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+is study presents numerical simulations on double-diffusive flow of a nanofluid in two cavities connected with four vertical
gates. Novel shape of an outer square shape mounted on a square cavity by four gates was used. Heterogeneous porous media and
Al2O3-water nanofluid are filled in an inner cavity. Outer rectangle shape is filled with a nanofluid only, and its left walls carry high
temperature Th and high concentrationCh.+e right walls of a rectangle shape carry low temperatureTc and low concentrationCc

and the other walls are adiabatic. An incompressible smoothed particle hydrodynamics (ISPH) method is applied for solving the
governing equations of velocities, temperature, and concentration. Results are introduced for the effects of a buoyancy ratio
(−2≤N≤ 2), Darcy parameter (10− 3 ≤Da≤ 10− 5), solid volume fraction (0≤ϕ≤ 0.05), and porous levels. Main results are
indicated in which the buoyancy ratio parameter adjusts the directions of double-diffusive convection flow in an outer shape and
inner cavity. Adding more concentration of nanoparticles reduces the flow speed and maximum of the velocity field. Due to the
presence of a porous medium layer in an inner cavity, the Darcy parameter has slight changes inside the rectangle shape.

1. Introduction

Double-diffusive convection is a form of convection flow
resulting from the variations of the diffusion rates [1].
Double-diffusive has several applications such as fuel cells,
diffusion of chemical pollutants in ocean, and nuclear waste
storage. In addition, heat and mass transfer in porous media
are surviving in numerous engineering applications in-
cluding oceanography, geophysics, chemical engineering,
and thermal engineering [2]. Double-diffusive convection in
an annulus has been studied intensively due to its appli-
cations in dying and cleaning operations and energy in solar
ponds [3].

+e adjoint influences of thermal and solutal buoyancy
forces generate complex flow in a porous annulus. Beji et al.
[4] utilized the Darcy model to investigate double-diffusive
convection in a porous annulus. Double-diffusive convec-
tion in a porous annulus subjected to mass and heat fluxes
was introduced by Marcoux et al. [5]. Nithiarasu et al. [6]
generalized a model for non-Darcy flow of double-diffusive
convection in a porous annulus. Lee et al. [7] examined the
multilayer flow in double-diffusive convection of salt water
filled in a rotating annulus. Chen et al. [8] adopted lattice
Boltzmann model to investigate the double-diffusive in a
vertical annulus by considering opposing gradients of the
temperature and concentration. Goyeau [9] studied the
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double-diffusive convection in a porous cavity below Darcy
number and porosity impacts. Chamkha and Al-Mudhaf
[10] used the finite difference method to check the effects of
an inclination angle and buoyancy ratio on double-diffusive
in a tilted porous cavity.

In the recent years, nanofluid has many applications in
solar energy systems, nuclear reactors, heat exchangers, and
so on [11–19]. Bhatti et al. [20] discussed the impacts of
chemical reaction and nonlinear thermal radiation on un-
steady 3D boundary layer flow of a viscous nanofluid having
gyrotactic microorganisms through a stretching porous
cylinder. Mohebbi and Rashidi [21] used the Lattice
Boltzmann Method (LBM) to study numerically the natural
convection flow of nanofluid in L−shaped enclosure con-
taining a heating obstacle. Chowdhury et al. [22] studied the
double-diffusive convection in an enclosure filled by porous
media and nanofluid with considering heat generation ef-
fects. +e ISPH method was adopted by Aly and Raizah [23]
to simulate double-diffusive convection in an enclosure filled
with a nanofluid.

+e topic of the fluid flow and heat transfer in hetero-
geneous porous media has many applications in remedia-
tion, enhanced oil recovery, and geological CO2 reservation.
+e porousmedia are heterogeneous porousmedia when the
permeability varies from point to point in a medium
[24–26].

Since the last decade, mesh-free methods became a well-
alternative tool for overcoming disadvantage of mesh
methods in simulating free-surface flows and high defor-
mation problems. Lucy [27] and Gingold and Monaghan
[28] firstly introduced smoothed particle hydrodynamics to
simulate astrophysical problems. +e smoothed particle
hydrodynamics (SPH) method is employed in several fields
[29–35]. An incompressible SPH (ISPH) method has the
ability for solving several complex problems by showing a
good efficiency [36–42].

