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*is paper concerns on two types of integral boundary value problems of a nonlinear fractional differential system, i.e., nonlocal
strip integral boundary value problems and coupled integral boundary value problems. With the aid of the monotone iterative
method combined with the upper and lower solutions, the existence of extremal system of solutions for the above two types of
differential systems is investigated. In addition, a new comparison theorem for fractional differential system is also established,
which is crucial for the proof of the main theorem of this paper. At the end, an example explaining how our studies can be used is
also given.

1. Introduction

Differential equations with integral boundary conditions
have been applied in many fields such as thermoelasticity,
blood flow phenomena, and groundwater systems. For
specific details, readers interested in this topic can see papers
[1–6] and the references therein. In addition, the advantages
of fractional derivatives make fractional differential equa-
tions a hot topic. At present, it exhibits great vitality and
splendor in a number of applications of interest such as
biophysics, hemodynamics, complex media circuit analysis
and simulation, control optimization theory, and earthquake
predictionmodels. For more details, refer to books in [7–12].
For the latest developments and trends, refer to [13–24].
Fractional differential system, as an important branch of
differential system, is attracting more and more scholars
research interest, which comes from its good practical ap-
plication background (see [25–32]).

In [25], by applying the monotone iterative method,
Wang, Agarwal, and Cabada investigated the existence of

extremal solutions for a nonlinear Riemann–Liouville
fractional differential system:

D
αφ( ε ) � X( ε,φ( ε ),ψ( ε ) ), ε ∈ ( 0,B ],

D
αψ( ε ) � Y( ε,ψ( ε ),φ( ε ) ), ε ∈ ( 0,B ],

ε1− αφ( ε )|ε�0 � x0, ε1− αψ( ε )|ε�0 � y0,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where 0<B<∞,X,Y ∈ C([0,B] × R × R,R), x0, y0 ∈ R
and x0 ≤y0.

In [32], Ahmad and Nieto studied a three point-coupled
nonlinear Riemann–Liouville fractional differential system
given by

D
αφ(ε) �X(ε,ψ(ε),D

δψ(ε)), ε ∈ (0,1),

D
βψ(ε) �Y(ε,φ(ε),D

σφ(ε)), ε ∈ (0,1),

φ(0) � 0,φ(1) � cφ(η), ψ(0) � 0,ψ(1) � cψ(η),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)
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where 1<α,β<2,δ,σ,c>0,0<η<1,α − σ≥1,β − δ≥1,

cηα− 1<1,cηβ− 1<1,X, Y ∈C([0,1] ×R×R,R),x0,y0 ∈R.
By using the Schauder fixed-point theorem, the authors
successfully obtained the existence of solution of the system.

Inspired by these papers, we concern on the following
nonlinear Riemann–Liouville fractional differential system
of order 0< α≤ 1:

D
αφ( ε ) � F( ε,φ( ε ),ψ( ε ), φ( θ( ε ) ) ),

D
αψ( ε ) � G( ε,ψ( ε ), φ( ε ),ψ( θ( ε ) ) ),

 (3)

where ε ∈ ( 0, L ]( 0< L<∞ ), J � [0, L], F,G ∈
C(J × R × R × R,R), θ ∈ C(J,J). Notice that our system
contains the unknown functions φ(ε),ψ(ε) and deviating
arguments φ(θ(ε)),ψ(θ(ε)).

In order to approximate the solution of the nonlinear
Riemann–Liouville fractional differential system mentioned
above, we firstly give a new comparison result for fractional
differential system. Also, we develop the monotone iterative
technique for the system. *e advantage of the technique
needs no special emphasis [33–40]. It is worth to point that,
in this paper, only half pair of upper and lower solutions is
assumed to the system, which is weaker than a pair of upper
and lower solutions. It is believed that this is also an attempt
to apply the monotone iterative method to solve nonlinear
Riemann–Liouville fractional differential systems with de-
viating arguments and families of nonlocal coupled and strip
integral boundary conditions.

