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In this article, our aim is to consider a class of fuzzy mixed variational-like inequalities (FMVLIs) for fuzzy mapping known as
extended perturbed fuzzy mixed variational-like inequalities (EPFMVLIs). As exceptional cases, some new and classically defined
“FMVLIs” are also attained. We have also studied the auxiliary principle technique of auxiliary “EPFMVLI” for “EPFMVLI.” By
using this technique and some new analytic results, some existence results and efficient numerical techniques of “EPFMVLI” are
established. Some advanced and innovative iterative algorithms are also obtained, and the convergence criterion of iterative
sequences generated by algorithms is also proven. In the end, some new and previously known existence results and algorithms are
also studied. Results secured in this paper can be regarded as purification and development of previously familiar results.

1. Introduction

,e boundless research work of fuzzy set and systems [1] has
been devoted in advancement of different fields. It con-
tributes to a vast class knowledge and appears in pure
mathematics and applied sciences as well as operation re-
search, computer science, managements sciences, artificial
intelligence, control engineering, and decision sciences [2].
As a part of these knowledge developments, Chang and Zhu
[3] initiated to introduce a new type of variational inequality
for fuzzy mapping, which is known as fuzzy variational
inequality. In fuzzy optimization, Noor [4–6] studied the
characterization of minimum of convex fuzzy mapping
through fuzzy variational inequality and fuzzy mixed vari-
ational inequality and obtained some advanced and effective
iterative algorithms. Moreover, they showed the parallel
correlation by linking fuzzy variational inequalities and
fuzzy Wiener–Hopf equations. Similarly, they established
parallel correspondence between fuzzy variational inequal-
ities and the resolvent equations for fuzzy mappings and

encouraged some important and novel new iterative algo-
rithms and discussed their convergence criteria. ,ey also
introduced fuzzy mixed variational inequalities, and by
using the classical auxiliary principle technique, some new
existence theorems and iterative algorithms for fuzzy mixed
variational inequalities are attained. It is worthy to mention
here that one of the most considered generalizations of
convex fuzzy mappings is preinvex fuzzy mapping. ,e idea
of fuzzy preinvex mapping on the invex set was introduced
and studied by Noor [7]. Moreover, any local minimum of a
preinvex fuzzy mapping is a global minimum on invex set,
and necessary and sufficient condition for fuzzy mapping is
to be preinvex if its epigraph is an invex set.

Furthermore, it has been verified that fuzzy optimality
conditions of differentiable fuzzy preinvex mappings can be
distinguished by variational-like inequalities. Motivated and
inspired by the ongoing research work, many authors dis-
cussed fuzzy variational inequalities and its important
generalizations and its applications in different fields [8, 9].
In the subsequent text, we will review the applications and
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generalizations of variational inequalities for fuzzy map-
pings. First, we give some literature survey of variational
inequality and its generalizations. In early 1960s, the idea of
variational inequality was initiated by Hartman and Stam-
pacchia [10]. ,e useful generalizations of variational in-
equality are variational-like inequality (in short, VLI) and
generalized mixed variational-like inequality (in short,
GMVLI). It is well known that in classical variational in-
equality theory, the projection method fails to discuss the
existence of solutions of variational-like inequalities. ,is
familiarity has attracted many authors to propose the
auxiliary principle technique to acknowledge existence re-
sults for different variational inequalities. Glowinski et al.
[11] suggested the auxiliary principle technique. For further
information about the auxiliary principle technique, we refer
the readers to [12–17] and the references therein. Similarly,
the projection type methods can be used to recommend
iterative methods for “VLI” and “GMVLI” for fuzzy map-
pings. To overcome this challenging task and with the help of
classical auxiliary principle techniques, Chang [8], Chang
et al. [18], and Kumam and Petrot [19] studied the idea of
“GMVLI” and complementarity problems for ordinary set-
valued mapping and fuzzy mappings in different contexts
with compact and noncompact values. For applications of
“GMVLI,” see [3–7, 9, 12–14, 16, 19–26] and the references
therein.

In this article, we shall introduce and discuss a new type
of “GMVLI” for fuzzy mappings, which is known as ex-
tended perturbed fuzzy mixed variational-like inequality
(EPFMVLI) for fuzzy mapping because by using this
technique, we can easily handle the functional which is the
sum of differentiable preinvex fuzzy mapping and strongly
preinvex fuzzy mapping and their special cases like the
single-valued functional which is the sum of the differen-
tiable preinvex functions and strongly preinvex functions.
By using this technique and some new analytic results, some
existence results and efficient numerical techniques of
“PFMVLI” are established. As a result of this technique,
some advanced and innovative iterative algorithms can be
obtained. Moreover, the convergence criteria of iterative
sequences generated by algorithms can also be proven. At
the end, we shall discuss some particular cases of “PFMVLI”
for ordinary set-valued mappings and fuzzy mappings (see
[3–7, 9, 12–14, 16, 19–22] and the references therein).

2. Preliminaries

LetJ be a real Hilbert space and∅≠C ⊂ J be a convex set.
We denote the collection CB(J) of all nonempty bounded
and closed subsets of J, and D(., .)is the Hausdorff metric
on CB(J) defined by

D(K, A) � max sup
u∈A

d(u,K), sup
ϑ∈K

d(ϑ, A)􏼨 􏼩, A,K ∈ CB (J). (1)

A mapping ψ: J⟶ [0, 1] is called fuzzy set. If
a ∈ (0, 1], then the set ψa � u ∈ J|ψ(u)≥ a􏼈 􏼉 is known as a-
level set of ψ. If a � 0, then supp(ψ) � u ∈ J|ψ(u)> 0􏼈 􏼉 is
called support of ψ. By [ψ]0, we define the closure of
supp(ψ).

In what follows, F(J) � A: J⟶ I � [0, 1]{ } denotes
the family of all fuzzy sets on J. A mapping P from J to
F(J) is called a fuzzy mapping. If P: J⟶ F(J)is a
fuzzy mapping, then the set P(u) for u ∈ J is a fuzzy set in
F(J) (in the sequel we denote P(u) by Pu) and
Pu(ϑ)ϑ ∈ J is the degree of membership of ϑin Pu.

