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This paper concerns on two types of integral boundary value problems of a nonlinear fractional differential system, i.e., nonlocal
strip integral boundary value problems and coupled integral boundary value problems. With the aid of the monotone iterative
method combined with the upper and lower solutions, the existence of extremal system of solutions for the above two types of
differential systems is investigated. In addition, a new comparison theorem for fractional differential system is also established,
which is crucial for the proof of the main theorem of this paper. At the end, an example explaining how our studies can be used is

also given.

1. Introduction

Differential equations with integral boundary conditions
have been applied in many fields such as thermoelasticity,
blood flow phenomena, and groundwater systems. For
specific details, readers interested in this topic can see papers
[1-6] and the references therein. In addition, the advantages
of fractional derivatives make fractional differential equa-
tions a hot topic. At present, it exhibits great vitality and
splendor in a number of applications of interest such as
biophysics, hemodynamics, complex media circuit analysis
and simulation, control optimization theory, and earthquake
prediction models. For more details, refer to books in [7-12].
For the latest developments and trends, refer to [13-24].
Fractional differential system, as an important branch of
differential system, is attracting more and more scholars
research interest, which comes from its good practical ap-
plication background (see [25-32]).

In [25], by applying the monotone iterative method,
Wang, Agarwal, and Cabada investigated the existence of

extremal solutions for a nonlinear Riemann-Liouville
fractional differential system:

Q“go(s):%(e,(p(s),l//(s)), e€ (0,%],
Dy(e)=Y(ey(e)ole)), e€ (0,RB],
7% (&)lezg = %o 7Y (&)lezo = Yoo

(1)

where 0 < B <00, X, ¥ € C([0,B] xR xR, R), x4, y, € R
and x, < y,.

In [32], Ahmad and Nieto studied a three point-coupled
nonlinear Riemann-Liouville fractional differential system

given by
D9(e)=L (ey().2°y(e)), €€ (0,1),
PPy(e)=Y (e9(e),2°9(e)), ec(0,1),

¢(0)=0,9(1)=yo (1), v(0)=0,y(1)=yy(n),
(2)
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where 1<a,3<2,6,0,9y>0,0<n<l,a—0>1,-0>1,
<Ly <L, Y, Y eC([0,1]xRxR,R),xy, y, € R.
By using the Schauder fixed-point theorem, the authors
successfully obtained the existence of solution of the system.

Inspired by these papers, we concern on the following
nonlinear Riemann-Liouville fractional differential system
of order 0<a<1:

{9“<P(8)=9(8,¢(8)>W(8),¢(9(8))), 3)
Dy (e) =% (ey(e)ole)y(0(e))),
where ¢€ (0,L](0<L<o0), JFZ=][0,L], &%,%¢€

C(ZxRxRxR,R), 0 eC(7,JF7). Notice that our system
contains the unknown functions ¢ (e), y(e) and deviating
arguments ¢ (6(¢)), v (0(¢)).

In order to approximate the solution of the nonlinear
Riemann-Liouville fractional differential system mentioned
above, we firstly give a new comparison result for fractional
differential system. Also, we develop the monotone iterative
technique for the system. The advantage of the technique
needs no special emphasis [33-40]. It is worth to point that,
in this paper, only half pair of upper and lower solutions is
assumed to the system, which is weaker than a pair of upper
and lower solutions. It is believed that this is also an attempt
to apply the monotone iterative method to solve nonlinear
Riemann-Liouville fractional differential systems with de-
viating arguments and families of nonlocal coupled and strip
integral boundary conditions.

To this end, we study the following two types of integral
boundary conditions:

(i) Nonlocal coupled integral boundary conditions of
the form:

e (e =¢"" J-OW(S)I//(S)ds+xO,
T (4)
&Y (e)leo = el’“JOW(s)(p(s)dHyO,

where 0<7t<L,W(s)eC(¥, (—-00,0]),
Xp» Yo € R and x < y,.

In the present study, nonlocal type of integral
boundary condition with limits of integration in-
volving the parameters 0 <7<L has been intro-
duced. It is worth mentioning that, in practical
situations, such nonlocal integral boundary condi-
tions may be regarded as a continuous distribution
of arbitrary finite length; for instance, refer to [41].

(ii) Nonlocal strip condition of the form:

7% (&)l =sl*"‘rv<s)(p(s)ds+xo,
: (5)
e (). = slf"‘J- V(s)y(s)ds+ yg,

where 0<v<7<L,V(s) € C( 7, [0,+00)), x4, ¥, € Rand
Xo < Yo-

In fact, nonlocal strip condition is used to describe a
continuous distribution of the values of the unknown
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function on an arbitrary finite segment of the interval. If
y — 0,7 — L, the condition is degenerated to a classic
integral boundary condition (see [42] for details).