To this end, we study the following two types of integral
boundary conditions:

(i) Nonlocal coupled integral boundary conditions of
the form:

ε1− αφ( ε )|ε�0 � ε1− α

τ

0
W( s )ψ( s )ds + x0,

ε1− αψ( ε )|ε�0 � ε1− α

τ

0
W( s )φ( s )ds + y0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where 0< τ < L, W( s ) ∈ C(J, ( − ∞, 0 ] ),

x0, y0 ∈ R and x0 ≤y0.
In the present study, nonlocal type of integral
boundary condition with limits of integration in-
volving the parameters 0< τ <L has been intro-
duced. It is worth mentioning that, in practical
situations, such nonlocal integral boundary condi-
tions may be regarded as a continuous distribution
of arbitrary finite length; for instance, refer to [41].

(ii) Nonlocal strip condition of the form:

ε1− αφ( ε )|ε�0 � ε1− α

τ

]
V( s )φ( s )ds + x0,

ε1− αψ( ε )|ε�0 � ε1− α

τ

]
V( s )ψ( s )ds + y0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where 0< ]< τ <L, V( s ) ∈ C(J, [ 0, +∞ ) ), x0, y0 ∈ R and
x0 ≤y0.

In fact, nonlocal strip condition is used to describe a
continuous distribution of the values of the unknown

function on an arbitrary finite segment of the interval. If
]⟶ 0, τ⟶ L, the condition is degenerated to a classic
integral boundary condition (see [42] for details).

2. Comparison Theorem: The Unique
Solution of Linear System

Let

C1− α(J ) � φ ∈ C( 0, L ]; ε1− αφ ∈ C(J ) , (6)

with the norm

‖φ‖C1− α
� ε1− αφ

����
����C

. (7)

Next, we provide a comparison result from Wang’s
paper [43]. Notice that the comparison result is valid for I(ε)
which is a nonnegative bounded integrable function.

Lemma 1. Let ξ ∈ C1− α(J)be locally Hölder continuous, and
ξ satisfies

D
αξ( ε )≥ − I( ε )ξ( ε ),

ε1− αξ( ε )|ε�0 ≥ 0,
 (8)

where I(ε) is a nonnegative bounded integrable function and
satisfies supε∈JI(ε)LαΓ(1 − α)< 1.
;en, ξ( ε )≥ 0, for all ε ∈ ( 0, L ].

Now, we are in a position to prove the following new
comparison result for fractional differential system.

Lemma 2 (comparison theorem). Let φ,ψ ∈ C1− α(J)be
locally Hölder continuous and satisfy

D
αφ( ε )≥ − I( ε )φ( ε ) + J( ε )ψ( ε ), ε ∈ ( 0, L ],

D
αψ( ε )≥ − I( ε )ψ( ε ) + J( ε )φ( ε ), ε ∈ ( 0, L ],

ε1− αφ( ε )|ε�0 ≥ 0,

ε1− αψ( ε )|ε�0 ≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where I(ε), J(ε) are nonnegative bounded integrable func-
tions and I(ε)≥ J(ε)≥ 0, for all ε ∈ J.

If
sup
ε∈J

(I + J)(ε)LαΓ(1 − α)< 1, (10)

then φ( ε )≥ 0,ψ( ε )≥ 0, for all ε ∈ ( 0, L ].

Proof. Put ξ( ε ) � φ( ε ) + ψ( ε ), for all ε ∈ ( 0, L ]. *en,
by (9), we have

D
αξ( ε )≥ − ( I − J )( ε )ξ( ε ), ε ∈ ( 0, L ],

ε1− αξ( ε )|ε�0 ≥ 0.
 (11)

*us, by (11) and Lemma 1, we have that

ξ(ε )≥0, forε ∈ (0,L], i.e.φ(ε) +ψ(ε)≥0, forε ∈ (0,L].

(12)
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Next, we show that φ( ε )≥ 0,ψ( ε )≥ 0, for ε ∈ ( 0, L ].
In fact, by (9) and (12), we have that

D
αφ( ε )≥ − ( I + J )( ε )φ( ε ), ε ∈ ( 0, L ],

ε1− αφ( ε )|ε�0 ≥ 0.
 (13)

By (13) and Lemma 1, we have that
φ( ε )≥ 0, for ε ∈ ( 0, L ]. Similarly, we can show that
v( ε )≥ 0, for ε ∈ ( 0, L ].

