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In this paper, we use the analytic methods, the properties of the sixth-order characters, and the classical Gauss sums to study the
computational problems of a certain special sixth residues’ modulo p and give two exact calculating formulas for them.

1. Introduction

Let p be an odd prime and k be a fixed positive integer. For
any integer a with (a, p) � 1, if the congruence equation
xk ≡ a mod p has a solution x, then we call a is a kth residue
modulo p. Otherwise, a is called a kth nonresidue modulo p.
In particular, if k � 2, 3, and 4, we call a is a quadratic
residue, cubic residue, and quartic residue modulo p, re-
spectively. Undoubtedly, the research of quadratic residue is
the most concerned topic. Legendre first introduced the
characteristic function of the quadratic residues (a/p)

modulo p, which later was called Legendre’s symbol. It is
defined as follows:

a

p
  �

1, if a is a quadraticre siduemodulop,

−1, if a is a quadratic nonresiduemodulop,

0, if p|a.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Sometimes, we write Legendre’s symbol (∗/p) as χ2 for
the sake of writing. ,is is because the introduction of this
function greatly facilitated the study of quadratic residue
properties and promoted the development of elementary
number theory and analytic number theory. ,is is espe-
cially true in the study of primes and related problems. For

example, if p is a prime with p ≡ 1mod 4, then one has (see
,eorem 4–11 in [1])

p �
1
2



p− 1

a�1

a + ra

p
 ⎛⎝ ⎞⎠

2

+
1
2



p− 1

b�1

b + sb

p
 ⎛⎝ ⎞⎠

2

, (2)

where a denotes the inverse of a.,at is, a · a ≡ 1modp, and
(rs/p) � −1.

Of course, there are many papers involving quadratic
residues and primes, so we cannot cover all of them. ,ose
who are interested can refer to [2–9].

In this paper, we are concerned with the problem of
whether the special integers a + a and a − a both are kth
residues’ modulo p. Let Nk(p) denote the number of all
integers 1< a<p − 1 such that a + a and a − a both are kth
residues’ modulo p. ,en, how are the values of Nk(p)

distributed?
Very recently, some authors had studied the calculating

problem of Nk(p) and obtained a series of interesting re-
sults. For example, Wang and Lv [10] obtained the identity

N2(p) �

1
8

(p − 3), if p ≡ 3 mod 8,

1
8

(p − 7), if p ≡ 7 mod 8.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)
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Hu and Chen [11] proved the following result: let p be an
odd prime with p ≡ 7mod 12. If 2 is a cubic residue modp,
then one has the identity

N3(p) �
1
9

· (p + 4 d − 11). (4)

If 2 is not a cubic residue modp, then one has the
asymptotic formula

N3(p) �
1
9

· (p − 5) + E(p), (5)

where d is defined in (7) and E(p) satisfies the estimates
|E(p)|≤ (2/3) ·

��
p

√ .
Su and Zhang [12] considered the case p ≡ 5mod 8 and

proved the identity

N4(p) �
1
16

· p − 7 − 2 

p−1/2

a�1

a + a

p
 ⎛⎝ ⎞⎠. (6)

As an extension of [10–12], a natural problem is what
about sixth residues modulo p? It is clear that if
(p − 1, 6) � 2, then the problem is trivial. ,at is, any
quadratic residue a modulo p is a sixth residue modulo p.
So, we just consider the nontrivial case p ≡ 1mod 6. In this
case, we know that there are two integers d and b such that
the identity

4p � d
2

+ 27 · b
2
, (7)

where d is uniquely determined by d ≡ 1mod 3 (see [13]).
And, it is clear from (7) that the value of N6(p) must be

related to d and b.
In this paper, we will use the analytic methods, the

properties of the classical Gauss sums, and the estimate for
some special character sums to study the computational
problems of N6(p) and give an exact calculating formula for
it. ,at is, we will prove the following two results.

Theorem 1. Let p be an odd prime with p ≡ 7mod 12. If 2 is
a cubic residue modulo p, then we have the identity

N6(p) �
1
36

· (p + 4 d − 11), (8)

where d is the same as defined in (7).