2. Comparison Theorem: The Unique
Solution of Linear System

Let
Cro(F)={peC(0,LL;e “pecC()},  (6)
with the norm
lplc, . =] 0|l (7)

Next, we provide a comparison result from Wang’s
paper [43]. Notice that the comparison result is valid for I (¢)
which is a nonnegative bounded integrable function.

Lemmal. Let& € C,_, (#)be locally Holder continuous, and
& satisfies
{9“5(6)2—1(8)5(8), ()
&7 (€)]m 20,
where I (¢) is a nonnegative bounded integrable function and
satisfies sup,¢;1 (e)L*T' (1 — a) < 1.
Then,&(e)>0, foralle e (0,L].

Now, we are in a position to prove the following new
comparison result for fractional differential system.

Lemma 2 (comparison theorem). Let ¢,y € C,_,(%)be
locally Holder continuous and satisfy

Dp(e)= —1(e)p(e)+](e)y(e), €€ (0,L],
Dy (e)= —I(e)y(e)+](e)gp(e), €€ (0,L],
e 7% (&)l 20,
£ (e, 20,

9)

where 1(¢),] (e) are nonnegative bounded integrable func-
tions and 1(e)>](e)>0, foralle e F.

If

sup(I+])(e)L'T(1-a)<1, (10)
ee f

then ¢(e)>0,y(e)>0, forallee (0,L].

Proof. Put £(e)=¢(e)+w(e), forallee (0,L]. Then,

by (9), we have
{9"‘5(.»:)2 —(I-])(e)(e),
€7 ()], 20.

e€ (0,L],
(0,L] (11)
Thus, by (11) and Lemma 1, we have that

£(e)=0,foree (0,L],ie.p(e)+y(e)=0, foree (0,L].
(12)
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Next, we show that ¢ (¢)>0,y(e)>0, foree (0,L].

In fact, by (9) and (12), we have that

{9“90(8)2—(“])(8)90(6), g€ (0,L], (13)
7% (&), =0.

By (13) and Lemma 1, we have that
¢(e)=0, foree (0,L]. Similarly, we can show that
v(e)=0, foree (0,L].

Finally, we consider the linear system:

D¢(e)=0,(e)-1(e)p(e)~J(e)y(e), e€ (O,L],

D%y (e)=0,(e)-1(e)y(e)-J(e)g(e), €€ (O,L],

51_a§9(5)|s:0:”1>51_a1//(5)|e=0:Tz’

(14)

where I (¢), ] (¢) are nonnegative bounded integrable func-
tions 0,0, € C(F,R),r,r, € R.

Lemma 3. If 10 holds, then the problem 14has a unique
system of solutions in C,_, ([0,L]) x C,_, ([0, L]).

Proof. Let
fe) - 20 -
15
EZ(g)ZM’ €€(O,L],

(H,) There exist nonnegative bounded integrable func-
tions 1 (¢), ] (€) which satisfy (10), and I(¢) > ] (¢), such that

[ D%, (e)<F (e,9,(€), o (), 0y (0(e))),
Sl_a(p0(8)|£:0S£1_aJ;W(S)WO(S)dS+xO,
1 20 ()2 % (e w5 (e), 90 (£), 10 (8(2))),

ey (&)= JOW(s)goO(s)ds + Yo

where &, and &, solve the problems
{9“{1(5) =(0,+0,)(e)=(I+])(e)§ (e)ee (0,L]
€7 (&)losg =71 + 7o
(16)
and
{90‘52(8):(01—Uz)(s)—(I—])(S)Ez(S), g€ (0,L],
517“52 (&)lezg=11—1>.
(17)
It is obvious that the problems (16) and (17) have the
unique solution &*,&** € C,_,([0,L]), respectively. Since
&, are unique, then by (14) and (15), we can show that

the problem (14) has a unique system of solutions in
Ci([0,L]) xC_, ([0, L]). 0

3. Extremal Solutions of Nonlinear System

Theorem 1. Assume that the following holds:
(H,) There exist two locally Hélder continuous functions
90> Vo € Ci_, ([0, L]) satisfying ¢, (e) <, (¢) such that

e (0,L],

e (0,L], (18)

F(ep(e)y(e)e(0(e)))-F(eu(e)v(e)u(0(e)))z-1(e)(@—p)(e)-J(e)(y-»)(e)
G(e9(e)y(e)e(0(e)))-9(eule)v(e)u(8(e)))z-1(e)(p—p)(e)-J(e)(y-»)(e) (19)
G(e9(e)y(e)o(0(e)))-F(eu(e)v(e)u(0(e)))z-1(e)(p—pu)(e)-J(e)(y—-7)(e),

where ¢, (&) Su< @<y, (e), ¢, () Sy <v<y, (e).