Finally, we consider the linear system:

D
αφ(ε ) � σ1(ε) − I(ε)φ(ε ) − J(ε )ψ(ε), ε ∈ (0,L],

D
αψ(ε ) � σ2(ε) − I(ε )ψ(ε) − J(ε)φ(ε), ε ∈ (0,L],

ε1− αφ(ε)|ε�0 � r1,ε
1− αψ(ε )|ε�0 � r2,

⎧⎪⎪⎨

⎪⎪⎩

(14)

where I(ε), J(ε) are nonnegative bounded integrable func-
tions σ1, σ2 ∈ C(J,R), r1, r2 ∈ R.

Lemma 3. If 10 holds, then the problem 14has a unique
system of solutions in C1− α([0, L]) × C1− α([0, L]).

Proof. Let

ξ1( ε ) �
φ( ε ) + ψ( ε )

2
,

ξ2( ε ) �
φ( ε ) − ψ( ε )

2
, ε ∈ ( 0, L ],

(15)

where ξ1 and ξ2 solve the problems

D
αξ1( ε ) � ( σ1 + σ2 )( ε ) − ( I + J )( ε )ξ1( ε ), ε ∈ ( 0, L ],

ε1− αξ1( ε )|ε�0 � r1 + r2,


(16)

and

D
αξ2(ε ) �(σ1 − σ2 )(ε) − (I − J)(ε )ξ2(ε ), ε ∈ (0,L],

ε1− αξ2(ε)|ε�0 � r1 − r2.


(17)

It is obvious that the problems (16) and (17) have the
unique solution ξ∗, ξ∗∗ ∈ C1− α([0, L]), respectively. Since
ξ∗, ξ∗∗ are unique, then by (14) and (15), we can show that
the problem (14) has a unique system of solutions in
C1− α([0, L]) × C1− α([0, L]). □

3. Extremal Solutions of Nonlinear System

Theorem 1. Assume that the following holds:
(H1) ;ere exist two locally Hölder continuous functions

φ0,ψ0 ∈ C1− α([0, L]) satisfying φ0(ε)≤ψ0(ε) such that

D
αφ0( ε )≤F( ε,φ0( ε ),ψ0( ε ),φ0( θ( ε ) ) ), ε ∈ ( 0, L ],

ε1− αφ0( ε )|ε�0≤ ε
1− α


τ

0
W( s )ψ0( s )ds + x0,

D
αψ0( ε )≥G( ε,ψ0( ε ),φ0( ε ),ψ0( θ( ε ) ) ), ε ∈ ( 0, L ],

ε1− αψ0( ε )|ε�0≥ ε
1− α


τ

0
W( s )φ0( s )ds + y0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

(H2) ;ere exist nonnegative bounded integrable func-
tions I(ε), J(ε) which satisfy (10), and I(ε)≥ J(ε), such that

F( ε,φ( ε ),ψ( ε ), φ( θ( ε ) ) ) − F( ε, μ( ε ), ]( ε ), μ( θ( ε ) ) )≥ − I( ε )(φ − μ )( ε ) − J( ε )(ψ − ] )( ε ),

G( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ) − G( ε, μ( ε ), ]( ε ), μ( θ( ε ) ) )≥ − I( ε )(φ − μ )( ε ) − J( ε )(ψ − ] )( ε ),

G( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ) − F( ε, μ( ε ), ]( ε ), μ( θ( ε ) ) )≥ − I( ε )(φ − μ )( ε ) − J( ε )(ψ − ] )( ε ),

⎧⎪⎪⎨

⎪⎪⎩
(19)

where φ0(ε)≤ μ≤φ≤ψ0(ε),φ0(ε)≤ψ ≤ ]≤ψ0(ε).
*en, (3) and (4) have extremal systems of sol-

utions(φ∗,ψ∗) ∈ [φ0,ψ0] × [φ0,ψ0]. Moreover, there exist
monotone iterative sequences φn , ψn  ⊂ [φ0,ψ0] such
thatφn⟶ φ∗,ψn⟶ ψ∗(n⟶∞) uniformly on compact
subsets of(0, L] and

φ0≤φ1≤ · · · ≤φn≤ · · · ≤φ∗ ≤ψ∗≤ · · · ≤ψn≤ · · · ≤ψ1≤ψ0.