Definition 1 (see [18]). If for each u ∈ J, the function
ϑ⟶ Puϑ is upper semicontinuous, then fuzzy mappingP
is called closed. If ϑr􏼈 􏼉 ⊂ J is a net satisfying ϑr⟶ ϑ0 ∈ J,
then Pu has the following property:

limt suprPu ϑu( 􏼁≤Pu ϑ0( 􏼁. (2)

Definition 2 (see [18]). A closed fuzzy mapping
P: J⟶ F(J) is said to satisfy the condition (B), if there
exists a function P: J⟶ [0, 1] such that for each u ∈ J,
the set

Pu􏼂 􏼃r(u) � ϑ ∈ J: Pu(ϑ)≥ r(u)􏼈 􏼉≠∅, (3)

is a bounded subset of J.

Remark 1 (see [18]). From Definitions 1 and 2, it can be
easily seen that [Pu]r(u) ∈ CB(J). Indeed, let
ϑr􏼈 􏼉r∈Γ ⊂ [Pu]r(u) be a net and ϑr⟶ ϑ0 ∈ J. ,en, from
(2) and (3), we have limt suprPu(ϑr)≤Pu(ϑ0) and
Pu(ϑr)≥ r(u) for each r ∈ Γ. Since P is closed with con-
dition (B), we have

Pu ϑ0( 􏼁≥ limt suprPu ϑr( 􏼁≥ r(u). (4)

,is implies that ϑ0 ∈ [Pu]r(u), and so
[Pu]r(u) ∈ CB(J).

Problem 1. Let J be a real Hilbert space. ,en, for given
nonlinear mappings ξ(., .): J × J⟶ J,
M(., .): J × J⟶ J, we consider the problem of finding
u ∈ J, p, q ∈ J and constant ω> 0, such that

〈M(p, q), ξ(ϑ, u)〉 + J(ϑ, u) − J(u, u)

+ ω‖ξ(ϑ, u)‖
2 ≥ 0, ∀ϑ ∈ J,

(5)

where P,V: C⟶ F(J)are two closed fuzzy mappings
satisfying condition (B) with function r, s: J⟶ [0, 1],
respectively, such that
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Pu(p)≥ r(u),Vu(q)≥ s(u), i.e. ∈ Pu􏼂 􏼃r(u), q ∈ Vu􏼂 􏼃s(u),

(6)

and J(., .): J × J⟶ Ris a nondifferentiable function
fulfilling the following assumption.

Assumption 1
(a) For any u, ϑ, p ∈ J, there exists constant z> 0, such

that

(i) |J(u, ϑ)|≤ z‖u‖‖ϑ‖

(ii) |J(u, ϑ) − J(u, p)|≤ z‖u‖‖u − p‖

(b) J(u, ϑ)is linear in respect of u(i.e., for any
u, ϑ ∈ JJ(−u, ϑ) � −J(u, ϑ))

(c) J(u, ϑ)is convex in respect of ϑ

,e inequality (5) is called “EPFMVLI.” It is important
to mention that the generalized fuzzy mixed variational-like
inequality (in short, GFMVLI), classical mixed variational-
like inequality (in short, MVLI), and associated fuzzy op-
timizations problems are particular cases of inequality (5).
For applications, see [3, 8–10, 13] and the references therein.

Now, we study some certain cases of problem (5).

(1) If ω � 0, then problem (5) is analogous to finding
u ∈ Jp ∈ [Pu]r(u)q ∈ [Vu]s(u), such that

〈M(p, q), ξ(ϑ, u)〉 + J(ϑ, u) − J(u, u)≥ 0, ∀ϑ ∈ J.

(7)

,is type of problem is called “GFMVLI” and was
studied and established by Chang et al. [18] and,
under some added condition, improved by Kumam
and Petrot [19].
(2) Let P,V: J⟶ F(J)be an ordinary multi-
valued mapping and J,ξ be the mapping in
problem (5).
Now, we define a fuzzy mapping
􏽥P(.), 􏽥V(.): J⟶ F(J)as follows:

􏽥Pu � XPu,

􏽥Vu � XVu,
(8)

whereXPuXVuare two characteristic functions of
P(u), V(u). From (8), it can straightforwardly be
noticed that 􏽥P, 􏽥V are two closed fuzzy map-
ping fulfilling condition (B) with constant function
r(u) � 1, s(u) � 1, respectively, for all u ∈ J. Also,

􏽥Pu􏽨 􏽩
r(u)

� XPu􏼂 􏼃1 � ϑ ∈ J: Pu(ϑ) � 1􏼈 􏼉 � P(u),

􏽥Vu􏽨 􏽩
s(u)

� XVu􏼂 􏼃1 � ϑ ∈ J: Vu(ϑ) � 1􏼈 􏼉 � V(u).

(9)

,en, problem (5) is parallel to detecting u ∈ J,
such that

􏽥Pu􏼐 􏼑(p) � 1, 􏽥Vu􏼐 􏼑(q) � 1, i.e. p ∈ P(u), q ∈V(u),

〈M(p, q), ξ(ϑ, u)〉 + J(ϑ, u) − J(u, u) + ω‖ξ(ϑ, u)‖
2 ≥ 0, ∀ϑ ∈ J.

(10)

,is kind of problem is called the set-valued
“EPMVLI.”,is mixed variational-like inequality is
also new one.

(3) If ω � 0, then problem (10), is analogous to finding
u ∈ J, p ∈ P(u), q ∈V(u), such that

〈M(p, q), ξ(ϑ, u)〉 + J(ϑ, u) − J(u, u)≥ 0,

∀ϑ ∈ J.
(11)

,is type of problem is called “GMVLI” and was
studied and established by Noor [18] and, under
some added condition, improved by Zeng [17].
(4) If M(p, q) � M(p)and P: J⟶ F(J), then
problem (5) is analogous to finding u ∈ J,
p ∈ [Pu]r(u), such that

〈M(p), ξ(ϑ, u)〉 + J(ϑ) − J(u)

+ ω‖ξ(ϑ, u)‖
2 ≥ 0, ∀ϑ ∈ J.

(12)

,en, problem (12) is called “PFMVLI.”,is class of
fuzzy variational-like inequality is also new one.
Note that problem (12) is a particular case of
problem (5); therefore, we discuss some other
special cases of problem (5) using problem (12).

(5) If M � I(identity mapping), p ∈ J, and
P: J⟶ J is single valued, then problem (10) is
parallel to finding u ∈ Jsuch that

〈P(u), ξ(ϑ, u)〉 + J(ϑ) − J(u)

+ ω‖ξ(ϑ, u)‖
2 ≥ 0, ∀ϑ ∈ J.

