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In this paper, we obtain new soliton solutions of one of the most important equations in biology (fractional time coupled nerve
fibers) using two algorithm schemes, namely, exp(− ψ(ξ)) expansion function method and (θ′(ξ)/θ2(ξ)) expansion methods. *e
equation and the solution methods have free parameters which help to make the obtained solutions are dynamics and more
readable for dealing with fractional parameter and the initial and boundary value problem. As a result, various new exact soliton
solutions for the considered model are derived which include the hyperbolic, rational, and trigonometric functions, and other
solutions are obtained. In addition, the obtained results proved that the used methods give better performance compared with
existing methods in the literature.

1. Introduction

Differential equations attained great importance with several
applications in nature and live environment [1–19]. Dif-
ferential equations were widely used in the modeling and
simulation of the biological system long time ago, for ex-
ample, population dynamics and spreading and transmis-
sion of viruses. Nerve conduction is one of the most
important phenomena in biological systems. Several studies
have attempted to provide an interpretation to the nature of
the nerve conduction. *ese studies started in the early last
century in 1925 and seemed to indicate that local circuit
currents were involved in the longitudinal propagation of
activity [20–23]. *is study presents a model of action
potential propagation in bundles of myelinated nerve fibers.
*e nature of the conduction process on an isolated nerve
axon is studied numerically and compared with the theo-
retical models [24]. Reutskiy et al. introduced a new model
that combines the single-cable formulation of Goldman and
Albus (1967) with a basic representation of the ephaptic
interaction among the fibers. *e conduction velocity (CV)
behavior is investigated in the presence of various con-
ductance parameters and temperatures [25].

Recently, the fractional calculus plays a major role in
various fields, such as fluid mechanics, plasma physics,
optical fibers, solid state physics, chemical kinematics, and
chemical physics, and geochemistry [26–33] is the specific
one which attracts our attention. Many effective methods for
obtaining exact solutions of FNLEEs have been presented
[34–42]. In the present work, we propose a system which is
governed by a fractional order derivative. *e fractional
order derivative is a concept that has been known since the
early 17th century [43–45]. *e model studied here is the
ephaptically coupled myelinated nerve fibers. *e myelin-
ated nerve fibers might be responsible for diagnostic di-
lemmas in cases of visual loss [46–48]. *ey allow an
increase in the speed of a nerve impulse while decreasing the
diameter of the nerve fiber. *e first work concerning
myelinated nerve fibers was developed by Rushton [49].

*e primary content of the article is organized as follows.
In section 2, the governing equations of the model are in-
troduced. *e properties of conformable fractional deriva-
tives are given in Section 3. Two algorithms of the proposed
analytical method, namely, exp(− ψ(ξ)) expansion function
method and (θ′(ξ)/θ2(ξ)) expansion method for solving the
reduced equation for fractional time coupled nerve fibers are
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introduced in Section 4. Finally, we briefly make a con-
clusion in Section 5.

2. Governing Model andMathematical Analysis

To consider the equations for the coupled nerve fibers,
consider their electrical analogy as in [50, 51]:
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where n represents successive active nodes, Mn represents
the voltage across the membrane, Nn represents the current
flowing longitudinally through the fiber from node n to node
n + 1,Ri andR0 are the inside and outside resistances, NC,n is
the current supplying the capacity of the active node n, while
Nion,n is the ionic current, comprising both sodium and

potassium components. According to [51–53], the complex
impedance of a capacitor reads.
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*en, the ionic current becomes
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*e ionic current is given by the following relation:
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where Mb and Ma is the threshold voltage at sodium current
and potential at the current returns to zero. By setting v

j
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n/Mb), a � (Mb/Ma), r � Ri + Rj, η �

(R0/R), D � (Rf/R), β � RfG( 1 − a), equation (1) can be
rewritten as
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where v1n � vn and v2n � wn. As long as δn tends to x, equation (5) admits to
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3. Conformable Fractional Derivatives and
Its Properties

For a given χ: (0,∞)⟶ R, some definition and useful
properties about conformable fractional derivatives can be
written as follows [22, 23]:
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and wα(χ)(t) � t1− α(dχ/dh).
In the limiting case χ: (0,∞)⟶ R, then

wα(χ ∗ h)(t) � t
1− α

h′(t)χ′(h(t)). (8)

4. Revisitationof theTwoAnalyticalTechniques

Let us consider the general form of nonlinear evolution
equation of fractal order as
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By using the traveling wave variable v(x, y, t) � V(ξ),
ξ � k(x + y − (]tα/α)), equation (9) reduces to

χ V, V′, V′, V″, . . . ,  � 0, (10)

where the prime denotes the differentiation with respect to ξ.

4.1. 3e exp(− ψ(ξ)) Expansion Function Method. *is
method proposes that the solution of equation (9) can be
written as

V(ξ) � 
N

i�0
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i
, (11)

and the constant αi will be evaluated later and ψ � ψ(ξ)

verifies

ψ′(ξ) � exp(− ψ(ξ)) + μ exp(ψ(ξ)) + λ, (12)

where λ and μ are constants and will be computed with the
flow of the paper. *e integer N is determined by balancing
between the highest order derivative. *e solutions of
equation (12) read.
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where Δ1 � − λ2 + 4μ.