(20)

Proof. For any φn− 1,ψn− 1 ∈ C1− α([0, L]), n≥ 1, considering
(14) with
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σn
1( ε ) � F( ε,φn− 1( ε ),ψn− 1( ε ),φn− 1( ( θ( ε ) ) ) + I( ε )φn− 1( ε ) + J( ε )ψn− 1( ε ),

σn
2( ε ) � G( ε,ψn− 1( ε ),φn− 1( ε ),ψn− 1( ( θ( ε ) ) ) + I( ε )ψn− 1( ε ) + J( ε )φn− 1( ε ),

r
n
1 � ε1− α


τ

0
W( s )ψn− 1( s )ds + x0, r

n
2 � ε1− α


τ

0
W( s )φn− 1( s )ds + y0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

we have

D
αφn( ε ) � σn

1( ε ) − I( ε )φn( ε ) − J( ε )ψn( ε ), ε ∈ ( 0, L ],

D
αψn( ε ) � σn

2( ε ) − I( ε )ψn( ε ) − J( ε )φn( ε ), ε ∈ ( 0, L ],

ε1− αφn( ε )|ε�0 � r
n
1, ε1− αψn( ε )|ε�0 � r

n
2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

By Lemma 3, we know that (22) has a unique system of
solutions in C1− α([0, L]) × C1− α([0, L]).

Now, we show that φn(ε) , ψn(ε)  satisfy

φn− 1 ≤φn ≤ψn ≤ψn− 1, n � 1, 2, . . . . (23)

Let ξ � φ1 − φ0, ζ � ψ0 − ψ1. By condition (H1) and (22),
we have that

D
αξ( ε )≥ − I( ε )ξ( ε ) + J( ε )ζ( ε ), D

αζ( ε )≥ − I( ε )ζ( ε ) + J( ε )ξ( ε ),

ε1− αξ( ε )|ε�0 ≥ 0, ε1− αζ( ε )|ε�0 ≥ 0.
 (24)

*us, by Lemma 2, we have that
ξ( ε )≥ 0, ζ( ε )≥ 0, forall ε ∈ ( 0, L ].

Let w � ψ1 − φ1, by condition (H2) and (22), we get

D
α
w( ε ) � D

αψ1( ε ) − D
αφ1( ε )

� G( ε,ψ0( ε ),φ0( ε ),ψ0( θ( ε ) ) ) + I( ε )ψ0( ε ) + J( ε )φ0( ε ) − I( ε )ψ1( ε ) − J( ε )φ1( ε )

− F( ε,φ0( ε ),ψ0( ε ),φ0( θ( ε ) ) ) − I( ε )φ0( ε ) − J( ε )ψ0( ε ) + I( ε )φ1( ε ) + J( ε )ψ1( ε )

≥ − I( ε )(ψ0 − φ0 )( ε ) − J( ε )(φ0 − ψ0 )( ε ) + I( ε )ψ0( ε ) + J( ε )φ0( ε ) − I( ε )ψ1( ε )

− J( ε )φ1( ε ) − I( ε )φ0( ε ) − J( ε )ψ0( ε ) + I( ε )φ1( ε ) + J( ε )ψ1( ε )

� − ( I − J )( ε )w( ε ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Besides,

ε1− α
w(ε)|ε�0 � ε1− α


τ

0
W(s) φ0 − ψ0( (s)ds + y0 − x0 ≥ 0.

(26)

By Lemma 1, we can get w( ε )≥ 0, for ε ∈ ( 0, L ].
*erefore, we have the relation φ0 ≤φ1 ≤ψ1 ≤ψ0.

Assume that φk− 1 ≤φk ≤ψk ≤ψk− 1, for some k≥ 1. *en,
using the same way as above, by Lemmas 1 and 2 again, we
can obtain φk ≤φk+1 ≤ψk+1 ≤ψk. By induction, it is not
difficult to show that

φ0 ≤φ1 ≤ · · · ≤φn ≤ · · · ≤ψn ≤ · · · ≤ψ1 ≤ψ0. (27)

Employing the standard arguments, we have

lim
n⟶∞

φn(ε) � φ∗(ε), lim
n⟶∞

ψn(ε) � ψ∗(ε) (28)

uniformly on compact subsets of ( 0, L ], and
φ∗,ψ∗ ∈ [φ0,ψ0] satisfy (3) and (4). Letting n⟶∞ in
(3.15), we get that (φ∗,ψ∗) is solutions of (3) and (4) in
[φ0,ψ0] × [φ0,ψ0] and (20) holds.