Theorem 2. Let p be an odd prime with p ≡ 7mod 12. If 2 is
not a cubic residue modulo p, then we have

N6(p) �
1
72

· (2p + 5d − 10 + 9b)

or
1
72

· (2p + 5 d − 10 − 9b).

(9)

From our theorems, we may immediately deduce the
following two corollaries.

Corollary 1. Let p be an odd prime with p ≡ 7mod 12. If 2 is
a cubic residue modulo p, then we have the congruence

p + 4 d ≡ 11mod 36. (10)

Corollary 2. Let p be an odd prime with p ≡ 7mod 12. If 2 is
not a cubic residue modulo p, then we have the congruence

2p + 5d ≡ 10 + 9bmod 72

or 2p + 5d ≡ 10 − 9bmod 72.
(11)

First, in ,eorems 1 and 2, we must distinguish whether
3 is a cubic residue modulo p because of the need to calculate
the character sums. In different cases, the values of character
sums are different.

Second, if p is a prime with p ≡ 1mod 12, then, for some
character sums, we can only useWeil’s classical work [14, 15]
to get some upper bound estimates and we cannot get their
exact values. So, in this case, we can only deduce a sharp
asymptotic formula for N6(p). ,at is,

N6(p) �
1
36

· p + O p
1/2

 . (12)

,ird, if p is an odd prime with p ≡ 7mod 12 and 2 is not
a cubic residue modulo p, then our,eorem 2 also obtained
an exact calculating formula for N6(p), which is obviously
better than the corresponding result in [11].

Of course, our ,eorem 2 is flawed, and it presents two
possibilities. How to determine its correct value is an in-
teresting open problem.

Finally, if p is a prime with p ≡ 7mod 12, then we know
that 2 is a cubic residuemodulo p if and only if 2|d.,at is, d is
an even number. Otherwise, d is an odd number. Especially for
primes p � 7, 19, 67, 79, 103, 139, 151, after some simple cal-
culations, we have 4 × 7 � 12 + 27 · 12, 4 × 19 � 72 +27 · 12,
4 × 67 � (−5)2 + 27 · 32, 4 × 79 � (−17)2 + 27 · 12, 4 × 103 �

132 + 27 · 32, 4 × 139 � (−23)2 + 27 · 12, and 4 × 151 � 192+
27 · 32. Since N6(p) is an integer, so applying Corollary 2, we
can get the congruences: 2 · 7 + 5 · 1 ≡ 10 + 9 · 1mod 72, 2 ·

19 + 5 · 7 ≡ 10 − 9 · 1mod 72, 2 · 67 + 5 · (−5) ≡ 10 + 9·

3mod 72, 2 · 79 + 5· (−17) ≡ 10 − 9 · 1mod 72, 2 · 103 + 5·

13 ≡ 10 − 9 · 3mod 72, 2 ·139+5 · (−23)≡ 10+9 ·1mod72,
and 2 ·151+5 ·19 ≡ 10+9 ·3mod72.

Now, we consider Legendre’s symbol (d + b/p). Note
that (1 + 1/7) � 1, (7 + 1/19) � −1, (−5 + 3/67) � 1,
(−17 + 1/79) � −1, (13 + 3/103) � −1, (−23 + 1/139) � 1,
and (19 + 3/151) � 1. From the above congruences and
these values, we have a reason to believe the following.

Conjecture. Let p be an odd prime with p ≡ 7mod 12. If 2 is
not a cubic residue modulo p, then we have the identity

N6(p) �
1
72

· 2p + 5d − 10 +
d + b

p
  · 9b . (13)

2. Several Lemmas

In this section, we decompose the proofs of our theorems
into the following several lemmas. For the sake of simplicity,
the basic knowledge required in this section is not listed, and

2 Journal of Mathematics



only three necessary references [1, 16, 17] are provided here.
First, we have the following.

Lemma 1. Let p be an odd prime with p ≡ 1mod 3. .en, for
any third-order character λ modulo p (i.e., λ≠ χ0 and λ

3 � χ0,
the principal character modulo p), we have the identity

τ3(λ) + τ3(λ) � dp, (14)

where 4p � d2 + 27 · b2, d is uniquely determined by
d ≡ 1mod 3, τ(λ) � 

p−1
a�1λ(a)e(a/p) denotes the classical

Gauss sums, and e(y) � e2πiy.