Then, (3) and (4) have extremal systems of sol-
utions (@*, ") € (@9, ¥yl % [@9> ¥yl. Moreover, there exist
monotone iterative sequences {@,},{v,} C [@gv,] such
thatg, — ¢*, v, — y* (n — 00) uniformly on compact
subsets of (0, L] and

Po<g1< <9, << Sy S Sy, <<y Sy

Proof. For any ¢,_,,v,_; € C;_,([0,L]), n>1, considering
(14) with
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o1 (e)=F (&9, (&), (€9, ((0()))+I(e)p,  (e)+](&)y, (&),
05(e)=8 (v, 1(€),0, 1 (), 1 ((0(e)))+I(e)y,  (e)+](e)p, (&), (21)

r = 81_“J W (s)y,_, (s)ds+xq,75 = el_“J W (s)g,_; (s)ds+ y,,
0 0

we have
D%, (e)=0i(e)-1(e)p,(e)-T(e)y,(e), €€ (0,L],
D%, (e)=0y(e)-I(e)y,(e)-J(e)g,(e), €€ (0,L], (22)
€7 0, (€)oo = T Yy (€)lecg = 75
By Lemma 3, we know that (22) has a unique system of 0,150, <V, <v,, n=12,.... (23)
solutions in C,_, ([0, L]) x C,_, ([0, L]). -
Now, we show that {¢, (¢)}, {y,, (¢)} satisfy Let& = ¢; = 95, ¢ = y — y,. By condition (H,) and (22),
we have that
{9“5(8)2—1(8)5(8)+I(S)C(8), D (e)z —1(e)(e)+](e)E(e), (24)
£ ()] 20, €70 ()], 20.
Thus, by Lemma 2, we  have  that Let w = y, — ¢,, by condition (H,) and (22), we get
E(e)>0,0(e)>0, forallee (0,L].
[ D°w(e) =%, () - D%, (¢)
=G(ey,(e)py(e)yy(0(e)))+T(e)yy(e)+](e)py(e)—T(e)y,(e)—T(e)g,(e)
~F(&0,(€) () (0(e)))—1(e)py(e)=T(e)yy(e)+1(e)p,(e)+T(e)y,(e) (25)
> -1(e)(yy—pp)(e)=T(e)(@o—yy)(e)+I1(e)yy(e)+T(e)py(e)—1(e)y,(¢)
—J(e)p,(e)—1(e)py(e) =T (e)yy(e) +1(e)p,(e)+](e)y, (¢)
=—(I-])(e)w(e).
Besides, uniformly on compact subsets of (0,L], and

T 0", y* € [9y, y,] satisfy (3) and (4). Letting n — oo in
el_"‘w(s)lsz0 = J W (s) (9g — W) (s)ds + yo — x4 >0. (3.15), we get that (¢*,vy*) is solutions of (3) and (4) in
0 (90> ¥ol % [@9, ¥,] and (20) holds.

(26) Finally, we prove that (¢*,y*) is extremal solutions of

By Lemma 1, we can get w(e)>0, foree (0,L]. 3) and' (4) in [‘ROsWO] X [@g> ¥l If (?’1/’) € (9o, Yol%
Therefore, we have the relation ¢, <@, <y, < . (90> ¥,] is any solutions of (3) and (4), which means

Assume that ¢,_; < ¢, <y <y, for some k> 1. Then, A

using the same way as above, by Lemmas 1 and 2 again, we D¢p(e) = F(e:9(e)y(e)g(8(e))), ee(0,L],

can obtain ¢, <@, <Y, <y, By induction, it is not Dy (e)=F(ey(e)p(e)y(0(e))), €€ (0,L],

difficult to show that . (7
1e “o(e)l :sfo‘J.Ws s)ds + xg,
PoSPrs - SPus - SY S SYSY, (27) Plels 0 A ’

T
Employing the standard arguments, we have 517“1//( €)oo = e e Io W(s)p(s)ds+ y,.