Finally, we prove that (φ∗,ψ∗) is extremal solutions of
(3) and (4) in [φ0,ψ0] × [φ0,ψ0]. If (φ,ψ) ∈ [φ0,ψ0]×

[φ0,ψ0] is any solutions of (3) and (4), which means

D
αφ( ε ) � F( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ), ε ∈ ( 0, L ],

D
αψ( ε ) � G( ε,ψ( ε ),φ( ε ),ψ( θ( ε ) ) ), ε ∈ ( 0, L ],

ε1− αφ( ε )|ε�0 � ε1− α

τ

0
W( s )ψ( s )ds + x0,

ε1− αψ( ε )|ε�0 � ε1− α

τ

0
W( s )φ( s )ds + y0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)
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By (22), (29), (H2), and Lemma 2, it is easy to prove that

φn ≤φ,ψ ≤ψn, n � 1, 2, . . . . (30)

Taking the limits in (30), we get φ∗ ≤φ,ψ ≤ψ∗, which
implies (φ∗,ψ∗) is extremal solutions of (3) and (4) in
[φ0,ψ0] × [φ0,ψ0].

*is completes the proof. □

We give the following assumption for convenience.
(H1′) *ere exist two locally Hölder continuous func-

tions φ0,ψ0 ∈ C1− α([0, L]) satisfying φ0(ε)≤ψ0(ε) such that

D
αφ0( ε )≤F( ε,φ0( ε ),ψ0( ε ),φ0( θ( ε ) ) ), ε ∈ ( 0, L ],

ε1− αφ0( ε )|ε�0≤ ε
1− α


τ

]
V( s )φ0( s )ds + x0,

D
αψ0( ε )≥G( ε,ψ0( ε ),φ0( ε ),ψ0( θ( ε ) ) ), ε ∈ ( 0, L ],

ε1− αψ0( ε )|ε�0≥ ε
1− α


τ

]
V( s )ψ0( s )ds + y0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

By a proof similar to *eorem 1, we have the following.

Theorem 2. Suppose that conditions (H1′) and (H2) hold.
;en, (3) and (5) have extremal system of sol-
utions(φ∗,ψ∗) ∈ [φ0,ψ0] × [φ0,ψ0]. Moreover, there exist
monotone iterative sequences φn , ψn  ⊂ [φ0,ψ0]such
thatφn⟶ φ∗,ψn⟶ ψ∗(n⟶∞)uniformly on compact
subsets of( 0, L ] and

φ0≤φ1≤ · · · ≤φn≤ · · · ≤φ∗ ≤ψ∗≤ · · · ≤ψn≤ · · · ≤ψ1≤ψ0.

(32)

4. Example

Consider the following problem:

D
αφ( ε ) �

1
15
ε3[ ε − φ( ε ) ] −

1
20
ε4ψ2

( ε ) +
1
15
ε4 tan

π
4
φ

ε2

2
  ,

D
αψ( ε ) �

1
15
ε3[ ε − ψ( ε ) ] −

1
20
ε4φ2

( ε ) +
1
15
ε4 tan

π
4
ψ

ε2

2
  ,

ε1− αφ( ε )|ε�0 � ε1− α

2/3

1/6

1
3

+ s
2

 φ( s )ds,

ε1− αψ( ε )|ε�0 � ε1− α

2/3

1/6

1
3

+ s
2

 ψ( s )ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where ε ∈ J, α � 1/2, and Dα is the standard Rie-
mann–Liouville fractional derivative.

Clearly,

F( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ) �
1
15
ε3[ ε − φ( ε ) ] −

1
20
ε4ψ2

( ε ) +
1
15
ε4 tan

π
4
φ( θ( ε ) ) ,

G( ε,ψ( ε ),φ( ε ),ψ( θ( ε ) ) ) �
1
15
ε3[ ε − ψ( ε ) ] −

1
20
ε4φ2

( ε ) +
1
15
ε4 tan

π
4
ψ( θ( ε ) ) ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(34)

where θ(ε) � ε2/2.
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Taking φ0(ε) � 0,ψ0(ε) � 1, it is easy to show that
condition (H1′) of *eorem 2 holds.