Proof. For the proof of this lemma, see Zhang and Hu [18]
or Berndt and Evans [19]. □

Lemma 2. Let p be a prime with p ≡ 1mod 6. .en, for any
third-order character λmodp and sixth-order character ψ �

χ2λ (i.e., ψi ≠ χ0, 1≤ i≤ 5, and ψ6 � χ0), we have the identity

τ(ψ) �
λ(2) · τ χ2(  · τ2(λ)

p
. (15)

Proof. From the properties of the Gauss sums and the re-
duced residue system modulo p, note that the identity



p−1

a�0
e

ba
2

p
  � 1 + 

p−1

a�1
1 + χ2(a)( e

ba

p
  � χ2(b) · τ χ2( ,

(16)

and we have



p−1

a�0
χ2λ a

2
− 1  �

1
τ χ2λ 



p−1

b�1
χ2λ(b) 

p−1

a�0
e

b a
2

− 1 

p
⎛⎝ ⎞⎠

�
τ χ2( 

τ χ2λ 


p−1

b�1
χ2(b)λ(b)χ2(b)e

−b

p
  �

τ χ2(  · τ(λ)

τ χ2λ 
.

(17)

On the contrary, we also have



p−1

a�0
χ2λ a

2
− 1  � 

p−1

a�1
χ2λ a

2
+ 2a 

�
1

τ χ2λ 


p−1

b�1
χ2λ(b) 

p−1

a�1
χ2(a)λ(a)e

b(a + 2)

p
 

�
τ χ2λ( 

τ χ2λ 


p−1

b�1
χ2(b)λ(b)χ2(b)λ(b)e

2b

p
 

�
λ(2) · τ χ2λ(  · τ(λ)

τ χ2λ 
.

(18)

Note that identity τ(λ) · τ(λ) � p, and from (17) and
(18), we deduce the identity

τ χ2λ(  � τ(ψ) �
λ(2) · τ χ2(  · τ2(λ)

p
. (19)

,is proves Lemma 2. □

Lemma 3. Let p be an odd prime with p ≡ 7mod 12. .en,
for any third-order character λmodp, we have the identity



p−1

a�1
λ a

2
− a

2
  + λ a

2
− a

2
   �

1 + λ(2)

p
· τ3(λ) + λ(2) · τ3(λ) .

(20)

Proof. Note that λ2 � λ, λ(−1) � 1, and χ2(−1) � −1, and
from Lemma 2, properties of the Gauss sums, and Legen-
dre’s symbol modp, we have



p−1

a�1
λ a

2
− a

2
  � 

p−1

a�1
λ
2
(a)λ a

4
− 1  � 

p−1

a�1
1 + χ2(a)(  · λ(a)λ a

2
− 1 

� 

p−1

a�1
λ(a)λ a

2
− 1  + 

p−1

a�1
χ2(−a) · λ(−a)λ (−a)

2
− 1 

� 

p−1

a�1
λ2(a)λ a

2
− 1  � 

p−1

a�1
1 + χ2(a)( λ(a)λ(a − 1)

�
1

τ(λ)


p−1

a�1
λ(a) 

p−1

b�1
λ(b)e

b(a − 1)

p
  +

1
τ(λ)



p−1

a�1
ψ(a) 

p−1

b�1
λ(b)e

b(a − 1)

p
 

�
τ2(λ)

τ(λ)
−
τ2(ψ)

τ(λ)
�
τ3(λ)

p
−
τ2(ψ) · τ(λ)

p
�
τ3(λ) + λ(2) · τ3(λ)

p
,

(21)

Journal of Mathematics 3



where we have used the identity τ2(χ2) � χ2(−1) · p � −p.
Similarly, we can also deduce that



p−1

a�1
λ a

2
− a

2
  �

τ3(λ) + λ(2) · τ3(λ)

p
. (22)

It is clear that Lemma 3 follows from (21) and (22). □

Lemma 4. Let p be an odd prime with p ≡ 7mod 12. .en,
we have the identity



p−1

a�1
(λ(a + a) + λ(a + a)) �

(1 − λ(2)) · τ3(λ) +(1 − λ(2)) · τ3(λ)

p
.