Jim g, (e) = ¢" (), lim y,(e) =y (¢) (28) (29)
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By (22), (29), (H,), and Lemma 2, it is easy to prove that This completes the proof. O

Pn<¥Y<Yp n=L2.... (30) We give the following assumption for convenience.
Taking the limits in (30), we get ¢ <@,y <y*, which (H)) There exist two locally Holder continuous func-
implies (¢*,y*) is extremal solutions of (3) and (4) in  HONS @o, Yo € C1o ([0, L]) satistying ¢, (¢) <y (¢) such that
(90> ¥ol X [90, Yol

[ 2%, (e)<F (&,9y(), ¥ (£),9,(0(¢))), €€ (0,L],

sl_“<po(s)|€:0Ssl_“J V(s)py(s)ds + x,,

4 31
Dy, (e)2G (e y,(e) g, (€),yy(0(e))), €€ (0,L], GD

sl*“%(e)h:ozéﬁj V($)yo (s)ds + v,

By a proof similar to Theorem 1, we have the following. <P <P, QT LY < <Y, < <Y <Y
< <¢ <y < ; <vy,.

Theorem 2. Suppose that conditions (H,) and (H,) hold. (
Then, (3) and (5) have extremal system of sol-

utions (9%, y*) € [y, Yol X [@g, Wyl. Moreover, there exist

monotone iterative  sequences{g,}, {w,} C [@g, volsuch 4. Example

thate, — ¢*,y,, — y* (n — oco)uniformly on compact

subsets of (0,1 ] and Consider the following problem:

| 2
@"‘(p(g) =%83[8_¢(€)] —210841//2(8)+11584tan<2(p<2>>,
« 1 3 1 4 2 1 4 T 82
2 l//(é‘)zﬁs [e—W(S)]—%Sfp (£)+E£ tan<1w<i)),
| (33)

1 1 2/3 1 5
(g = [ (54 )p(o)s
1/6\3

2/3 1
1-a _ l-a + 2
(Ol = J1/6(3+s >1//(s)ds,

where e€ 7,a=1/2, and 2" is the standard Rie- Clearly,
mann-Liouville fractional derivative.

F(e9(e)y(e)o(0(e))) =1—1583[s—¢(€)] —%841(/2(8)+1—1584tan<2g0(9(€))),
(34)

T (e y(e)gle)y(8(e))) =1—15e3[e—w(e)] —%ﬁws)+1i5e4tan(§w<e<s))),

where 0(¢) = €2/2.



Taking ¢, () =0,y,(e) =1, it is easy to show that
condition (H;) of Theorem 2 holds.

where ¢, (&) Spu<@ <y, (e), ¢, () Sy <v<y, (e).
We see I(e) =2/156%, ] (¢) = 0, and
sup(I+J)(e)L*T (1 — a) = 2+/m/15< 1. So, (H,) holds.

ee f
Thus, Theorem 2 is applied to the system (33), and we

have the conclusion of Theorem 2.

5. Conclusion

In this paper, by employing the method of upper and lower
solutions combined with the monotone iterative technique,
we studied a class of nonlinear fractional differential system
involving nonlocal strip and coupled integral boundary
conditions. Precisely, we considered the following nonlinear
Riemann-Liouville fractional differential system:

{9"%/)(5) =F(e9(e)y(e)o(0(e))),
Dy(e)=F (e y(e)g(e)y(0(e))),

with two types of integral boundary conditions:

(36)

(i) Nonlocal coupled integral boundary conditions of
the form:

€70 ()] = 7 j-OW(S)l//(s)ds+xO,

. (37)
e (), o=¢€"" JOW( $)p(s)ds + y,.
(ii) Nonlocal strip condition of the form:
£ ()], = el_“J V(s)p(s)ds + xp,
. (38)

sl“"w(smzozel-“j V(s)y(s)ds+ yp.

We investigated the existence of extremal system of
solutions for the above nonlinear fractional differential
system involving nonlocal strip and coupled integral
boundary conditions. A new comparison result for fractional
differential system was also established, which played an
important role in the proof of our main results. It is a
contribution to the field of fractional differential system. As
an extension of our conclusion, we present an open question,
namely, how to develop the existence of extremal system of
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On the contrary, we have

'9(s,<p(8),w(£),go(9(8)))—9(e,u(e),v(8),y(9(£)))2 —1—2583(g0—u)(e),
1 %(80(e)y(e)e(0(e)))-C(eu(e)v(e)u(b(e)))= —1%83(90—14)(8), (35)

| ©(e9(e)y(e)o(0(e)))-F(eule)v(e)u(b(e)))= —1—25.,83(40—#)(8),

solutions for the above nonlinear fractional differential
system with impulsive effect by the method of upper and
lower solutions combined with the monotone iterative
technique. The biggest difficulty for this is to perfectly es-
tablish new comparison result for fractional differential
system with impulsive effect.
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