Family 3. When μ � 0, λ≠ 0, and Δ � λ2 − 4μ> 0, then the
hyperbolic function solution is
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Family 5. When μ � 0, λ � 0, andΔ � λ2 − 4μ � 0, then the
rational function solution is

ψ5(ξ) � ln ξ + c1( , (17)

where c1 is constant.
*e parameters ai, μ, λ, c, k, and δ can be found by

inserting equations (11) and (12) in equation (9) and taking
some approximations for the parameters of exp(− ψ(ξ)) and
making them equal to zero. *is will produce a group of
equations which can be solved to find equation parameters.
*e exact solution of equation (9) can be found by inserting
the parameter values in equation (11).

4.2. 3e Extended (θ′(ξ)/θ2(ξ)) Expansion Method. In view
of the (θ′(ξ)/θ2(ξ)) expansionmethod, the quick gain of this
method is the solution of
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where λ and μ are constants to be determined later. It is to be
noted that the solution of equation (19) is given as follows.
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Family 8. In the limiting case λ≠ 0 and μ � 0, we have
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, (22)
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where ξ1 and ξ2 are constants to be determined later.
Here, the term N in equation (19) can be computed

taking into account the balancing between the highest order
derivative and the nonlinear term in equation (10). Making
use of equation (18) with equation (19) into equation (10),
combining all the terms of the same power of
(w′(ξ)/w2(ξ)), and performing some steps, we can get the
values of αi, βi, w, and k. By inserting these values in

equation (18) along with general solutions of equation (19),
the solutions of equation (9) can be obtained directly.

4.3. New Exact Solutions of the Reduced Equation via
exp(− ψ(ξ)) Expansion Function Method. To solve the re-
duced equation (6), via exp(− ψ(ξ)) expansion, by using the
wave transformation ξ � k(x + y − (]tα/α)), equation (6)
yields
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Considering the balance principle to equation (23), we
obtain N� 1. *en, the solution of equation (23) admits to

V(ξ) � a0 + a1 exp(− ψ(ξ)), (24)

W(ξ) � b0 + b1 exp(− ψ(ξ)). (25)

Inserting equations (25) and (24) into equation (23) with
equation (12), collecting all power of exp(− ψ(ξ)), and using
symbolic computation program, it yields as follows.
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Substituting Set 1 into equations (23) and (24), it gains
the new solutions as follows:
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Substituting Set 2 into equations (25) and (24), it gains
the new exact solution of equation (6) as follows:
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where ψi(ξ), i � 1, . . . , 5 is given in equations (13)–(17) and
ξ � k(x + y − (]tα/α)).

4.4. New Solutions for Reduced Equation (6) via Fractional
(θ′(ξ)/θ2(ξ))ExpansionMethod. *is section is devoted for
obtaining the soliton solutions of equation (6) via the
(θ′(ξ)/θ2(ξ)). Considering the balance between w″ and v3,
we get N� 1. *erefore, the solutions of equation (23)
become

V(ξ) � a0 + a1
θ′(ξ)
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 , (31)

W(ξ) � c0 + c1
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 . (32)

Inserting equations (31) and (32) with equation (19) into
equation (23) and collecting same power of w′(ξ)/w2(ξ),
equating to zero, we have a set of algebraic equations. By
solving it, we attain
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Figure 1: Soliton solutions of equation (29) in 3D and contour plots, where y� 2; k� 0.2; v � 0.2; α� 0.5; u� 3; λ� 4; a� 2; and c1 � 2.

5

4

3

2

1
10

5

0 –10 –10 –5 0 5 10

10

0
x

t

Ab
s [

V
4(
ξ)

]

4

3.5

3

2.5

2

2.5

2

10

8

6

4

2

0

x

t
4

3.5

3

Figure 2: Soliton solutions of equation (29) in 3D and contour plots, where y� 2; k� 0.2; v � 0.2; α� 0.5; u� 3; λ � 4; a� 2; D� (λ2) − (4u);
and c1 � 2.

2.4

2.3

2.2

2.1

2
10

5

0 –10 –10 –5 0 5 10

10

0
x

t

Ab
s [

V
1(
ξ)

]

2.3

2.25

2.2

2.15

2.1

2.3

2.25

2.2

2.15

2.1

10

8

6

4

2

0

x

t
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Substituting equation (33) into equations (31) and (32),
we get the new exact solutions of equation (6) as follows:

Vi(ξ) �
1
2

+
a

2
±

���
− λ
4μ



(− 1 + a)
θ′(ξ)

θ2(ξ)
 , (34)

Wi(ξ) �
1
2

+
a

2
±

���
− λ
4μ



(− 1 + a)
θ′(ξ)

θ2(ξ)
 , (35)

where (θ′(ξ)/θ2(ξ)) is given by equations (20)–(22) and
ξ � k(x + y − (]tα/α)). It is worth noting that, in the lim-
iting case r � μ, q � λ, and p � 0, the results obtained here
are the same obtained in [28].

5. Conclusion

In this paper, we introduced new solutions to one of the
most important differential equations in biology. In this
study, we have proposed a new model of myelinated nerve
fibers described by a time fractional nonlinear evolution
equation. Two algorithm schemes, namely, exp(− ψ(ξ))

expansion function method and (θ′(ξ)/θ2(ξ)) expansion
method are used for constructing the new soliton solutions
and other solutions such as hyperbolic function, trigono-
metric function, and rational function. To our knowledge,
these new solutions have not been reported in former lit-
erature, and hence, they may be of significant importance for
the explanation of some special physical phenomena. *e
results as in equations (29) and (34) are plotted in
Figures 1–4. *e obtained solutions here can be useful for
applications in mathematical physics, engineering, and
nonlinear optics. *e achieved results here show the ef-
fectiveness and reliability of the proposed technique.
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