+e SPH method is considered an excellent numerical
method for the problems of a highly deforming surface/
interface such as free-surface flow, dam break, wave dy-
namics, impact flows, and bubble dynamics. In addition,
the SPHmethod deals with interfaces naturally without any

special requirements. +e incompressible version of the
SPH method entitled the ISPH method and has mesh-free
advantages. +e ISPH method can handle the double-
diffusive convection flow in a complex cavity by an easy
way.

In the current research, the ISPH method is used for the
simulation of thermo-solutal convection in an outer square
shape connected with a center square cavity. +e outer
square shape and inner square cavity are filled with
Al2O3-water nanofluid, and the inner cavity is saturated by a
heterogeneous porous medium. It is found that an aug-
mentation in buoyancy ratio parameter increases the
thermo-solutal convection in both of outer square shape and
inner cavity. Moreover, the directions of thermo-solutal
convection are strongly depending on the values of buoy-
ancy ratio parameter. Presence of a porous medium in an
inner square cavity only makes slight effects of Darcy pa-
rameter and porous medium levels in maximum velocity
field. An incremental in solid volume fraction augments
viscosity of water, and consequently, the flow speed
decreases.

2. Mathematical Formulations

Figure 1 presents the initial physical model and initial
particle distributions. In the current physical model, the
outer square shape has a height 2L and the width of a square
shape equals 0.1. +e inner center cavity is a square cavity
with a height L, and there are four normal gates between an
outer square shape and an inner square cavity. Only the left
walls of an outer square shape are carrying Th and Ch and
right walls have Tc and Cc, and the other walls are adiabatic.
+e nanofluid occupied an outer square shape and inner
square cavity, and the nanofluid is modeled by a one-phase
model. Heterogeneous porous media are saturated inner
square cavity only and the porous media are in thermal
equilibrium with nanofluid. +ermophysical properties of
water (base fluid) and Al2O3 at T � 310K are introduced in
Table 1.

Time dependent of double-diffusive convection for
nanofluid flow according to [43, 44] is
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Figure 1: Initial schematic diagram and initial particle distributions.

Table 1: Nanofluid thermo-physical properties at T � 310K [45–47].

ρ(Kgm− 3) K(W/mK) Cp(J/kgK) β × 10− 5K− 1 d(nm)

H2O 993 0.628 4178 36.2 0.385
Al2O3 3970 40 765 0.85 33
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+e porous matrix expressions are
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where uB is Brownian velocity, Trf is a freezing point of a
base fluid, and KB � 1.380648 × 10− 23 J/K is Boltzmann’s
coefficient.

2.1. Dimensionless Boundary Conditions. +e dimensionless
boundary conditions are

At a left wall of an outer square shape, 0≤Y≤ 2L; θ � 1,Φ � 1, U � V � 0,

At a right wall of an outer square shape, 0≤Y≤ 2L; θ � 0,Φ � 0, U � V � 0,

At top/bottomwalls of an outer square shape , 0≤X≤ 2L;
zθ
zY

� 0,
zΦ
zY

� 0, U � V � 0,

At the walls of an inner cavity,
zθ
zn

� 0,
zΦ
zn

� 0, U � V � 0,

(5)
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where n is a normal vector.

3. ISPH Method

+is section summarizes the following steps of the ISPH
method.
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Shifting technique is
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3.1. SPH Formulation. Any hydrodynamic function Ω can
be defined as

Ω xi, t(  �  W rij, h Ω xj, t dv, (13)

where h is a smoothing length and W is a kernel function.
Equation (13) is defined by SPH approximation as
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where αd � 7/478πh2. First derivative is approximated by
SPH:
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Here, first derivative of a velocity is corrected by a kernel
gradient normalization L(rij) as
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SPH approximations of second derivatives for the ve-
locity and pressure are
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+e calculations of FORTRAN-90 code of the ISPH
method were performed by Shaheen II supercomputer
owned by King Abdullah University of Science and Tech-
nology, +uwal, Saudi Arabia (project number K1467)
(https://www.hpc.kaust.edu.sa/content/shaheen-ii).

4. Validation Test

In this section, the validation test of the ISPHmethod for the
problem of natural convection in a partitioned porous cavity
has been conducted. Figure 2 shows the temperature profiles
in a partitioned porous cavity among the results from the
current results of the ISPH method and Beckermann et al.
[48]. +e temperature profiles were evaluated at three dif-
ferent locations in a cavity: Y/L � 0.055, Y/L � 0.496, and
Y/L � 0.874. It is clear that the results of the ISPH method
have a well agreement with the experimental and numerical
results of Beckermann et al. [48].

