Pτ(A>B)< b. 1en,
(1/2)<Pστ(A>B)<max a, b{ }.

Proof. Equation (2) with Nστ(A>B) � (m + n)2Pστ(A>B),

Nσ(A>B) � m2Pσ(A>B) and Nτ(A>B) � n2Pτ(A>B)

implies

(m + n)
2
Pστ(A>B) � m

2
Pσ(A>B) + n

2
Pτ(A>B) + mn

<max a, b{ } m
2

+ n
2

+
1

max a, b{ }
mn <max a, b{ }(m + n)

2
,

(9)

since (1/2)<max a, b{ }. □

We are now ready to calculate the probability P(A>B).
Let σ be a word that is constructed in ,eorem 2. ,en, σ is
either (τ)kτ1 or (τ)kτ2 for some nonnegative integers k,
where

D τ1(  �

9 5 1

8 4 3

7 6 2

⎧⎪⎪⎨

⎪⎪⎩
,

D τ2(  �

10 7 5 4

12 9 3 2

11 8 6 1

⎧⎪⎪⎨

⎪⎪⎩
,

D(τ) �

6 1

5 2

4 3

⎧⎪⎪⎨

⎪⎪⎩

(10)

Note that (τ)k is a fair word (i.e., Pτk (A>B) � (1/2)).
For i � 1, 2, Lemma 2.1 implies that

2k + ni( 
2
Pσ(A>B) � (2k)

2
Pτk (A>B) + ni( 

2
Pτi

(A>B) + 2kni

�
(2k)

2

2
+

n
2
i + 2
2

  + 2kni �
ni + 2k( 

2
+ 2

2
 ,

(11)

which is the closest integer greater than ((ni + 2k)2/2). Here,
3ni is the length of τi and, therefore, ni � i + 2.

,erefore, Conjecture 2 is true in this case.

Remark 3. Similarly, we can also calculate possible proba-
bilities of the set of dice that is constructed in [14]. Let σ be a
word that is constructed in ,eorem 2.1 of [14]. ,en, σ is a
product of several τ1, τ2, and τ3, where
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D τ1(  �

9 5 1
8 4 3
7 6 2

⎧⎪⎨

⎪⎩
,

D τ2(  �

12 10 3 1
9 8 7 2
11 6 5 4

⎧⎪⎨

⎪⎩
,

D τ3(  �

15 11 7 4 3
14 10 9 5 2
13 12 8 6 1

⎧⎪⎨

⎪⎩

(12)

Pτi
(A>B) � ([n2

i + 2/2]/n2i ) for i � 1, 2, 3, where
ni � i + 2. ,erefore, Lemma 7 implies that Pσ(A>B)≤
(5/9) � (1/2) + (1/18). ,erefore, Conjecture 2 is true in
this case.

5.2. Best Bound for Probability. We first show that (1/2) is
the greatest lower bound of P(A>B), which means that the
inequality P(A>B)> (1/2) is optimal.

Theorem 3. 1ere exists a balanced nontransitive set of dice
such that P(A>B) − (1/2)> 0 becomes arbitrary small.

Proof. Let n � 2m + 1(m ∈ N). ,en, we construct a word σ
(or a corresponding set of dice) as follows. First, consider the
word (ABCCBA)m(BAC) which is not balanced, since the
number of the events for C to beat A or B is one more than
the ones of the events for A or B to beat C (therefore, C

always beats both A and B at least in probability). To change
this word to a balanced one, let us replace BC by CB on the
first factor ABCCBA. In all, the word σ obtained by

σ ≔ (ACBCBA)(ABCCBA)
m− 1

(BAC) (13)

is balanced. A direct computation of P(A>B) on σ, or more
precisely,

Nσ(D)(A>B) � 0 + 2 + (2 + 4) + · · · +(2(m − 1) + 2m){ }

+(2m + 1) � 2m
2

+ 2m + 1
(14)

shows that

P(A>B) �
2m

2
+ 2m + 1

(2m + 1)
2 �

1
2

+
0.5
n
2 , (15)

which goes to (1/2) as n⟶∞. ,is indicates that (1/2) is
the greatest lower bound of P(A>B) and the inequality
P(A>B)> (1/2) could not get better. □

For the upper bound of P(A>B), recall that Conjecture
2 states that

P(A>B)<
1
2

+
1
9
. (16)

To support this inequality, we provide three new con-
structions of sets of dice of which probability is close to
(1/2) + (1/9). For simplicity, assume that n � 6p (later, we
discuss when n � 6p + 2 or n � 6p + 4 which is similar to the

present case). Let us start with the most unmixed fair n-sided
dice σf,

σf ≔ A · · · AB · · · BC · · · CC · · · CB · · · BA · · · A, (17)

where “· · ·” means that all the letters are the same as the
boundary letters and the numbers of letters in “· · ·” are the
same, i.e., |A · · · A| � |B · · · B| � |C · · · C| � 3p.