(13)

,is is known as “PMVLI” and was studied by Noor
et al. [12].

(6) If ξ(ϑ, u) � ϑ − u, then problem (12) is called
strongly fuzzy mixed variational inequality and is
parallel to finding u ∈ J, p ∈ [Pu]r(u)such that
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〈M(p), ϑ − u〉 + J(ϑ) − J(u)

+ ω‖ϑ − u‖
2 ≥ 0, ∀ϑ ∈ J.

(14)

,is class of “FMVI” is also new one. ,e classical
FMVLI and associated fuzzy optimizations prob-
lems are special cases of inequality (15) [21].

(7) If ω � 0, then problem (12) is parallel to finding
u ∈ J, p ∈ [Pu]r(u) such that

〈M(p), ξ(ϑ, u)〉 + J(ϑ) − J(u)≥ 0, ∀ϑ ∈ J,

(15)

which is known as “FMVLI.” ,e FMVLI is a
generalised form of Chang et al. [18] and Kumam
and Petrot [19]. It is also an ordinary set-valued
mapping of Noor [22]. For the development of
numerical methods and applications of (15), see
[9, 15, 16, 27] and the references therein.

(8) For ω � 0,problem (14) reduces to

u ∈ J, p ∈ Pu􏼂 􏼃r(u),

〈M(p), ϑ − u〉 + J(ϑ) − J(u)≥ 0, ∀ϑ ∈ J,

(16)

which is known as “FMVI.” Chang et al. [18] and
Kumam and Petrot [19] studied it as a special case.
In case of ordinary set-valued mapping as devel-
oped by Lions and Stampacchia [20], for applica-
tions, see [11, 15, 22, 27] and the references therein.

(9) When M � Iand P: J⟶ F(J)is a fuzzy map-
ping, then problem (16) is parallel to finding u ∈ J,
p ∈ [Pu]r(u).

〈p, ϑ − u〉 + J(ϑ) − J(u)≥ 0, ∀ϑ ∈ J. (17)

,is is known as “FMVI” (see [5]).
(10) If J(.) is an indicator mapping of a closed convex

set Cin J, that is,

IJ(u) �
0, u ∈ C,

∞, otherwise,
􏼨 (18)

then problem (15) is analogous to finding p ∈ J,
p ∈ [Pu]r(u)such that

〈M(p), ξ(ϑ, u)〉≥ 0, ∀ϑ ∈ J, (19)

which is known as “FVLI.”
(11) When M � I, then problem (19) is analogous to

finding u ∈ J, p ∈ [Pu]r(u) such that

〈p, ξ(ϑ, u)〉≥ 0, ∀ϑ ∈ J, (20)

which is also known as “FVLI.” (see [7]). For the
applications of “FVLI” and fuzzy optimization
problem, see [9, 16, 22, 27] and the references
therein.

(12) If ξ(ϑ, u) � ϑ − u, then problem (19) is analogous to
finding u ∈ J, p ∈ [Pu]r(u) such that

〈M(p), ϑ − u〉≥ 0, ∀ϑ ∈ J. (21)

,is is known as “FVI.”
(13) IfM � I, then problem (21) is analogous to finding

u ∈ J, p ∈ [Pu]r(u) such that

〈p, ϑ − u〉≥ 0, ∀ϑ ∈ J. (22)

,is is also known as “FVI” (see [3, 4]). ,e “VI” is
mainly due to Stampacchia and Guido [28] and Lions and
Stampacchia [20], as developed and studied by Noor [4]. For
the applications of problem (22), see [9, 11, 20, 21] and the
references therein.

From the above discussion, it can be easily seen that
problems (7)–(22) are particular cases of “EPFMVLI” (5). In
fact, “EPFMVLI” is more generalized and unifying one,
which is main motivation of our work. For a proper and
suitable choice of P, ξ, and J, we can choose a number of
known and unknown “PFVLI” and complementary
problems.

Next, we will use mathematical terminologies S-mixed
monotone and L-continuous for strongly mixed monotone
and Lipschitz continuous, respectively.

Definition 3 (see [18]). If fuzzy mappings
P,V: J⟶ F(J) are closed and fulfil the condition (B)
with functions r, s: J⟶ [0, 1], then nonlinear mapping
M(., .): J × J⟶ J is said to be

(i) c-L-continuous in respect of first argument if for
any u1, u2 ∈ Jand p1 ∈ [Pu1

]r(u1), u2 ∈ [Pu2
]r(u2),

there exists a constant c> 0 such that

M p1, .( 􏼁 − M p2, .( 􏼁( 􏼁
����

����≤ c p1 − p2
����

����, for allp1 ∈ Pu1
􏽨 􏽩

r u1( )
, p2 ∈ Pu2

􏽨 􏽩
r u2( )

. (23)

(ii) β-strongly mixed monotone in respect of P and V

if there exists a constant β> 0 such that

〈M p1, q1( 􏼁 − M p2, q2( 􏼁, u1 − u2〉≥ β u1 − u2
����

����
2
,

(24)
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for all p1 ∈ [Pu1
]r(u1), p2 ∈ [Pu2

]r(u2), q1 ∈ [Vu1
]s

(u1), q2 ∈ [Vu2
]s(u2).

(iii) α-L-continuous in respect of second argument if for
any ϑ1, ϑ2 ∈ J and q1 ∈ [Vϑ1]s(ϑ1), q2 ∈ [Vϑ2]s(ϑ2),
there exists a constant α> 0, such that

M ., q1( 􏼁 − M ., q2( 􏼁( 􏼁
����

����≤ α q1 − q2
����

����. (25)

Definition 4 (see [18]). Let P,V: J⟶ F(J) be two
fuzzy mappings. ,en,

(iv) P is said to be P-L-continuous if for any u, ϑ ∈ J,
there exists a function r: C⟶ [0, 1]and constant
λ> 0, such that

D Pu􏼂 􏼃r(u), Pϑ􏼂 􏼃r(ϑ)􏼐 􏼑≤ λ‖ϑ − u‖. (26)

(v) V is said to be V-L-continuous: if there exists a
function s: C⟶ [0, 1]and constant ξ > 0, such that

D Vu􏼂 􏼃s(u), Vϑ􏼂 􏼃s(ϑ)􏼐 􏼑≤ ξ‖ϑ − u‖, (27)

where D(., .) is the Hausdorff metric on F(J).