On the contrary, we have

F( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ) − F( ε, μ( ε ), ]( ε ), μ( θ( ε ) ) )≥ −
2
15
ε3(φ − μ )( ε ),

G( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ) − G( ε, μ( ε ), ]( ε ), μ( θ( ε ) ) )≥ −
2
15
ε3(φ − μ )( ε ),

G( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ) − F( ε, μ( ε ), ]( ε ), μ( θ( ε ) ) )≥ −
2
15
ε3(φ − μ )( ε ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

where φ0(ε)≤ μ≤φ≤ψ0(ε),φ0(ε)≤ψ ≤ ]≤ψ0(ε).
We see I(ε) � 2/15ε3, J(ε) � 0, and

sup
ε∈J

(I + J)(ε)LαΓ(1 − α) � 2
��
π

√
/15< 1. So, (H2) holds.

*us, *eorem 2 is applied to the system (33), and we
have the conclusion of *eorem 2.

5. Conclusion

In this paper, by employing the method of upper and lower
solutions combined with the monotone iterative technique,
we studied a class of nonlinear fractional differential system
involving nonlocal strip and coupled integral boundary
conditions. Precisely, we considered the following nonlinear
Riemann–Liouville fractional differential system:

D
αφ( ε ) � F( ε,φ( ε ),ψ( ε ),φ( θ( ε ) ) ),

D
αψ( ε ) � G( ε,ψ( ε ),φ( ε ),ψ( θ( ε ) ) ),

 (36)

with two types of integral boundary conditions:

(i) Nonlocal coupled integral boundary conditions of
the form:

ε1− αφ( ε )|ε�0 � ε1− α

τ

0
W( s )ψ( s )ds + x0,

ε1− αψ( ε )|ε�0 � ε1− α

τ

0
W( s )φ( s )ds + y0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

(ii) Nonlocal strip condition of the form:

ε1− αφ( ε )|ε�0 � ε1− α

τ

]
V( s )φ( s )ds + x0,

ε1− αψ( ε )|ε�0 � ε1− α

τ

]
V( s )ψ( s )ds + y0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

We investigated the existence of extremal system of
solutions for the above nonlinear fractional differential
system involving nonlocal strip and coupled integral
boundary conditions. A new comparison result for fractional
differential system was also established, which played an
important role in the proof of our main results. It is a
contribution to the field of fractional differential system. As
an extension of our conclusion, we present an open question,
namely, how to develop the existence of extremal system of

solutions for the above nonlinear fractional differential
system with impulsive effect by the method of upper and
lower solutions combined with the monotone iterative
technique. *e biggest difficulty for this is to perfectly es-
tablish new comparison result for fractional differential
system with impulsive effect.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was sponsored by K. C. Wong Magna Fund in
Ningbo University.

References

[1] B. Ahmad, A. Alsaedi, and B. S. Alghamdi, “Analytic ap-
proximation of solutions of the forced Duffing equation with
integral boundary conditions,” Nonlinear Analysis: Real
World Applications, vol. 9, no. 4, pp. 1727–1740, 2008.

[2] C. S. Goodrich, “Existence and uniqueness of solutions to a
fractional difference equation with nonlocal conditions,”
Computers & Mathematics with Applications, vol. 61, no. 2,
pp. 191–202, 2011.

[3] Q. Song and Z. Bai, “Positive solutions of fractional differ-
ential equations involving the Riemann-Stieltjes integral
boundary condition,” Advances in Difference Equations,
vol. 183, pp. 1–7, 2018.

[4] G. Wang, K. Pei, R. P. Agarwal et al., “Nonlocal Hadamard
fractional boundary value problem with Hadamard integral
and discrete boundary conditions on a half-line,” Journal of
Computational and Applied Mathematics, vol. 343, pp. 230–
239, 2018.

[5] B. Zhang, J. J. Nieto, and A. Alsaedi, “Existence and
uniqueness of solutions for nonlinear fractional differential
equations with non-separated type integral boundary con-
ditions,” Acta Mathematica Scientia, vol. 31, no. 6,
pp. 2122–2130, 2011.

[6] L. Zhang, B. Ahmad, and G. Wang, “*e existence of an
extremal solution to a nonlinear system with the right-handed

6 Journal of Mathematics



Riemann-Liouville fractional derivative,” Applied Mathe-
matics Letters, vol. 31, no. 3, pp. 1–6, 2014.