We apply the following algorithm to construct the largest
probability P(A>B).

Algorithm 1

Step 1: if there is no triple AB, BC, CA in a word, then
replace xy and yx in a word for x, y ∈ A, B, C{ } so that
the resulting word contains AB, BC, CA.
Step 2: if you find AB, BC, CA, then replace AB, BC, CA

by BA, CB, AC, respectively.

Remark 4

Replacement in Step 1 does not change the probability
due to Lemma 2.
Replacement in Step 2 increases the number of events
for A (resp. B or C) to beat B (resp. C or A) by 1. In
particular, doing this replacement keeps the words
balanced and nontransitive. ,erefore we may expect
that keeping replacing in this way would lead the largest
probability of P(A>B).

Since there is no CA in σf, we first apply Step 1 (ex-
change of BC andCB) several times to σf in order to obtain a
word σ1 which is still fair but having sequels CA by

σ1 ≔ A · · · AA · · · AA · · · AB · · · BB · · · BC · · · C

C · · · CC · · · CB · · ·BC · · · CC · · · CB · · · B

B · · · BB · · · BC · · ·CA · · · AA · · · AA · · · A,

(18)

(i.e., the last one-third of the first B · · · B in (17) moves to the
middle and the last one-third of the second C · · · C in (17)
does to the front of the second A · · · A (the moved ones are in
bold). Here, |A · · · A| � |B · · · B| � |C · · · C| � p in (18).
,erefore, the numbers of replacing BC and CB by CB and
BC, respectively, are the same as 3p2.)

We now apply Step 2 3p2 times to obtain a balanced
nontransitive word σ2 by

σ2 ≔ B · · ·BA · · · AA · · · AA · · · AC · · · CC · · · C

C · · · CB · · ·BB · · · BC · · · CC · · · CB · · · B

B · · · BB · · · BA · · · AA · · · AA · · · AC · · ·C,

(19)

(i.e., in (18), the first B · · · B moves in front, the second B · · · B

does to almost middle, and the last C · · · C does to the end.
,e moved ones are in bold as before). Here, the probability
P(A>B) of σ2 increases to (1/2) + (3p2/(6p)2) � (7/12).

Since there is no AB and CA in σ2, we apply Step 1 6p

times as follows; we move B and C in σ2 to the ones in σ3 (all
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of which are in bold) in order to produce the products AB

and CA.

σ2 ≔ B · · · BA · · · AA · · · AA · · · AC · · · CC · · · C

C · · · CB · · · BB · · · BC · · · CC · · ·CB · · · B

B · · · BB · · · BA · · · AA · · · AA · · · AC · · · C,

σ3 ≔ B · · · BA · · · AA · · · AA · · · ABC · · · CC · · · C

C · · · C _B · · · €B€B · · · €B€C · · · €C€C · · · _CB · · · B

B · · · BB · · · BCA · · · AA · · · AA · · · AC · · · C

( _B and _C have beenmoved toB andC, respectively).

(20)

,is means that we need to exchange BC to CB in the
middle part (which is blue and has two dots above the
character on σ3) 6p times (3p to move B and another 3p to
beat C). ,en, to increase P(A>B), one more exchange
from BC to CB in the middle part is necessary.

In addition to this observation, we would like to measure
how many times we can apply Step 2 to σ3 in terms of p (this
is because the denominator of P(A>B) is (6p)2, so we
would better express in p in order to examine asymptotic
behavior of P(A>B) ). Put by m the number of further
replacement such thatm-many B’s move betweenB · · · B and
A · · · A in front. For this, we need extra 3pm-many ex-
changes of BC and CB in the middle part. Since the
remaining of each B’s or C’s in the middle is 2p − m, the
possible exchange of BC toCB is (2p − m)2, which should be
at least 9pm(� 3pm + 3pm + 3pm) (the last 3pm is due to
move m-many B’s in the further replacement). As a sum-
mary, we have that

(2p − m)(2p − m)≥ 9pm(m≤ 2p)

⟹m≤
13 −

���
154

√

2
p.

(21)

,erefore, the largest probability on P(A>B) in the
argument above is

1
2

+
3p

2
+(13 −

���
154

√
/2)p · 3p

(6p)
2 �

1
2

+
15 −

���
154

√

24
≈
1
2

+
1

9.25
<
1
2

+
1
9
.