In particular, from (i) and (ii), we have

β u1 − u2
����

����
2 ≤ 〈M p1, q1( 􏼁 − M p2, q2( 􏼁, u1 − u2〉≤ M p1, q1( 􏼁 − M p2, q2( 􏼁

����
���� u1 − u2
����

����

≤ c p1 − p2
����

���� u1 − u2
����

����

≤ cD Pu1
􏽨 􏽩

r u1( )
, Pu2
􏽨 􏽩

r u2( )
􏼒 􏼓 u1 − u2

����
����.

(28)

From (iv), we have

≺ cλ u1 − u2
����

����
2
, (29)

which implies that β≺ cλ. Similarly, from (ii), (iii), and (v),
we can observe that β≺ αξ.

Definition 5 (see [12]). ,e bifunction ξ(., .): J × J⟶ J

is said to be

(vi) S-monotone: if there exists constant μ> 0, such that

〈ξ(ϑ, u), ϑ − u〉≥ μ‖ϑ − u‖
2
, for all u, ϑ ∈ J. (30)

(vii) L-continuous: if there exists constant δ > 0, such
that

‖ξ(ϑ, u)‖≺ δ‖ϑ − u‖, for all u, ϑ ∈ J. (31)

From (vi) and (vii), we can observe that μ≺ δ.
For any K⊆J, we denote the conv(K), the convex hull

of K. A set-valued mapping T: J⟶ 2Jis called a KKM
mapping if, for every finite subset ϑ1, ϑ2, ϑ3, ϑ4, . . . , ϑn􏼈 􏼉ofJ,

conv ϑ1, ϑ2, ϑ3, ϑ4 . . . , ϑn􏼈 􏼉⊆ ∪
n

i�1
T ϑi( 􏼁. (32)

Lemma 1 (see [29]). Let K be arbitrary nonempty in a
topological vector space G and let T: K⟶ 2J be a KKM
mapping. If T(ϑ) is closed for all ϑ ∈K and is compact for at
least one ϑ ∈K, then

∩
ϑ∈K

T(ϑ)≠∅. (33)

Theorem 1 (see [8]). Let G be a locally convex Hausdorff
topologically vector space and g: G⟶ R∪ +∞{ } be a
properly convex functional (i.e., a functional g(.) is called
proper, if g(u)> −∞ for all u ∈ G andJ(u) ≡ +∞). =en,
g is lower semicontinuous on G if and only if, g is weakly
lower semicontinuous on G.

Assumption 2. Let M: J × J⟶ J and ξ(., .): J × J

⟶ J be two mappings satisfying the following condition:

(a) ξ(ϑ, u) + ξ(u, ϑ) � 0 (and so ξ(u, u) � 0, for
all u ∈ J), for all u, ϑ ∈ J.

(b) For any given u ∈ J, the mapping
ϑ⟼ 〈M(p, q), ξ(ϑ, u)〉is concave, where
p ∈ [Pu]r(u), q ∈ [Vu]s(u).

(c) For any given u ∈ J, the mapping
ϑ↦ 〈M(p, q), ξ(ϑ, u)〉is lower semicontinuous,
where p ∈ [Pu]r(u), q ∈ [Vu]s(u).

un⟶ u, pn⟶ p, qn⟶ q imply 〈M(p, q), ξ(ϑ, u)〉≤ liminf
n⟶∞
〈M pn, qn( 􏼁, ξ ϑ, un( 􏼁〉. (34)

Lemma 2 (see [30]). Let (X, d) be a complete metric space
and K1,K2 ∈ CB(X) and r≥ 1 be any real number. =en,

for every k1 ∈K1, there exist k2 ∈K2 such that
d(k1, k2)≤ rD(K1,K2).
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In the next sections, we will use the above preliminaries.

3. Auxiliary Principle and Algorithm

Now, we review the Auxiliary problem associated with
“EPFMVLI” (5) and prove an existence theorem for the
auxiliary problem. Furthermore, based on this existence
result, we suggest an iterative algorithm for the “PFMVLI”
(5).

Auxiliary problem: for a given u ∈ C , p ∈ [Pu]

r(u) , q ∈ [Vu]s(u)satisfying problem (5), we consider the
problem of finding u ∈ J, such that

〈z, ϑ − z〉≥ 〈u, ϑ − z〉 − ρ〈M(p, q), ξ(ϑ, z)〉 + ρJ(u, z)

− ρJ(u, ϑ) − ωρ‖ξ(ϑ, z)‖
2
,

(35)

for ∀ϑ ∈ C, where ρ> 0 is a constant.
,e inequality (35) is also called auxiliary “EPFMVLI.”

Theorem 2. Let J be real Hilbert space and C≠∅ be a
closed bounded subset of J. Let P,V: J × J⟶ F(J) be
two closed continuous fuzzy mappings satisfying condition
(B) with function r, s: J⟶ [0, 1]. If Assumptions 1 and 2
are satisfied and bifunction ξ(., .): C × C⟶ J is L-con-
tinuous with constant δ > 0, then auxiliary problem (35) has a
unique solution.

Proof. Let u ∈ C, p ∈ [Pu]r(u), q ∈ [Vu]s(u); we consider the
mapping T: J⟶ 2J defined by

T( ϑ) � w ∈ C: 〈w − u, ϑ − w〉≥ − ρ〈M(p, q), ξ(ϑ, w)〉􏼈

+ ρJ(u, w) − ρJ(u, ϑ) − ωρ‖ξ(ϑ, w)‖
2
􏽯,

(36)

for all ϑ ∈ J.
From (36), it can be easily seen that for each ϑ ∈ C,

T( ϑ)≠∅, since ϑ ∈ T( ϑ).To obtain the solution, firstly we
show that T: J⟶ 2Jis a KKM mapping. Suppose the
contrary, that is, T: J⟶ 2Jis not KKM mapping, then
there exists a finite subset ϑ1, ϑ2, ϑ3, ϑ4 . . . , ϑn􏼈 􏼉of C and
constant τi ≥ 0, i � 1, 2, 3, 4, . . . , k with 􏽐

k
i�1 τi � 1such that

w∗ � 􏽘
k

i�1
τiϑi ∉ ∪

k

i�1
T ϑi( 􏼁, for all 1, 2, 3, 4, . . . , k. (37)

,en, we have

〈w∗ − u, ϑi − w∗〉 + ρ〈M(p, q), ξ ϑi, w∗( 􏼁〉 + ρJ u, ϑi( 􏼁

− ρJ u, w∗( 􏼁 + ωρ ξ ϑi, w∗( 􏼁
����

����
2 < 0.