5. Results and Discussion

+e numerical results are presented in terms of concen-
tration, temperature, and velocity field characteristics in
order to get a clear insight on the problem of double-
diffusive of a nanofluid in an outer square shape mounted
on the four vertical gates in a porous cavity. Figures 3–5
show the impacts of a buoyancy ratio parameter on the

characteristic of the temperature, concentration, and
velocity field. It is revealed that an increase in a buoyancy
ratio parameter rises the temperature and concentration
distributions inside an outer square shape and inner
square cavity. Moreover, at opposing flow mode (N< 0),
the double-diffusive convection occurs in the bottom area
of an outer square shape and in an inner cavity. While at
aiding flow mode (N> 0), the double-diffusive convection
occurs in the top area of an outer square shape and in a
cavity. +e maximum of the velocity field increases by
175.75% as the buoyancy ratio parameter increases from
N � −2 to N � 2. Moreover, the maximum of the velocity
field appears in the left-top area of an outer square shape
at opposing flow mode (N< 0), and it appears in the
bottom-left part of an outer square shape at aiding flow
mode (N> 0).

+e effects of the Darcy parameter on the characteristic
of the temperature, concentration, and velocity field have
been shown in Figures 6–8. As a Darcy parameter represents
a useful factor for explaining the fluid flow in the porous
materials, a little decrease in the temperature and concen-
tration distributions is occurring when the Darcy parameter
decreases from 10− 3 to 10− 5. Maximum of the velocity field
is reducing as a Darcy parameter decreases from 10− 3 to
10− 5. Moreover, a lower velocity field in the center of a
square cavity appears at a lower Darcy parameter Da≤ 10− 4.
From these figures, it is noted there are slight changes in the
characteristics of the temperature, concentration, and ve-
locity field below the effects of a Darcy parameter. +e
physical reason returns to the presence of a porous medium
layer in the inner cavity only, while an outer square shape
contains nanofluid only.

Figures 9–11 introduce the influences of the solid volume
fraction on the characteristics of temperature, concentra-
tion, and velocity field. It is seen that the temperature and
concentration distributions have slight decrease according
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to adding more concentration of nanoparticles until 5%.+e
concentration of the nanoparticles is limited to 5% to avoid
solidification between the nanofluid and porous media.
Adding more concentration of the nanoparticles increases
the nanofluid viscosity. As a result, the maximum of the
velocity field decreases by 44.77% as the solid volume
fraction increases from 0 to 0.05.

+e variations of the porous levels according to different
η1 and η2 on the temperature, concentration, and velocity
field profiles have been shown in Figures 12–14. In Figure 12,
the highest distributions of the temperature are obtained at a
heterogeneous porous medium η1 � η2 � 1.5 and lowest

temperature distributions are obtained at a homogeneous
porous medium η1 � η2 � 0. In Figure 13, it is seen that the
concentration distributions are affected strongly by
changing the porous medium levels. A heterogeneous po-
rous medium η1 � η2 � 1.5 gives the highest concentration
distributions in an inner cavity and lowest concentration
distributions in an outer square shape. In contrast, a ho-
mogeneous porous medium η1 � η2 � 0 gives the lowest
concentration distributions in an inner cavity and the
highest concentration distributions in an outer square shape.
In Figure 12, there are slight changes in the velocity field
below different levels of porous media. +e physical reason
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Figure 2: Comparison of the temperature profiles in a partitioned porous cavity between Beckermann et al. [48] and ISPH method.
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Figure 3: Features of temperature below the variations of a buoyancy ratio parameter at Ra � 104,ϕ � 0.01,Da � 10− 3, η1 � η2 � 1.5,
ε � 0.6, Le � 20, and τ � 1.
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Figure 7: Features of concentration below the variations of a Darcy parameter at N � 1,Ra � 104, ϕ � 0.01, η1 � η2 � 1.5, ε � 0.6, Le � 20,
and τ � 1.
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Figure 9: Features of temperature below variations of a solid volume fraction parameter at N � 1,Ra � 104,Da � 10− 3, η1 � η2 � 1.5,
ε � 0.6, Le � 20, and τ � 1.
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Figure 10: Features of concentration below the variations of a solid volume fraction parameter at N � 1,Ra � 104,Da � 10− 3, η1 � η2 � 1.5,
ε � 0.6, Le � 20, and τ � 1.
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Figure 11: Velocity field below the variations of a solid volume fraction parameter at N � 1,Ra � 104,Da � 10− 3, η1 � η2 � 1.5,
ε � 0.6, Le � 20, and τ � 1.
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Figure 12: Features of temperature below the variations of a porous level, η1 and η2, at N � 1,ϕ � 0.01,Ra � 104,Da � 10− 4, ε � 0.6,
Le � 20, and τ � 1.
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returns to the presence of porous media in an inner cavity
only.

