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In the present investigation, subclasses of analytic functions with respect to symmetrical points which are defined by the
generalized Bessel functions of the first kind of order μ are introduced. Furthermore, some alluring geometric properties of these
classes, which include inclusion property, integral-preserving properties, coefficients, and distortion results are studied.Moreover,
some consequences of our results are also given.

1. Introduction

Geometric function theory (GFT) is the area of complex
analysis which deals with the geometric characterization of
analytic functions, established around the turn of the
twentieth century[1]. It is a known fact that the study of
special functions plays a significant role in GFT. One reason
is that solutions of extremal problems can be frequently
written in terms of special function. Another reason is that
some important conformal mappings are given by special
function. For example, the conformal mapping of an an-
nulus onto the complement of two closed segments on the
real axis and the conformal mapping of a square onto a
rectangle are expressed by elliptic functions (see [2]). In
recent times, the solution of Bieberbach conjecture by de
Branges is obtained with the help of special functions [3].

Bessel function is one of the most significant special
functions. It is therefore important for solving many
problems in engineering, physics, and mathematics (see
[4, 5]). For instance, it is used for velocity and stress deri-
vation in the rotational flow of Burge’s fluid flowing through
an unbounded round channel [6].

In recent times, many researchers paid their attention on
establishing various conditions under which a Bessel
function has some certain geometric properties such as

close-to-convexity (univalency), starlikeness, and convexity
in frame of a unit disc U (see [7–11]).

+e objective of this manuscript is twofold. Firstly, Bessel
functions of the first kind of order μ is used to introduce new
generalized starlike and convex functions with respect to
symmetrical points, which was first initiated and studied by
Sakaguchi [12] and Das and Sign [13]. Moreover, we ex-
amine some interesting geometric properties of these classes,
which include inclusion property, integral-preserving
properties, coefficients, and distortion results.

2. Materials and Methods

Now, we give some basic preliminaries and definitions that
play the integral part in obtaining our main results.

Consider b, c, μ ∈ C (the set of complex numbers) and
the second-order linear homogenous differential equation

z
2
w″(z) + bzw′(z) + cz

2
− μ2 +(1 − b)μ w(z) � 0, (1)

which is a natural extension of Bessel’s equation. +e so-
lution w(z) (see [14]) of (1) has a series representation:

w(z) � 

∞

n�0

(− c)
n

n!Γ(μ + n +(b + 1/2))

z

2
 

2n+μ
, z ∈ C. (2)
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Differential equation (2) allows the investigation of
Bessel function of the first kind of order μ [15, 16] (the case
b� c� 1), modified Bessel function [15, 16] (the case b� 1,
c� − 1), and the spherical Bessel Function [16] (the case b� 2,
c� 1). Using the well-known Pochhammer symbol (a)n with
a≠ 0, − 1, − 2, . . ., we consider the function φμ,b,c(z) defined
by the transformation

φμ,b,c(z) � 2μΓ μ +
b + 1
2

 z
1− μ

w(
�
z

√
)

� z + 

∞

n�2

(− c)
n− 1

4n− 1
(μ +(b + 1/2))n− 1

anz
n
,

where μ +
b + 1
2
≠ 0, − 1, − 2, . . . .

(3)

Let A denote the class of normalized analytic functions
f(z) in U given by the representation

f(z) � z + 
∞

n�2
anz

n
. (4)

+en, the convolution of f(z) and g(z) � z + 
∞
n�2 bnzn

denoted by f(z)∗g(z) is defined by

f(z)∗g(z) � z + 

∞

n�2
anbnz

n
, (5)

and we say f(z) is subordinate to g(z) (written as
f(z)≺g(z)) if there exists a Schwarz functionw(z) such that
f(z) � g(w(z)), z ∈ U.

Let Bc
μ,b: A⟶ A be an operator defined by

B
c
μ,bf(z) �φμ,b,c(z)∗f(z)

� 
∞

n�1
Anz

n
,

whereAn �
(− c)

n− 1

4n− 1
(μ+(b +1/2))n− 1(n − 1)!

an,

a1 � 1.