(38)

From Assumptions 1 and 2, the above inequality yields

0> 􏽘

k

i�1
τi〈w∗ − u, ϑi − w∗〉 + ρ􏽘

k

i�1
τi〈M(p, q), ξ ϑi, w∗( 􏼁〉 + ρ􏽘

k

i�1
τiJ u, ϑi( 􏼁

− ρJ w∗( 􏼁 + ωρ􏽘
k

i�1
τi ξ ϑi, w∗( 􏼁

2
�����

�����

≥ 〈w∗ − u, w∗ − w∗〉 + ρ〈M(p, q), ξ w∗, w∗( 􏼁〉 − ρJ u, w∗( 􏼁 + ρJ u, w∗( 􏼁

+ ωρ ξ w∗, w∗( 􏼁
����

����
2

� 0.

(39)

,is is a contradiction. Hence, T: J⟶ 2J is a KKM
mapping.

Since T(ϑ)
p
, the weak closure of T(ϑ) is weakly closed

subset of a bounded setC⊆J, so it is weakly compact. Hence,
by Lemma 1,

∩
ϑ∈C

T(ϑ)
p ≠∅. (40)

Let

z ∈ ∩
ϑ∈C

T(ϑ)
p
. (41)

,en, there exists a sequence znin T(ϑ)(fix ϑ), such that
zn⟶ z. ,en,

〈zn − u, ϑ − zn〉 + ρ〈M(p, q), ξ ϑ, zn( 􏼁〉 + ρJ(u, ϑ)

− ρJ u, zn( 􏼁 + ωρ ξ ϑ, zn( 􏼁
����

����
2 ≥ 0.

(42)

Now, by using the property of inner product,

〈zn − u, ϑ − zn〉 �〈zn − u, ϑ〉 +〈u, zn〉 −〈zn, zn〉

�〈zn − u, ϑ〉 +〈u, zn〉 − zn

����
����
2
.

(43)

Since ‖.‖ is weakly lower semicontinuous, we have
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limsup
n⟶∞
〈zn − u, ϑ − zn〉 � limsup

n⟶∞
〈zn − u, ϑ〉 +〈u, zn〉 − zn

����
����
2

􏼚 􏼛

� limsup
n⟶∞
〈zn − u, ϑ〉 + limsup

n⟶∞
〈u, zn〉 − liminf

n⟶∞
zn

����
����
2

≤ 〈z − u, ϑ − z〉.

(44)

Again, by Assumptions 1 and 2, we get

0≤ limsup
n⟶∞

〈zn − u, ϑ − zn〉 + ρ〈M(p, q), ξ ϑ, zn( 􏼁〉 + ρJ(u, ϑ) − ρJ u, zn( 􏼁 + ωρ ξ ϑ, zn( 􏼁
����

����
2

􏼚 􏼛

� limsup
n⟶∞

〈zn − u, ϑ − zn〉 + ρ limsup
n⟶∞
〈M(p, q), ξ ϑ, zn( 􏼁〉 + ρ limsup

n⟶∞
J(u, ϑ) − ρ liminf

n⟶∞
J u, zn( 􏼁 + ωρ limsup

n⟶∞
ξ ϑ, zn( 􏼁

����
����
2

􏼨 􏼩

≤ 〈z − u, ϑ − z〉 + ρ〈M(p, q), ξ(ϑ, z)〉 + ρJ(u, ϑ) + ρJ(u, z) + ωρ‖ξ(ϑ, z)‖
2
.

(45)

,is implies that

〈z, ϑ − z〉≥ 〈u, ϑ − z〉 − ρ〈M(p, q), ξ(ϑ, z)〉

+ ρJ(ϑ) − ρJ(z) − ωρ‖ξ(ϑ, z)‖
2
,

(46)

for all ϑ ∈ J.
Hence, z is solution of auxiliary problem (35).
Uniqueness: Let z1 ∈ C be also a solution of Auxiliary

problem. ,en, we have

〈z1, ϑ − z1〉 ≥ 〈u, ϑ − z1〉 − ρ〈M(p, q), ξ ϑ, z1( 􏼁〉

− ρJ(u, ϑ) + ρJ u, z1( 􏼁 − ρω ξ ϑ, z1( 􏼁
����

����
2
,

(47)

for all ϑ ∈ J.

Replacing ϑ by z1in (46) and ϑ by zin (47), we have

〈z, z1 − z〉 ≥ 〈u, z1 − z〉 − ρ〈M(p, q), ξ z1, z( 􏼁〉

+ ρJ u, z1( 􏼁 − ρJ(u, z) − ωρ ξ z1, z( 􏼁
����

����
2
,

(48)

〈z1, z − z1〉≥ 〈u, z − z1〉 − ρ〈M(p, q), ξ z, z1( 􏼁〉 − ρJ(u, z)

+ ρJ u, z1( 􏼁 − ρω ξ z, z1( 􏼁
����

����
2
.

(49)

Using Assumption 2 (ξ(u1, u2) � −ξ(u2, u1)) and then
adding (48) and (49), we have

〈z1 − z, z − z1〉≥ 0, (50)

which implies that z1 � z is the uniqueness of the solution of
auxiliary problem (35).

,is completes the proof of ,eorem 2. □

Algorithm 1. At n � 0, start with initial value u0 ∈ J,
p0 ∈ [Pu0

]r(u0), q0 ∈ [Vu0
]s(u0); from ,eorem 2, auxiliary

problem (35) has a unique solution u1 ∈ J, such that

〈u1, ϑ − u1〉 ≥ 〈u0, ϑ − u1〉 − ρ〈M p0, q0( 􏼁, ξ ϑ, u1( 􏼁〉

− ρJ u0, ϑ( 􏼁 + ρJ u0, u1( 􏼁

− ρω ξ ϑ, u1( 􏼁
����

����
2
, ∀ϑ ∈ C.