[7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “*eory and
applications of fractional differential equations,” in North-
Holland Mathematics StudiesElsevier Science BV, Amster-
dam, Netherlands, 2006.

[8] I. Podlubny, Fractional Differential Equations, Mathematics in
Science and Engineering, Academic Press, New York, NY,
USA, 1999.

[9] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Eds., Ad-
vances in Fractional Calculus: ;eoretical Developments and
Applications in Physics and Engineering, Springer, Dordrecht,
Netherlands, 2007.

[10] V. Lakshmikantham, S. Leela, and J. Vasundhara, ;eory of
Fractional Dynamic Systems, Cambridge Academic Pub-
lishers, Cambridge, MA, USA, 2009.

[11] B. Ahmad, A. Alsaedi, S. K. Ntouyas, and J. Tariboon,
Hadamard-Type Fractional Differential Equations, Inclusions
and Inequalities, Springer, Cham, Switzerland, 2017.

[12] V. E. Tarasov, “Fractional statistical mechanics,” Chaos,
vol. 16, pp. 331081–331087, 2006.

[13] X. Zhang, L. Liu, and Y. Zou, “Fixed-point theorems for
systems of operator equations and their applications to the
fractional differential equations,” Journal of Function Spaces,
vol. 2018, Article ID 7469868, 9 pages, 2018.

[14] I. Ates and P. A. Zegeling, “A homotopy perturbation method
for fractional-order advection-diffusion- reaction boundary-
value problems,” Applied Mathematical Modelling, vol. 47,
pp. 425–441, 2017.

[15] G. Wang, X. Ren, Z. Bai, and W. Hou, “Radial symmetry of
standing waves for nonlinear fractional Hardy-Schrödinger
equation,” Applied Mathematics Letters, vol. 96, pp. 131–137,
2019.

[16] L. Zhang, B. Ahmad, and G. Wang, “Successive iterations for
positive extremal solutions of nonlinear fractional differential
equations on a half-line,” Bulletin of the Australian Mathe-
matical Society, vol. 91, no. 1, pp. 116–128, 2015.

[17] G. Wang, K. Pei, and Y. Chen, “Stability analysis of nonlinear
Hadamard fractional differential system,” Journal of the
Franklin Institute, vol. 356, no. 12, pp. 6538–6546, 2019.

[18] Y. Ding, Z. Wei, J. Xu, and D. O’Regan, “Extremal solutions
for nonlinear fractional boundary value problems with p-
Laplacian,” Journal of Computational and Applied Mathe-
matics, vol. 288, pp. 151–158, 2015.

[19] X. Liu, M. Jia, and W. Ge, “*e method of lower and upper
solutions for mixed fractional four-point boundary value
problem with p-Laplacian operator,” Applied Mathematics
Letters, vol. 65, pp. 56–62, 2017.

[20] K. Sheng, W. Zhang, and Z. Bai, “Positive solutions to
fractional boundary value problems with p-Laplacian on time
scales,” Boundary Value Problems, vol. 2018, no. 1, p. 70, 2018.

[21] F. Yan, M. Zuo, and X. Hao, “Positive solution for a fractional
singular boundary value problem with p-Laplacian operator,”
Boundary Value Problems, vol. 51, pp. 1–10, 2018.

[22] G. Wang, Z. Bai, Z. Bai, and L. Zhang, “Successive iterations
for unique positive solution of a nonlinear fractional q-in-
tegral boundary value problem,” Journal of Applied Analysis &
Computation, vol. 9, no. 4, pp. 1204–1215, 2019.

[23] U. Ali, F. A. Abdullah, and S. T. Mohyud-Din, “Modified
implicit fractional difference scheme for 2D modified
anomalous fractional sub-diffusion equation,” Advances in
Difference Equations, vol. 185, 2017.

[24] U. Ali, F. A. Abdullah, and A. I. Ismail, “Crank-Nicolson finite
difference method for two-dimensional fractional sub-

diffusion equation,” Journal of Interpolation and Approxi-
mation in Scientific Computing, vol. 2017, no. 2, pp. 18–29,
2017.

[25] G.Wang, R. P. Agarwal, and A. Cabada, “Existence results and
the monotone iterative technique for systems of nonlinear
fractional differential equations,” Applied Mathematics Let-
ters, vol. 25, no. 6, pp. 1019–1024, 2012.