(23)

Proof. From the methods of proving Lemma 2 and the
properties of the Gauss sums, we have



p−1

a�1
λ(a + a) � 

p−1

a�1
λ(a)λ a

2
+ 1  � 

p−1

a�1
λ a

2
 λ a

2
+ 1 

� 

p−1

a�1
1 + χ2(a)(  · λ(a)λ(a + 1) �

τ3(λ)

p
+
τ2 χ2λ(  · τ(λ)

p

�
τ3(λ)

p
−
λ(2) · τ3(λ)

p
.

(24)

So, from (24), we have



p−1

a�1
(λ(a + a) + λ(a + a))

�
τ3(λ)

p
−
λ(2) · τ3(λ)

p
+
τ3(λ)

p
−
λ(2) · τ3(λ)

p

�
(1 − λ(2)) · τ3(λ) +(1 − λ(2)) · τ3(λ)

p
.

(25)

,is proves Lemma 4. □

Lemma 5. Let p be an odd prime with p ≡ 7mod 12. .en,
we have



p−1

a�1
(λ(a − a) + λ(a − a)) �

(1 + λ(2)) · τ3(λ) +(1 + λ(2)) · τ3(λ)

p
.

(26)

Proof. It is the same as the proof of Lemma 4, so it is
omitted. □

Lemma 6. Let p be an odd prime with p ≡ 7mod 12. .en,
we have the identities



p−1

a�1
ψ(a + a)ψ(a − a) � 

p−1

a�1
ψ(a − a)ψ(a + a) � 0. (27)

Proof. Note that ψ(−1) � ψ(−1) � −1, and from the
properties of the reduced residue system modulo p, we have



p−1

a�1
ψ(a + a)ψ(a − a) � 

p−1

a�1
ψ a

2
+ 1 ψ a

2
− 1 

� 

p−1

a�1
ψ a

2
+ 1 ψ a

2
− 1 

� 

p−1

a�1
ψ a

2
+ 1 ψ 1 − a

2
 

� − 

p−1

a�1
ψ a

2
+ 1 ψ a

2
− 1 

� − 

p−1

a�1
ψ(a + a)ψ(a − a),

(28)

which implies that



p−1

a�1
ψ(a + a)ψ(a − a) � 0. (29)

,is proves Lemma 6. □

Lemma 7. Let p be an odd prime with p ≡ 7mod 12. For any
sixth-order character ψmodp, we have



p−1

a�1
ψ(a + a) · χ2(a − a) � 

p−1

a�1
ψ(a + a) · χ2(a − a) � 0,



p−1

a�1
ψ(a − a) · χ2(a + a) � 

p−1

a�1
ψ(a − a) · χ2(a + a) � 0.

(30)

Proof. Since ψ � χ2λ, χ2(−1) � −1, so, from the reduced
residue system modulo p, we have



p−1

a�1
ψ(a + a) · χ2(a − a) � 

p−1

a�1
λ(a)ψ a

2
+ 1  · χ2 a

2
− 1 

� 

p−1

a�1
λ(a)ψ a

2
+ 1  · χ2 a

2
− 1 

� 

p−1

a�1
λ2(a)ψ a

2
+ 1  · χ2 1 − a

2
 

� − 

p−1

a�1
λ(a)ψ a

2
+ 1  · χ2 a

2
− 1 

� − 

p−1

a�1
ψ(a + a) · χ2(a − a),

(31)

which implies that
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p−1

a�1
ψ(a + a) · χ2(a − a) � 0. (32)

Similarly, we can also deduce the identity



p−1

a�1
ψ(a − a) · χ2(a + a) � 0. (33)

,is proves Lemma 7. □

Lemma 8. Let p be an odd prime with p ≡ 7mod 12. .en,
for any third-order character λmodp and ψ � χ2λ, we have



p−1

a�1
ψ(a + a) · λ(a − a) � 

p−1

a�1
ψ(a + a) · λ(a − a) � 0,



p−1

a�1
ψ(a − a) · λ(a + a) � 

p−1

a�1
ψ(a − a) · λ(a + a) � 0.