(51)

Since p0 ∈ [Pu0
]r(u0), q0 ∈ [Vu0

]s(u0), then by Nadler’s
Lemma 2, there exist p1 ∈ [Pu1

]r(u1), q1 ∈ [Vu1
]s(u1)such

that

p0 − p1
����

����≤ (1 + 1)D Pu0
􏽨 􏽩

r u0( )
, Pu1
􏽨 􏽩

r u1( )
􏼒 􏼓,

q0 − q1
����

����≤ (1 + 1)D Vu0
􏽨 􏽩

s u0( )
, Vu1
􏽨 􏽩

s u1( )
􏼒 􏼓.

(52)

For n � 1, u1 ∈ J, p1 ∈ [Pu1
]r(u1), q1 ∈ [Vu1

]s(u1), again
from ,eorem 2, auxiliary problem (35) has a unique so-
lution u2 ∈ J, such that

〈u2, ϑ − u2〉 ≥ 〈u1, ϑ − u2〉 − ρ〈M p1, q1( 􏼁, ξ ϑ, u2( 􏼁〉

− ρJ u1, ϑ( 􏼁 + ρJ u1, u2( 􏼁

− ρω ξ ϑ, u2( 􏼁
����

����
2
, ∀ϑ ∈ C.

(53)

Since p1 ∈ [Pu1
]r(u1), q1 ∈ [Vu1

]s(u1), then by Nadler’s
Lemma 2, there exist p2 ∈ [Pu2

]r(u2), q2 ∈ [Vu2
]s(u2) such

that

p1 − p2
����

����≤ 1 +
1
2

􏼒 􏼓D Pu1
􏽨 􏽩

r u1( )
, Pu2
􏽨 􏽩

r u2( )
􏼒 􏼓,

q1 − q2
����

����≤ 1 +
1
2

􏼒 􏼓D Vu1
􏽨 􏽩

s u1( )
, Vu2

􏽨 􏽩
s u2( )

􏼒 􏼓,

·

·

(54)

At step n, we can obtain sequences
un ∈ J,pn ∈ [Pun

]r(un), qn ∈ [Vun
]s(un) ∈ CB(J), such that
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(i) pn − pn+1
����

����≤ 1 +
1

1 + n
􏼒 􏼓D Pun

􏽨 􏽩
r un( )

, Pun+1
􏽨 􏽩

r un+1( )
􏼒 􏼓,

(ii) qn − qn+1
����

����≤ 1 +
1

1 + n
􏼒 􏼓D Vun

􏽨 􏽩
s un( )

, Vun+1
􏽨 􏽩

s un+1( )
􏼒 􏼓,

(iii) 〈un+1, ϑ − un+1〉≥ 〈un, ϑ − un+1〉 − ρ〈M pn, qn( 􏼁, ξ ϑ, un+1( 􏼁〉 − ρJ un, ϑ( 􏼁 + ρJ un, un+1( 􏼁

− ρω ξ ϑ, un+1( 􏼁
����

����
2
, ∀ϑ ∈ C, ∀n≥ 0.

(55)

4. Existence and Convergence Analysis

Theorem 3. Let statement of=eorem 2 hold and letP,V be
P-L-continuous and V-L-continuous with constants λ> 0
and ξ > 0, respectively. Let nonlinear continuous mapping
M: J × J⟶ J be β-S-mixed monotone with constant
β> 0 and c-L-continuous in respect of first argument and α-L-
continuous in respect of second argument with constants c> 0
and α> 0, respectively. If J(.) is nondifferentiable and the
bifunction ξ(., .): J × J⟶ J is S-monotone with constant
μ> 0, respectively, then for constant ρ> 0,

0< ρ< 2
β − η + 2ωδ2􏼐 􏼑􏼐 􏼑

c
2λ2 − η + 2ωδ2􏼐 􏼑

2, ρ<
1

η + 2ωδ2􏼐 􏼑
, β> η + 2ωδ2,

(56)

where

η � cλ
���������

1 − 2μ + δ2
􏽱

+ αξδ + z. (57)

Then, there exist ∈∈C, p ∈ [Pu]r(u), q ∈ [Vu]s(u) satis-
fying “EPFMVLI” (5), and the sequences un􏼈 􏼉, pn􏼈 􏼉, and
qn􏼈 􏼉generated by (55) converge strongly to u, p, and q,
respectively.

Proof. From Algorithm 1 and auxiliary problem (35), for
any ϑ ∈ J, we have

〈un, ϑ − un〉 ≥ 〈un−1, ϑ − un〉 − ρ〈M pn−1, qn−1( 􏼁, ξ ϑ, un( 􏼁〉 − ρJ un−1, ϑ( 􏼁

+ ρJ un−1, un( 􏼁 − ρω ξ ϑ, un( 􏼁
����

����
2
,

(58)

〈un+1, ϑ − un+1〉 ≥ 〈un, ϑ − un+1〉 − ρ〈M pn, qn( 􏼁, ξ ϑ, un+1( 􏼁〉 − ρJ un, ϑ( 􏼁

+ ρJ un, un+1( 􏼁 − ρω ξ ϑ, un+1( 􏼁
����

����
2
.

(59)

By taking ϑ � un+1in (58) and ϑ � unin (59), we get

〈un, un+1 − un〉 ≥ 〈un−1, un+1 − un〉 − ρ〈M pn−1, qn−1( 􏼁, ξ un+1, un( 􏼁〉 − ρJ un−1, un+1( 􏼁

+ ρJ un−1, un( 􏼁 − ρω ξ un+1, un( 􏼁
����

����
2
,

(60)

〈un+1, un − un+1〉 ≥ 〈un, un − un+1〉 − ρ〈M pn, qn( 􏼁, ξ un, un+1( 􏼁〉 − ρJ un, un( 􏼁

+ ρJ un, un+1( 􏼁 − ρω ξ un, un+1( 􏼁
����

����
2
.