(6)

From (6), we have the identity relation

z B
c
μ+1,bf(z) ′ �(μ+ p)B

c
μ,bf(z) − (μ+ p − 1)B

c
μ+1,bf(z),

(7)

where p � (b − 1/2). It is easy to observe from (7) that

z Φc
μ+1,bf(z) ′ � (μ + p)Φc

μ,bf(z) − (μ + p − 1)Φc
μ+1,bf(z),

(8)

where

Φc
μ,bf(z) �

1
2

B
c
μ,bf(z) − B

c
μ,bf(− z) . (9)

Let ϕ(z) be a convex univalent function in U with ϕ(0) �

1 and Reϕ(z)> 0 in U. Ma and Minda and Kim examined
the classes C(ϕ), S∗(ϕ) (see [17]), and K(ϕ) (see [18]) using

the subordination techniques. In particular, for − 1≤B<
A≤1, C[(1+ Az/1+ Bz)]≡C[A,B], S∗[(1+ Az/1+ Bz)]≡
S∗[A,B] [19] and K[(1+ Az/1+ Bz)]≡K[A,B] [20] and
S∗[(1+ z/1 − z)]≡ S∗ and C[(1+ z/1 − z)]≡C [21].

Definition 1. Let f ∈ A. +en, f ∈ Ss
μ,b,c(ϕ) if and only if

z B
c
μ,bf(z) ′

Φc
μ,bf(z)

≺ϕ(z), z ∈ U, (10)

and f ∈ Cs
μ,b,c(ϕ) if and only if

z B
c
μ,bf(z) ′ ′

Φc
μ,bf(z) ′

≺ϕ(z), z ∈ U. (11)

We note that f ∈ Cs
μ,b,c(ϕ)⟺zf′ ∈ Ss

μ,b,c(ϕ). If ϕ(z) �

(1 + Az/1 + Bz), − 1≤B<A≤ 1, we set Ss
μ,b,c(1 + Az/1+

Bz) � Ss
μ,b,c[A, B] and Cs

μ,b,c(1 + Az/1 + Bz) � Cs
μ,b,c[A, B]. It

is worthy of note that if ((− c)n− 1/4n− 1(μ + (b + 1/2))n− 1(n −

1)!) � 1 in (6) and ϕ(z) � (1 + z/1 − z), then the classes
Ss
μ,b,c(ϕ) and Cμ,b,c(ϕ) reduce to the classes S∗s and Cs,
consisting of functions which are starlike and convex with
respect to symmetrical points [12, 13, 22–24].

+e following lemmas are the key tools to prove our
main results.

Lemma 1 (see [19, 25]). If p(z)≺(1 + Az/1 + Bz),

− 1≤B<A≤ 1, then

1
2π


2π

0
|p(z)|

2dθ≤
1+

(B − A)
2

B
2

B
2
r
2

1 − B
2
r
2 , B≠0,

1+ A
2
r
2
, B � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

1 − Ar

1 − Br
≤ |p(z)|≤

1+ Ar

1+ Br
. (13)

Lemma 2 (see [26]). Let g(z) be an univalent function in U.
4en, there exists z1 with |z1| � r such that for all z ∈ U,

z − z1


|g(z)| ≤
2r

2

1 − r
2.

(14)

Lemma 3 (see [21]). Let ψ(z) be convex in U with ψ(0) � 1.
Suppose also that λ(z) is analytic in U with
Reλ(z)≥ 0(z ∈ U). If p(z) is analytic in U with p (0)� 1,
then

p(z) + λ(z)zp′(z)≺ψ(z) inU, (15)

which implies that

p(z)≺ψ(z) inU. (16)
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Lemma 4 (see [21, 27]). Let ψ(z) be convex in U with
Re(βψ(z) + c)> 0. If p(z) is analytic in U with p(0) � ψ(0),
then

p(z) +
zp′(z)

βp(z) + c
≺ψ(z)⇒p(z)≺ψ(z) inU. (17)

3. Results and Discussion

Theorem 1. If f ∈ Ss
μ,b,c(ϕ), then Φc

μ,bf(z) ∈ S∗(ϕ).