[26] Y. Chen and H.-L. An, “Numerical solutions of coupled
Burgers equations with time- and space-fractional deriva-
tives,” Applied Mathematics and Computation, vol. 200, no. 1,
pp. 87–95, 2008.

[27] V. Gafiychuk, B. Datsko, and V. Meleshko, “Mathematical
modeling of time fractional reaction-diffusion systems,”
Journal of Computational and Applied Mathematics, vol. 220,
no. 1-2, pp. 215–225, 2008.

[28] G. Wang and X. Ren, “Radial symmetry of standing waves for
nonlinear fractional Laplacian Hardy-Schrödinger systems,”
Applied Mathematics Letters, vol. 110, Article ID 106560,
2020.

[29] L. Zhang, B. Ahmad, G. Wang, and X. Ren, “Radial symmetry
of solution for fractional p− Laplacian system,” Nonlinear
Analysis, vol. 196, Article ID 111801, 2020.

[30] S. Bhalekar and V. Daftardar-Gejji, “Fractional ordered Liu
system with time-delay,” Communications in Nonlinear Sci-
ence and Numerical Simulation, vol. 15, no. 8, pp. 2178–2191,
2010.

[31] C. Zhai and R. Jiang, “Unique solutions for a new coupled
system of fractional differential equations,” Advances in
Difference Equations, vol. 1, p. 1, 2018.

[32] B. Ahmad and J. J. Nieto, “Existence results for a coupled
system of nonlinear fractional differential equations with
three-point boundary conditions,” Computers &Mathematics
with Applications, vol. 58, no. 9, pp. 1838–1843, 2009.

[33] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala,Monotone
Iterative Techniques for Nonlinear Differential Equations,
Pitman Pub. Co., Boston, MA, USA, 1985.

[34] G. Wang, X. Ren, L. Zhang, and B. Ahmad, “Explicit iteration
and unique positive solution for a Caputo-Hadamard frac-
tional turbulent flow model,” IEEE Access, vol. 7,
pp. 109833–109839, 2019.

[35] G. Wang, Z. Yang, L. Zhang, and D. Baleanu, “Radial solu-
tions of a nonlinear k-Hessian system involving a nonlinear
operator,” Communications in Nonlinear Science and Nu-
merical Simulation, vol. 91, Article ID 105396, 2020.

[36] Y. Wei, Q. Song, and Z. Bai, “Existence and iterative method
for some fourth order nonlinear boundary value problems,”
Applied Mathematics Letters, vol. 87, pp. 101–107, 2019.

[37] G. Wang, “Explicit iteration and unbounded solutions for
fractional integral boundary value problem on an infinite
interval,” Applied Mathematics Letters, vol. 47, pp. 1–7, 2015.

[38] G. Wang, “Twin iterative positive solutions of fractional
q-difference Schrödinger equations,” Applied Mathematics
Letters, vol. 76, pp. 103–109, 2018.

[39] C. Zhai and J. Ren, “*e unique solution for a fractional
q-difference equation with three-point boundary conditions,”
Indagationes Mathematicae, vol. 29, no. 3, pp. 948–961, 2018.

[40] L. Zhang, B. Ahmad, and G. Wang, “Existence and approx-
imation of positive solutions for nonlinear fractional integro-
differential boundary value problems on an unbounded do-
main,” Applied and Computational Mathematics, vol. 15,
pp. 149–158, 2016.

[41] S. Asghar, B. Ahmad, and M. Ayub, “Diffraction from an
absorbing half plane due to a finite cylindrical source,” Acta
Acustica United with Acustica, vol. 82, pp. 365–367, 1996.

Journal of Mathematics 7



[42] B. Ahmad and R. P. Agarwal, “On nonlocal fractional
boundary value problems,” Dynamics of Continuous, Discrete
and Impulsive Systems Series A: Mathematical Analysis,
vol. 18, pp. 535–544, 2011.

[43] G. Wang, “Monotone iterative technique for boundary value
problems of a nonlinear fractional differential equation with
deviating arguments,” Journal of Computational and Applied
Mathematics, vol. 236, no. 9, pp. 2425–2430, 2012.

8 Journal of Mathematics