(61)
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Adding (60) and (61) and from Assumption 2
(ξ(ϑ, u) + ξ(u, ϑ) � 0), we have

〈un − un+1, un − un+1〉 ≤ 〈un−1 − un, un − un+1〉 − ρ〈M pn, qn( 􏼁 − M pn−1, qn−1( 􏼁, ξ un, un+1( 􏼁〉

+ ρJ un − un−1, un( 􏼁 − ρJ un−1 − un, un+1( 􏼁 + 2ρω ξ un, un+1( 􏼁
����

����
2

≤ 〈un−1 − un, un − un+1〉 + ρ〈M pn, qn( 􏼁 − M pn−1, qn−1( 􏼁, ξ un, un+1( 􏼁〉

+ ρJ un − un−1, un − un+1( 􏼁 + 2ρω ξ un, un+1( 􏼁
����

����
2
,

(62)

and so

〈un − un+1, un − un+1〉 ≤ 〈un−1 − un − ρ M pn−1, qn−1( 􏼁 − M pn, qn−1( 􏼁􏼈 􏼉, un − un+1〉

+ ρ〈M pn−1, qn−1( 􏼁 − M pn, qn−1( 􏼁, un − un+1 − ξ un, un+1( 􏼁〉

+ ρM pn, qn( 􏼁 − M pn, qn−1( 􏼁, ξ un, un+1( 􏼁

+ ρJ un − un−1, un − un+1( 􏼁 + 2ρω ξ un, un+1( 􏼁
����

����
2
.

(63)

It follows that

un − un+1
����

����
2 ≤ un−1 − un − ρ M pn−1, qn−1( 􏼁 − M pn, qn−1( 􏼁􏼈 􏼉

����
���� un − un+1
����

����

+ ρ M pn−1, qn−1( 􏼁 − M pn( 􏼁
����

���� un − un+1 − ξ un, un+1( 􏼁
����

����

· ρ M pn, qn( 􏼁 − M pn, qn−1( 􏼁
����

���� ξ un, un+1( 􏼁
����

���� + ρ z un−1 − un

����
���� un − un+1
����

����

+ 2ωρ ξ un, un+1( 􏼁
����

����
2
.

(64)

By the β-S-mixed monotonicity, c-L-continuity in re-
spect of fist argument of M, and P-L-continuity of P, we
have

un− 1 − un − ρ M pn− 1, qn− 1( 􏼁 − M pn, qn− 1( 􏼁( 􏼁
����

����
2 ≤ un− 1 − un

����
����
2

− 2ρ〈M pn−1, qn−1( 􏼁 − M pn, qn−1( 􏼁, un−1 − un〉 + ρ2 M pn− 1, qn− 1( 􏼁 − M pn, qn− 1( 􏼁
����

����
2

≤ un− 1 − un

����
����
2

− 2ρβ un− 1 − un

����
����
2

+ ρ2c2
pn− 1 − pn

����
����
2

≤ un− 1 − un

����
����
2

− 2ρβ un− 1 − un

����
����
2

+ ρ2c2
D Pun−1

􏽨 􏽩
r un( )

, Pun
􏽨 􏽩

r un( )
􏼒 􏼓􏼒 􏼓

2

≤ 1 − 2ρβ + ρ2c2λ2 1 +
1
n

􏼒 􏼓
2

􏼠 􏼡 un− 1 − un

����
����
2
,

(65)

M pn−1, qn−1( 􏼁 − M pn, qn−1( 􏼁
����

����≤ c pn−1 − pn

����
����

≤ c 1 +
1
n

􏼒 􏼓D Pun−1
􏽨 􏽩

r un−1( )
, Pun
􏽨 􏽩

r un( )
􏼒 􏼓≤ cλ 1 +

1
n

􏼒 􏼓 un−1 − un

����
����.

(66)
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Similarly, by the S-monotonicity and L-continuity of
bifunction ξ, we have

un − un+1 − ξ un, un+1( 􏼁
����

����
2 ≤ un − un+1

����
����
2

− 2〈un − un+1, ξ un, un+1( 􏼁〉 + ξ un, un+1( 􏼁
����

����
2

≤ un − un+1
����

����
2

− 2μ un − un+1
����

����
2

+ δ2 un − un+1
����

����
2

� 1 − 2μ + δ2􏼐 􏼑 un − un+1
����

����
2
.

(67)

By the α-L-continuity of M in respect of second argu-
ment and V-L-continuity of V, we get

M pn, qn( 􏼁 − M pn, qn−1( 􏼁
����

����≤ α pn−1 − pn

����
����

≤ α 1 +
1
n

􏼒 􏼓D Pun−1
􏽨 􏽩

r un−1( )
, Pun
􏽨 􏽩

r un( )
􏼒 􏼓≤ αξ 1 +

1
n

􏼒 􏼓 un−1 − un

����
����.

(68)

Combining (64)–(68) and by the L-continuity of ξ, we
have

un − un+1
����

����
2 ≤

����������������������

1 − 2ρβ + ρ2(cλ)
2 1 +

1
n

􏼒 􏼓
2

􏽳

+ ρcλ 1 +
1
n

􏼒 􏼓

���������

1 − 2μ + δ2
􏽱⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
un−1 − un

����
���� un − un+1
����

����

· ραξδ 1 +
1
n

􏼒 􏼓 un−1 − un

����
���� un − un+1
����

���� + ρ z un−1 − un

����
���� un − un+1
����

����

+ 2ωρδ2 un − un+1
����

����
2
,

(69)

which implies that

un − un+1
����

����

≤

����������������������

1 − 2ρβ + ρ2(cλ)
2 1 +

1
n

􏼒 􏼓
2

􏽳

+ ρcλ 1 +
1
n

􏼒 􏼓

���������

1 − 2μ + δ2
􏽱

+ ραξδ 1 +
1
n

􏼒 􏼓 + ρ z
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
un−1 − un

����
����

+ 2ωρδ2 un − un+1
����

����.

(70)
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It follows that

un − un+1
����

����

≤

������������������������

1 − 2ρβ + ρ2(cλ)
2
(1 +(1/n))

2
􏽱

+ ρcλ(1 +(1/n))

���������

1 − 2μ + δ2
􏽱

+ ραξδ(1 +(1/n)) + ρ z

1 − 2ωρδ2
un−1 − un

����
����

� φn un−1 − un

����
����,

(71)

where

φn �

������������������������

1 − 2ρβ + ρ2(cλ)
2
(1 +(1/n))

2
􏽱

+ ρcλ(1 +(1/n))

���������

1 − 2μ + δ2
􏽱

+ ραξδ(1 +(1/n)) + ρ z

1 − 2ωρδ2
,

φ �

���������������

1 − 2ρβ + ρ2(cλ)
2

􏽱

+ ρcλ
���������

1 − 2μ + δ2
􏽱

+ ραξδ + ρ z

1 − 2ωρδ2
.