(22)

Note that the maximum m (in N) means that, since all
BC are exhausted in the last word, the probability P(A>B)

is not able to be larger in this construction.
,e cases when n � 6p + 2 and n � 6p + 4 can be in-

vestigated by a similar procedure. By applying Step 1 (or
exchanging BC by CB) and Step 2 (or replacing AB, BC, and
CB by BA, CB, and BC), the probability P(A>B) increases by

p(3p + 1)

[2(3p + 1)]
2, (when n � 6p + 2)

or
p(3p + 2)

[2(3p + 2)]
2, (when n � 6p + 4),

(23)

(which is similar to the increase p(3p)/(6p)2 when n � 6p).
In these cases, after doing this procedure, new words are
expressed by

n � 6p + 2: σ2 � B · · · BA · · · AA · · · AA · · · AABC · · · CC · · · C

C · · · CCB · · · BB · · · BC · · · CC · · · CC · · · B

B · · · BB · · · BBA · · · AA · · · AA · · · AAC · · · C,

n � 6p + 4: σ2′ � B · · · BA · · · AA · · · AA · · · AAABBC · · · CC · · · C

C · · · CCCB · · · BB · · · BC · · · CC · · · CCC · · · B

B · · · BB · · · BBBA · · · AA · · · AA · · · AAAC · · · C.

(24)

Here, each · · · has exactly p − 2 letters. For example,
|A · · · A| � p − 2 + 2 � p.

Next, to make the largest P(A>B), we do Step 2 further
as in the previous case. Shortly speaking, when n � 6p + 2,
we have that

(2p − m)(2p + 1 − m) − (3p + 1)≥ 3m(3p + 1)(m≤ 2p)

⇔m
2

− (13p + 4)m + 4p
2

− p − 1 ≥ 0

⇒m≤
13p + 4 −

���������������

153p
2

+ 108p + 20


2
.

(25)

Hence, the increased probability on P(A>B) in the
argument (i.e., except 1/2) is

p + 13p + 4 −

���������������

153p
2

+ 108p + 20


 /2  (3p + 1)

(6p + 2)
2 ⟶

p
⟶∞

1
12

+
13 −

���
153

√

24
<

1
9.12
<
1
9
. (26)
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Note that, since the numerator
13p + 4 −

���������������
153p2 + 108p + 20


is increasing in p, the last

inequality holds for all p.
Similarly, when n � 6p + 4, we have that

(2p − m)(2p + 2 − m) − 2(3p + 2)≥ 3m(3p + 2)(m≤ 2p)

⇔m
2

− (13p + 8)m + 4p
2

− 2p − 4 ≥ 0

⇒m≤
13p + 8 −

���������������

153p
2

+ 216p + 80


2
.

(27)

Hence, the increased probability on P(A>B) for n �

6p + 4 (again except 1/2) is

p + 13p + 8 −

���������������

153p
2

+ 216p + 80


/2  (3p + 2)

(6p + 4)
2 ⟶

p
⟶∞

1
12

+
13 −

���
153

√

24
<

1
9.12
<
1
9
. (28)

Note again that the numerator
13p + 8 −

���������������
153p2 + 216p + 80


increases in p.

Let us summarize the argument above. Start with the
most unmixed fair word σf (which is (17)). By replacing AB,
BC, CA by BA, CB, AC, i.e., (Step 2) as much as possible, the
probability P(A>B)(� P(B>C) � P(C>A)) increases
most. ,en, the computation above tells us that

P(A>B)<
1
2

+
1
9
, (29)

which upholds Conjecture 2.

Remark 5

(i) Let us tell why we think the last constructed word in
this argument provides the largest probability on
P(A>B). First, observe that we have considered the
only case when n was even (when n � 6p, 6p + 2, or
6p + 4). We, however, believe that this would be
enough due to the following observation. A direct
computation shows that there is only one possible
probability P(A>B) when n � 3, or equivalently,
any three balanced, nontransitive dice with 3 sides
can be expressed by a balanced, nontransitive word
which is similar to σ3 � CBABACACB. In this case,
Pσ3(A>B) � (5/9). ,en, add CBA at the end of σ3
and then exchange CA (in σ3) to AC. ,en, the
constructed word σ4 is σ4 � CBABAACCBCBA,
which becomes balanced and nontransitive. For this,
Pσ4(A>B) � (9/16), which is greater than
Pσ3(A>B) � (5/9). A similar computation can be
done for more general n. ,erefore, with this trick
(however, we do not know if we can do this trick at
all times), the probability of P(A>B) would get
greater for even n’s than odd ones.

(ii) Second, proving that the abovementioned proba-
bility is the largest probability related to construction

of all balanced nontransitive sets of dice and it also
seems to be related to property of fair sets of dice, i.e.,
Conjecture 1, and we leave this for future work.

Remark 6. In [13], Schaefer further generalized the results in
[14] to sets of n-sided m dice for any positive integer m. It
will be very interesting to generalize our results to sets of m

dice for m≥ 4 and we also leave this for future work.
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