(34)

Proof. Note that λ(−1) � 1 and ψ(−1) � −1, we have



p−1

a�1
ψ(a + a) · λ(a − a) � 

p−1

a�1
ψ(−a − a) · λ(−a + a)

� − 

p−1

a�1
ψ(a + a) · λ(a − a).

(35)

So, we have the identity



p−1

a�1
ψ(a + a) · λ(a − a) � 0. (36)

Similarly, we can also deduce the identity



p−1

a�1
ψ(a − a) · λ(a + a) � 0. (37)

,is proves Lemma 8. □

Lemma 9. Let p be an odd prime with p ≡ 7mod 12. .en,
for any third-order character λmodp, we have



p−1

a�1
(λ(a + a) · λ(a − a) + λ(a + a) · λ(a − a)) � −4. (38)

Proof. From the properties of Legendre’s symbol modp, we
have



p−1

a�1
λ(a + a) · λ(a − a) � 

p−1

a�1
λ a

2
+ 1  · λ a

2
− 1 

� 

p−1

a�1
1 + χ2(a)( λ(a + 1) · λ(a − 1)

� −1 + 

p−1

a�0
λ(a + 1) · λ(a − 1) + 

p−1

a�1
χ2(a)λ(a + 1) · λ(a − 1)

� −1 + 

p−1

a�1
λ(a + 2) · λ(a) − 

p−1

a�1
χ2(a)λ(a − 1) · λ(a + 1)

� −1 + 

p−1

a�1
λ(1 + 2 · a) − 

p−1

a�1
χ2(a)λ(a − 1) · λ(a + 1)

� −2 + 

p−1

a�0
λ(1 + 2 · a) − 

p−1

a�1
χ2(a)λ(a − 1) · λ(a + 1)

� −2 − 

p−1

a�1
χ2(a)λ(a − 1) · λ(a + 1).

(39)

Similarly, we also have



p−1

a�1
λ(a + a) · λ(a − a) � 

p−1

a�1
λ a

2
+ 1  · λ a

2
− 1 

� 

p−1

a�1
1 + χ2(a)( λ(a + 1) · λ(a − 1)

� −2 + 

p−1

a�1
χ2(a)λ(a + 1) · λ(a − 1).

(40)

Combining (39) and (40), we have the identity



p−1

a�1
(λ(a + a) · λ(a − a) + λ(a + a) · λ(a − a)) � −4. (41)

,is proves Lemma 9. □

3. Proofs of the Theorems

In this section, we shall complete the proofs of our main
results. First, we prove ,eorem 1. For any prime p with
p ≡ 7mod 12, let λ denote a third-order character modulo p;
then, ψ � χ2λ is a sixth-order character modulo p. So, for
any integer a with (a, p) � 1, from the characteristic
function

1 + ψ(a) + ψ2
(a) + ψ3

(a) + ψ2
(a) + ψ(a) �

6, if a is a sixth residuemodulo p,

0, if a is not a sixth residuemodulo p,
 (42)

and note that ψ2 � λ, ψ3 � χ2, χ2(−1) � −1, λ(−1) � 1,
ψ(−1) � −1, and (a2 + 1, p) � 1, and we have the identity
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N6(p) �
1
36



p−2

a�2
1 + ψ(a + a) + λ(a + a) + χ2(a + a) + λ(a + a) + ψ(a + a) 

× 1 + ψ(a − a) + λ(a − a) + χ2(a − a) + λ(a − a) + ψ(a − a) 

�
1
36



p−1

a�1
1 + ψ(a + a) + λ(a + a) + χ2(a + a) + λ(a + a) + ψ(a + a) 

× 1 + ψ(a − a) + λ(a − a) + χ2(a − a) + λ(a − a) + ψ(a − a)  −
1
18

· (1 + λ(2) + λ(2))

�
p − 1
36

+
1
36



p−1

a�1
ψ(a + a) + λ(a + a) + χ2(a + a) + λ(a + a) + ψ(a + a) 

+
1
36



p−1

a�1
ψ(a − a) + λ(a − a) + χ2(a − a) + λ(a − a) + ψ(a − a) 

+
1
36



p−1

a�1
ψ a

2
− a

2
  + λ a

2
− a

2
  + χ2 a

2
− a

2
  + λ a

2
− a

2
  + ψ a

2
− a

2
  

+
1
36



p−1

a�1
ψ(a + a) λ(a − a) + χ2(a − a) + λ(a − a) + ψ(a − a) 