6. Conclusion

+e novelty of this work is to simulate double-diffusive
convection of nanofluid inside a new novel shape of two
square cavities connected by four vertical gates. +ree dif-
ferent levels of porous media related to the values of η1 and
η2 were conducted. An inner cavity is filled by a hetero-
geneous porous medium and Al2O3-water nanofluid. +e
outer square shape with four gates is filled by a nanofluid
only. An incompressible version of the SPH method was
utilized to solve the nondimensional governing equations of
the current problem. +e main finding of the current results
can be summarized as follows:

(i) An augmentation in a buoyancy ratio parameter
increases the temperature and concentration dis-
tributions in an outer square shape and in an inner
cavity

(ii) At opposing flow mode, N< 0, and the direction of
buoyancy force from upwards to downwards and
the maximum of velocity field occur at a top-left
part of an outer square shape

(iii) At aiding flow mode, N> 0, and the direction of
buoyancy force from downwards into upwards and
the maximum of velocity field occur at a bottom-left
part of an outer square shape

(iv) A decrease in the Darcy parameter reduces the flow
speed in an inner porous cavity, and it has slight
effects in an outer square shape

0.8 1.00.0 0.2 0.4 0.6

η1 = η2 = 0 η1 = η2 = 0.5 η1 = η2 = 1.5

Figure 13: Features of concentration below the variations of a porous level, η1 and η2, at N � 1, ϕ � 0.01,Ra � 104,Da � 10− 4, ε � 0.6,
Le � 20, and τ � 1.
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Figure 14: Features of concentration below the variations of a porous level, η1 and η2, at N � 1, ϕ � 0.01,Ra � 104,Da � 10− 4, ε � 0.6,
Le � 20, and τ � 1.

Journal of Mathematics 11



(v) Adding more concentration of nanoparticles in-
creases the viscosity of a host fluid, and conse-
quently, the flow speed inside an outer square shape
and in an inner cavity decreases

(vi) Variation in porous medium levels changes the
concentration distributions inside an outer square
shape and in an inner cavity

Nomenclature

C: Concentration
Cp: Heat capacity
Da: Darcy parameter
Deff : Effective diffusivity
g: Gravitational acceleration, m/s2
H: Porous height
h: Smoothing length
K0: Permeability
KB: Boltamann’s coefficient, J/K
k: +ermal conductivity, W/mK
L: Length of an inner square cavity
Le: Lewis number
N: Buoyancy ratio parameter
p: Dimensional pressure, N/m2

P: Dimensionless pressure
Pr: Prandtl number
Trf : Water freezing point
T: Dimensional temperature, K

Ra: Rayleigh number:
L: Kernel gradient normalization
t: Dimensional time, s

m: Mass, kg
rij: Distance between particles
U, V: Dimensionless velocity components
u, v: Dimensional velocity components, m/s
uB: Brownian velocity
W: Smoothing function
x, y: Dimensional Cartesian coordinates, m

X, Y: Dimensionless Cartesian coordinates
Greek symbols
α: Effective thermal diffusivity, m2/s
αd: Coefficient of a kernel function
β: +ermal expansion coefficient, K− 1

η: Constant to avoid zero dominator
η1: Change rate of ln(K) in X−direction
η2: Change rate of ln(K) in Y−direction
Φ: Dimensionless concentration
ϕ: Solid volume fraction
ε: Porosity
c: Relaxation coefficient
μ: Dynamic viscosity, m2/s
ρ: Density, kg/m3

ρnum: Numerical density
Ω: Any hydrodynamic function
τ: Dimensionless time
θ: Dimensionless temperature.
Subscripts
c: Cold
h: Hot

f: Fluid
nf: Nanofluid
p: Porous medium.
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