Proof. Let f ∈ Ss
μ,b,c(ϕ). +en,

z B
c
μ,bf(z) ′

Φc
μ,bf(z)

� p(z), p(z)≺ϕ(z). (18)

Replacing z with − z in (18) and using the fact that
Φc

μ,bf(z) is an odd function, we have

z B
c
μ,bf(− z) ′

Φc
μ,bf(z)

� p(− z), p(− z)≺ϕ(z), (19)

which combined with (18) gives

z Φc
μ,bf(z) ′

Φc
μ,bf(z)

� p(z), p(z) + p(− z). (20)

By subordination property, we have that
Φc

μ,bf(z) ∈ S∗(ϕ). □
Corollary 1. 4e function Bc

μ,bf(z) belongs to K(ϕ) and
hence is univalent in U.

Setting ((− c)n− 1/4n− 1(μ + (b + 1/2))n− 1(n − 1)!) � 1
and choosing ϕ(z) � (1 + z/1 − z) in +eorem 1, we are led
to the result of Sakaguchi [12] contained in the following
corollary.

Corollary 2. Every function f(z) in S∗s is a close-to-convex
function.

Theorem 2. Suppose Re(μ + (b + 1/2))> 1 and Φc
μ,bf(z) ∈

S∗(ϕ). 4en,

S
s
μ,b,c(ϕ) ⊂ S

s
μ+1,b,c(ϕ). (21)

Proof. Consider

z B
c
μ,bf(z) ′

Φc
μ,bf(z)

� h(z). (22)

From relation (7), (22) can be written as

(μ+ p)B
c
μ,bf(z) � h(z)Φc

μ+1,bf(z) +(μ+ p − 1)B
c
μ+1,bf(z).

(23)

Differentiating (23) and applying (8), we obtain

(μ + p)z B
c
μ,bf(z) ′ � zh′(z)Φc

μ+1,bf(z)

+(μ + p)h(z)Φc
μ,bf(z),

(24)

i.e.,

(μ + p)
z B

c
μ,bf(z) ′

Φc
μ,bf(z)

� (μ + p)h(z) + zh′(z)
Φc

μ+1,bf(z)

Φc
μ,bf(z)

.

(25)

It follows from (8) that

Φc
μ+1,bf(z)

Φc
μ,bf(z)

�
μ + p

H(z) + μ + p − 1
, (26)

where

H(z) �
z Φc

μ+1,bf(z) ′

Φc
μ+1,bf(z)

≺ϕ(z). (27)

In view of (25) and (26), we obtain

z B
c
μ,bf(z) ′

B
c
μ,bf(z)

� h(z) +
zh′(z)

H(z) + μ + p − 1
. (28)

Since Re(μ + (b + 1/2))> 1 and Φc
μ+1,bf(z) ∈ S∗(ϕ),

then Re(H(z) + μ + p − 1)> 0. Hence, by Lemma 3,
h(z)≺ϕ(z), i.e., f ∈ Ss

μ,b,c(ϕ). +is completes the proof. □

Corollary 3. Let Re(μ + (b + 1/2))> 1 and Φc
μ+1,bf(z) ∈

S∗[A, B]. 4en,

S
s
μ,b,c[A, B] ⊂ S

s
μ+1,b,c[A, B]. (29)

Corollary 4. Suppose that all the conditions of4eorem 2 are
satisfied. 4en,

C
s
μ,b,c(ϕ) ⊂ C

s
μ+1,b,c(ϕ). (30)

Proof By 4eorem 2. we have that

f ∈ C
s
μ,b,c(ϕ)⟺zf′ ∈ S

s
μ,b,c(ϕ)⟺ zf′ ∈ S

s
μ+1,b,c(ϕ)

⟺f ∈ C
s
μ+1,b,c(ϕ).

(31)□

Theorem 3. Let Jα(f(z)) be defined by the integral
transformation

Jα(f(z)) �
α+1
2z

α 
z

0
t
α− 1

(f(t) − f(− t))dt, α� 1,2,3, . . . .

(32)

and suppose f ∈ Ss
μ,b,c(ϕ). 4en, Bc

μ,bJα(f(z)) ∈ S∗(ϕ).