+
1
36



p−1

a�1
λ(a + a) ψ(a − a) + λ(a − a) + χ2(a − a) + ψ(a − a)( 

+
1
36



p−1

a�1
χ2(a + a)(ψ(a − a) + λ(a − a) + λ(a − a) + ψ(a − a))

+
1
36



p−1

a�1
λ(a + a) ψ(a − a) + λ(a − a) + χ2(a − a) + ψ(a − a) 

+
1
36



p−1

a�1
ψ(a + a) ψ(a − a) + λ(a − a) + χ2(a − a) + λ(a − a) 

−
1
18

· (1 + λ(2) + λ(2)).

(43)

Note that p ≡ 7mod 12 and χ2(−1) � −1, so we have



p−1

a�1
ψ(a ± a) � 

p−1

a�1
ψ(a ± a) � 

p−1

a�1
χ2(a ± a) � 0, (44)



p−1

a�1
ψ a

2
− a

2
  � 

p−1

a�1
ψ a

2
− a

2
  � 

p−1

a�1
χ2 a

2
− a

2
  � 0. (45)

From Lemma 1, 4, and 5, we have



p−1

a�1
(λ(a + a) + λ(a + a) + λ(a − a) + λ(a − a))

�
2
p

· τ3(λ) + τ3(λ)  � 2d.

(46)

Now, if 2 is a cubic residue modulo p, then
1 + λ(2) + λ(2) � 3. Combining (43)–(46), Lemma 3, and
Lemma 6–9, we have
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N6(p) �
p − 1
36

+
1
36

· (2d + 2d − 4) −
3
18

�
1
36

· (p + 4d − 11).

(47)

,is proves ,eorem 1.
Now, we prove ,eorem 2. If 2 is not a cubic residue

modulo p, then 1 + λ(2) + λ(2) � 0. ,at is to say,

λ(2) � −
1
2
±

�
3

√

2
· i,

λ(2) � −
1
2
∓

�
3

√

2
· i,

(48)

where i2 � −1.
In this case, from Lemma 1, we have

τ3(λ) − τ3(λ) 
2

� d
2

· p
2

− 4p
3

� −p
2

· 4p − d
2

  � −27 · p
2

· b
2
,

(49)

or

τ3(λ) − τ3(λ) � ± 3 ·
�
3

√
· p · b · i. (50)

From (48), (50), and Lemma 3, we have



p−1

a�1
λ a

2
− a

2
  + λ a

2
− a

2
  

�
1 + λ(2)

p
· τ3(λ) + λ(2) · τ3(λ) 

� −
1
p

· λ(2) · τ3(λ) + λ(2) · τ3(λ) 

�
1
2p

· (pd ± 9 · p · b) �
1
2

· (d ± 9b).

(51)

Combining (43)–(46), (51), and Lemma 6–9, we have

N6(p) �
p − 1
36

+
1
36

· (2d − 4) +
1
72

· (d + 9b)

�
1
72

· (2p + 5d − 10 + 9b),

(52)

or

N6(p) �
p − 1
36

+
1
36

· (2d − 4) +
1
72

· (d − 9b)

�
1
72

· (2p + 5d − 10 − 9b).

(53)

,is completes the proofs of our all results.

4. Conclusion

,e main results of this paper are two theorems and two
corollaries. ,eorem 1 gives an exact computing formula for

N6(p) with p ≡ 7mod 12 and 2 is a cubic residue modulo p.
If p ≡ 7mod 12 and 2 is not a cubic residue modulo p, then
,eorem 2 established an identity for N6(p) and there are
two possibilities. As some applications of these theorems, we
also deduced two interesting congruences. For example, one
of them is

p + 4d ≡ 11mod 36, (54)

where p ≡ 7mod 12 and 2 is a cubic residue modulo p.
In addition, if p ≡ 7mod 12 and 2 is not a cubic residue

modulo p, then we also have an interesting conjecture. ,at
is,

N6(p) �
1
72

· 2p + 5d − 10 +
d + b

p
  · 9b . (55)
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