Proof. Let

z B
c
μ,bJα(f(z)) ′

Φc
μ,bJα(f(z))

� p(z), (33)

where p(z) is analytic in U with p(0) � 1. From (32) and
applying the operator Bc

μ,b, we obtain
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z B
c
μ,bJα(f(z)) ′ − αBc

μ,bJα(f(z)) � (α + 1)Φc
μ,bf(z),

(34)
i.e.,

B
c
μ,bJα(f(z))[p(z) + α] � (α + 1)Φc

μ,bf(z). (35)

Differentiating (35) logarithmically, we obtain

p(z) +
zp′(z)

p(z) + α
�

z Φc
μ,bf(z) ′

Φc
μ,bf(z)

. (36)

and in view of +eorem 1, it follows that

p(z) +
zp′(z)

p(z) + α
≺ϕ(z), (37)

which by Lemma 4 implies p(z)≺ϕ(z). +us,
Bc

μ,bJα(f(z)) ∈ S∗(ϕ). □

Corollary 5. Let f ∈ Cs
μ,c,b(ϕ). 4en, Bc

μ,bJα(f(z)) ∈ C(ϕ).

Proof.

f ∈ C
s
μ,c,b(ϕ)⟺ zf′(z)f ∈ S

s
μ,c,b(ϕ)

⟺B
c
μ,bJ zf′(z)(  ∈ S

∗
(ϕ) (by Theorem3)

⟺ z B
c
μ,bJα(f(z)) ′ ∈ S

∗
(ϕ)

⟺B
c
μ,bJα(f(z)) ∈ C(ϕ).

(38)

Corollary 6. Let − 1≤B<A≤ 1 and f ∈ Ss
μ,c,b[A, B]. 4en,

Bc
μ,bJα(f(z)) ∈ S∗[A, B]. Similarly, if f ∈ Cs

μ,c,b[A, B], then
Bc

μ,bJα(f(z)) ∈ C∗[A, B].

Setting ((− c)n− 1/4n− 1(μ + (b + 1/2))n− 1(n − 1)!) � 1
and choosing ϕ(z) � (1 + z/1 − z) in +eorem 3, we are led

to the results of Das and Sign [13] contained in the following
corollaries.

Corollary 7. Let f ∈ S∗s . 4en, J0(f(z)) ∈ S∗.

Corollary 8. Let f ∈ Cs. 4en, J0(f(z)) ∈ C.

Theorem 4. If f ∈ Ss
μ,c,b[A, B], then for c≠ 0,

an


≤

D1(A, B)4n− 1
(μ +(b + 1/2))n− 1(n − 1)!n

(− A/2B)

|c|
n− 1 , B≠ 0,

D1(A)4n− 1
(μ +(b + 1/2))n− 1(n − 1)!

n|c|
n− 1 , B � 0.

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

where D1(A, B) is a constant that depends on A and B, while
D1(A) only depends on A.

Proof. Since f ∈ Ss
μ,c,b[A, B], then by Cauchy +eorem,

nAn


≤

1
2πr

n 
2π

0
Φc

μ,bf(z)


|p(z)|dθ, (40)

where An is given by (6) and p(z)≺(1 + Az/1 + Bz), z ∈ U.
From +eorem 1, we knew that for ϕ(z) � (1 + Az/1 + Bz),
the functionΦc

μ,bf(z) is an odd starlike function of Janowski
type. +us,

Φc
μ,bf(z)≺

z

1 + Bz
2

 
(B− A)/2B

, B≠ 0,

z exp
Az

2

2
 , B � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(41)

By Cauchy–Schwarz inequality, subordination property,
and Lemma 1 for the case B≠ 0, (40) implies

nAn


≤

1
r

n

1
2π


2π

0
Φc

μ,bf(z)



2
dθ 

1/2 1
2π


2π

0
|p(z)|

2dθ 

1/2

, z � re
iθ

≤
1
r

n

1
2π


2π

0

r2

1 + Br2( )
(A− B)/2B

dθ 

1/2

1 +
(B − A)2r2

1 − B2r2
 

1/2

�
r

r
n 1 + Br

2
 

(A− B)/2B
1 +

(B − A)2r2

1 − B2r2
 

1/2

.

(42)

Observe that since − 1≤B< 1, we have
1

1 + Br
2 ≤

1
1 − r

2,

1
1 − Br

2 <
1

1 − r
2.

(43)

+us,

nAn


≤

�����������

1 + (B − A)
2



r
n
(1 − r)

(B− A)/2B+(1/2)
. (44)

Let r � 1 − 1/n(n⟶∞); we obtain from (6) and (44)
that
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an


≤

D1(A, B)4n− 1
(μ + (b + 1/2))n− 1(n − 1)!n

(− A/2B)

|c|
n− 1 ,

(45)

where D1(A, B) is given in +eorem 4.
For the case B � 0, we implement Lemma 1 and sub-

ordination property in (41) and follow the procedures for the
case B≠ 0 to obtain

nAn


≤ exp

A

2
+ 1 

������
1 + A

2


, (46)

which completes the proof by using (6). □

Remark 1. If we allow ((− c)n− 1/4n− 1(μ + (b + 1/2))n− 1) � 1
and choose A � 1, B � − 1 in +eorem 3, it follows that

an


 � O(1)n

(1/2)
, whereO(1) is a constant. (47)

Since S∗s is a subclass of the class of close-to-convex
function (see [12]), it shows that our index of n is a nice one.

Theorem 5. Let f ∈ Ss
μ,b,c[A, B]. 4en,

an+1| − |an

����
����|≤

D2(A, B)4n− 1
(μ +((b + 1)/2))n− 1(n − 1)!n

|c|
n− 1 , B≠ 0,

D2(A)4n− 1
(μ + ((b + 1)/2))n− 1(n − 1)!

|c|
n− 1 , B � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(48)

where D2(A, B) is a constant that depends on A and B, while
D2(A) only depends on A.

Proof. Let z1 be a complex number with |z1| � r. +en, by
Cauchy +eorem, we obtain

z1(n + 1)An+1 − nAn


≤

1
2πr

n+1 
2π

0
z1 − z


 z B

c
μ,bf(z) ′



dθ

�
1

2πr
n+1 

2π

0
z1 − z( Φc

μ,bf(z)


|p(z)|dθ,

(49)

where p(z)≺(1 + Az/1 + Bz), − 1≤B<A≤ 1. Following
the techniques used in +eorem 4 and using Lemma 2, we
obtain

z1(n + 1)An+1 − nAn


≤

2
r

n− 1
(1 − r)

1 +(B − A)2

1 − r
 

1/2

.

(50)

Taking r � 1 − 1/n(n⟶∞) and choosing z1 � ((n

(− c/4)n− 1 / (μ + (b + 1/2))n− 1(n − 1)!)/((n + 1)(− c/4)n/(μ+

(b +1/2))n(n)!)), we have the result. +e case B � 0 also
follows the same procedures. □

Theorem 6. If f ∈ Ss
μ,b,c[A, B], then

2n − 1 − (− 1)
n

(  
2
|c|

2
an



2

4n− 1
(μ +(b + 1/2))n− 1(n − 1)!

≤ 
n− 1

m�1

A 1 − (− 1)
m

(  − 2Bm 
2
|c|

2
am



2

4m− 1
(μ +(b + 1/2))m− 1(m − 1)!

, B≠ 0

4A
2
|c|

2
am



2

4m− 1
(μ +(b + 1/2))m− 1(m − 1)!

, B � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

Proof. Let f ∈ Ss
μ,b,c[A, B]. +en, there exists an analytic

function w(z) � 
∞
n�1 wnzn with w(0) � 0 and

|w(z)|< 1(z ∈ U) such that

z B
c
μ,bf(z) ′

Φc
μ,bf(z)

�
1 + Aw(z)

1 + Bw(z)
, (52)

which is equivalent to

z B
c
μ,bf(z) ′ − Φc

μ,bf(z) � AΦc
μ,bf(z) − Bz B

c
μ,bf(z) ′ w(z).

(53)

+us,
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∞

n�1
2n − 1 − (− 1)

n
(  Anz

n

� 
∞

n�1
A 1 − (− 1)

n
(  − 2Bn Anz

n
⎧⎨

⎩

⎫⎬

⎭w(z),

(54)

where we have used (6), (9), and (53). Comparing the co-
efficients of zn in (54), we obtain

2(A − B)A1wn− 1 − 2BA2w2 + · · ·

− A 1 − (− 1)
n

(  − 2B(n − 1) An− 1w1 � 2n − 1 − (− 1)
n

(  An.

(55)

+e coefficients combination on the right side of (55)
depends only upon the coefficients combination 2(A − B)A1,

− 2BA2,2(A − 3B)A3, . . . , [A(1 − (− 1)n) − 2B(n − 1)]An− 1 of
the left side. +erefore, we can write (54) as

w(z) 

n− 1

m�1
A 1 − (− 1)

m
(  − 2Bm Amz

m

� 
n

m�1
2m − 1 − (− 1)

m
(  Amz

m
+ 
∞

m�n+1
cmz

m
,

(56)

for some cm, n + 1≤m<∞. Squaring the moduli of both
sides of (56), integrating around the circle |z| � r, and using
Parseval’s theorem, we note that



n

m�1
2m − 1 − (− 1)

m
(  

2
Am



2
r
2m

+ 
∞

m�n+1
cm



2
r
2m

< 

n− 1

m�1
A 1 − (− 1)

m
(  − 2Bm 

2
Am



2
r
2m

.

(57)

+erefore,
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2
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2m

.

(58)

Taking limit as r⟶ 1− , we obtain the required result.
In the following theorem, erf(x) for an arbitrary x

denotes the error function and we need an Euler integral
representation for the special class of hypergeometric
functions given in [28] and defined as follows.

For Re(c)>Re(b)> 0,

3F2 a,
b

2
,
b + 1
2

;
c

2
,
c + 1
2

; x 

�
Γ(c)

Γ(b)Γ(c − b)

1

0
t
b− 1

(1 − t)
c− b− 1 1 − xt

2
 

− a
dt.

(59)

□

Theorem 7. Let f ∈ Ss
μ,b,c[A, B]. 4en, for |z| � r(0< r< 1),

∧(A, B, r)≤ Bc
μ,bf(z)



≤∨(A, B, r), (60)

where
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A3F2

B − A

2B
,
1
2
, 1; 1,

3
2
; − Br

2
  +(B − A) 

∞

k�0

− Br
2

 
k

k + 1 3F2
B − A

2B
,
k + 1
2

,
k + 2
2

;
k + 2
2

,
k + 3
2

; − Br
2

 ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, B≠ 0,

���
− π
2A



erf

���
− A

2



r  + exp
Ar

2

2
  − 1 , B � 0, A< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧(A, B, r) �

r

B3
F2

B − A

2B
,
1
2
, 1; 1,

3
2
; Br

2
  +(B − A) 

∞

k�0

Br
2

 
k

k + 1 3F2
B − A

2B
,
k + 1
2

,
k + 2
2

;
k + 2
2

,
k + 3
2

; Br
2

 ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦B≠ 0,

���
π
2A



erf

��
A

2



r  + exp
− Ar

2

2
  − 1 , B � 0, A> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)
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Equality is obtained for the function

B
c
μ,bf(z) � 

z

0
1 + Byv

2
 

− (A− B)/2B1 + Ayv

1 + Byv
dv, (62)

if z � r(0< r< 1) and y � ±1.

Proof. Since f ∈ Ss
μ,b,c[A, B], then

B
c
μ,bf(z) ′ � Φc

μ,bf(z)p(z), (63)

where Φc
μ,bf(z) ∈ S∗[A, B] by +eorem 1 and

p≺(1 + Az/1 + Bz). Using (41) and subordination property,
we have that
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By adopting (13) and (64), we obtain

B
c
μ,bf(z) 



≤ 
r

0

Φc
μ,bf ρe

iθ
 



 p ρe
iθ

 




ρ
dρ

≤ 
r

0
1 + Bρ2 

− (B− A)/2B1 + Aρ
1 + Bρ

dρ

�
A

B


r

0
1 + Bρ2 

− (B− A)/2B
dρ +

B − A

B


∞

k�0
(− B)

k


r

0
ρk 1 + Bρ2 

− (B− A)/2B

�
Ar

B

1

0
1 + Br

2
 u

2
 

− (B− A)/2B
du +

(B − A)r

B


∞

k�0
(− Br)

k


r

0
u

k 1 + Br
2

 u
2

 
− (B− A)/2B

du.

(66)

Applying hypergeometric function (59), we obtain the
upper bound for the case B≠ 0. In case B � 0, applying (13)
and using (64) in (66), we obtain

B
c
μ,bf(z) 



≤ 
r

0
exp

Aρ2

2
 dρ + 

r

0
Aρ exp

Aρ2

2
 dρ

�

���
− 2
A





�����
(− A/2)

√
r

0
exp − u

2
 du + exp

Ar
2

2
  − 1 ,

Aρ2

2
� − u

2
, A< 0

�

���
− π
2A



erf

���
− A

2



r  + exp
Ar

2

2
  − 1 .

(67)

+is establishes the upper bound. To prove the lower
bound, we consider a point z0(|z0| � r< 1) such that
|(Bc

μ,bf(z))|≥ |(Bc
μ,bf(z0))|(∀z: |z| � r). Let C be an arc in

U which is mapped by the function w � (Bc
μ,bf(z)) onto a

line segment L connecting origin to the point (Bc
μ,bf(z0))

and lying completely in the image of U under (Bc
μ,bf(z)).

+us, by (13) and (65), we obtain

B
c
μ,bf(z)



≥ B
c
μ,bf z0( 



 �  L|dw|

�  C B
c
μ,bf(z) ′
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≥ 
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0
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− (B− A)/2B1 − Aρ
1 − Bρ

dρ.

(68)
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Adopting similar procedures as used in finding the upper
bounds from (65), we obtain the desired result.

For A � 1 andB � − 1, we obtain a more reduced form of
+eorem 7 which is contained in the following
corollary. □

Corollary 9. If f ∈ Ss
μ,b,c[1, − 1], then

ln
1 + r
�����
1 + r

2
 ≤ Bc

μ,bf(z)


≤
r

1 − r
(r< 1). (69)

4is bound cannot be improved.

Corollary 10. If f ∈ Ss
μ,b,c[0, − 1], then

ln
1 + r
�����
1 + r2

√ 

(1/2)

≤ Bc
μ,bf(z)



≤ ln
1 + r

1 − r
 

(1/4)

+
r

2(1 − r)
(r< 1).

(70)

4is bound is sharp.

Remark 2. In respect of the lower bounds of |Bc
μ,bf(z)| for

the classes Ss
μ,b,c[1, − 1] and Ss

μ,b,c[0, − 1], given by (69) and
(70), respectively, we note that the disc of the maximum
radius is contained in the image domain Bc

μ,bf(Ur) if
f ∈ Ss

μ,b,c[1, − 1] and f ∈ Ss
μ,b,c[0, − 1], respectively, where

Ur z ∈ C: |z| � r< 1{ }.
In view of Remark 2, we note that as r⟶ 1− in the

lower bound of both Corollaries 9 and 10, we have the
following results giving the omission values for the classes
Ss
μ,b,c[1, − 1] and Ss

μ,b,c[0, − 1].

Corollary 11. Let f ∈ Ss
μ,b,c[1, − 1] and w ∈ C be such that

f(z)≠w(z ∈ U). 4en, |w|> 0.34657359.

Corollary 12. Let f ∈ Ss
μ,b,c[0, − 1] and w ∈ C be such that

f(z)≠w(z ∈ U). 4en, |w|> 0.173286795.

4. Conclusion

Bessel functions are essential in many branches of mathe-
matics and applied mathematics. Recently, there has been a
clear interest on Bessel and hypergeometric functions from
the point of view of geometric function theory. As a result,
we presented some subclasses of analytic functions with
respect to symmetrical points, which were associated with
Bessel function. +e geometric properties of these afore-
mentioned classes which include integral-preserving prop-
erties, coefficients, and distortion results were studied. As a
consequence of our investigation, some relevant special
cases were pointed out. In addition, to capture more new
results under the current examination, new idea and ap-
plications can be investigated with some positive and novel
outcomes in various fields of science, especially in mathe-
matics. +ese new investigations will be presented in future
research work being processed by the authors of the present
article.
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