(72)

Clearly,

φn⟶ φ �
k(ρ) + ρη
1 − 2ωρδ2

, (73)

where

k(ρ) �

���������������

1 − 2ρβ + ρ2(cλ)
2

􏽱

,

η � cλ
���������

1 − 2μ + δ2
􏽱

+ ραξδ + ρ z.

(74)

From (56), it follows that φ< 1. Hence, it follows from
(71) and (74) that un􏼈 􏼉is Cauchy sequence in C. Hence, it
converges to some point. Since Cis closed convex set in C,
there exists uin Csuch that un⟶ u, which satisfies
“EPFMVLI” (5).

On the other hand, from Algorithm 1, we have

pn − pn+1
����

����≤ 1 +
1

1 + n
􏼒 􏼓D Pun

􏽨 􏽩
r un( )

, Pun+1
􏽨 􏽩

r un+1( )
􏼒 􏼓

≤ 1 +
1

1 + n
􏼒 􏼓c un − un+1

����
����
2

qn−1 − qn

����
����≤ 1 +

1
n

􏼒 􏼓D Vun−1
􏽨 􏽩

s un−1( )
, Vun
􏽨 􏽩

s un( )
􏼒 􏼓

≤ 1 +
1
n

􏼒 􏼓ξ un−1 − un

����
����.

(75)

,is implies that pn􏼈 􏼉, qn􏼈 􏼉both are Cauchy sequences in
J, since un􏼈 􏼉 is convergence sequence. ,en, we consider
that pn⟶ p and qn⟶ q when n⟶∞. Since
pn ∈ [Pun

]r(un)and qn ∈ [Vqn
]s(un), we have

d p, Pun
􏽨 􏽩

r un( )
􏼒 􏼓≤ p − pn

����
���� + d pn, Pun

􏽨 􏽩
r un( )

􏼒 􏼓 + D Pun
􏽨 􏽩

r un( )
, Pu􏼂 􏼃r(u)􏼒 􏼓

≤ p − pn

����
���� + 0 + c un − u

����
����
2

d q, Vun
􏽨 􏽩

s un( )
􏼒 􏼓≤ q − qn

����
���� + d qn, Vun

􏽨 􏽩
s un( )

􏼒 􏼓 + D Vun
􏽨 􏽩

s un( )
, Vu􏼂 􏼃s(u)􏼒 􏼓

≤ q − qn

����
���� + 0 + ξ un − u

����
����
2
.

(76)

When n⟶∞, we have

d p, Pu􏼂 􏼃r(u)􏼐 􏼑≤ p − pn

����
���� + 0 + c un − u

����
����
2 ⟶ 0,

d q, Pu􏼂 􏼃r(u)􏼐 􏼑≤ p − pn

����
���� + 0 + ξ un − u

����
����
2 ⟶ 0.

(77)

Hence, p ∈ [Pu]r(u)and q ∈ [Vu]s(u).

Finally, we show that

〈M(p), ξ(ϑ, u)〉 + J(ϑ) − J(u) + ω‖ξ(ϑ, u)‖
2 ≥ 0, ∀ϑ ∈ J.

(78)

We again study (55), as follows:
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〈un+1, ϑ − un+1〉 ≥ 〈un, ϑ − un+1〉 − ρ〈M pn, qn( 􏼁, ξ ϑ, un+1( 􏼁〉 − ρJ un, ϑ( 􏼁

+ ρJ un, un+1( 􏼁 − ρω ξ ϑ, un+1( 􏼁
����

����
2
, ∀ϑ ∈ J, ∀n≥ 0.

(79)

Now from Assumptions 1 and 2, we get

0≤ limsup
n⟶∞

un+1, ϑ − un+1 − un, ϑ − un+1 + ρM pn, qn( 􏼁, ξ ϑ, un+1( 􏼁 + ρJ un, ϑ( 􏼁 − ρJ un, un+1( 􏼁 + ρω ξ ϑ, un+1( 􏼁
����

����
2

􏼔 􏼕,

≤ ρ[M(p, q), ξ(ϑ, u) + J(u, ϑ) − J(u, u) + ω‖ξ(ϑ, u)‖
2
.

(80)

,is implies that

0≤ [〈M(p, q)〉, ξ(ϑ, u) + J(u, ϑ) − J(u, u) + ω‖ξ(ϑ, u)‖
2
.

(81)

,is completes the proof. □

4.1. Special Cases

Theorem 4. Let J be real Hilbert space and C≠∅ be a
closed bounded subset of J. LetP: J⟶ F(J) be a closed
continuous fuzzy mapping satisfying condition (B) with
function α: J⟶ [0, 1] and P-L-continuous with constant
λ> 0. Let nonlinear continuous mappingM: J⟶ J be β-S
mixed monotone and c-L-continuous with constants β> 0
and c> 0, respectively. LetJ: C⟶ R be a nondifferentiable
convex functional and z-L-continuous with constant z.
Let the nonlinear mapping ξ(., .):J × J⟶ J is S-monotone
and L-continuous with constants μ> 0 and δ > 0 respectively
If Assumption 2 holds, then for constant ρ> 0,

0< ρ<
2 β − η + 2ωδ2􏼐 􏼑􏼐 􏼑

c
2λ2 − η + 2ωδ2􏼐 􏼑

2, ρ<
1

η + 2ωδ2􏼐 􏼑
, β> η + 2ωδ2,

(82)
where

η � cλ
���������

1 − 2μ + δ2
􏽱

. (83)

Then, there exist unique u ∈ C, u ∈ [Pu]α(u)satisfying
the set-valued “PFMVLI” (12), and the sequences un􏼈 􏼉and
pn􏼈 􏼉 generated by (55) converge strongly to uand p,
respectively.

Proof. Demonstration of ,eorem 4 is similar to demon-
stration of ,eorems 2 and 3. □

Algorithm 2. At n � 0, start with initial value u0 ∈ J,
p0 ∈ [Pu0

]α(u0); from,eorem 4, the auxiliary problem (35)
has a unique solution u1 ∈ J, such that

〈u1, ϑ − u1〉≥ 〈u0, ϑ − u1〉 − ρ〈M p0( 􏼁, ξ ϑ, u1( 􏼁〉 − ρJ(ϑ)

+ ρJ u1( 􏼁 − ρω ξ ϑ, u1( 􏼁
����

����
2
, ∀ϑ ∈ J.

(84)

Since p0 ∈ [Pu0
]α(u0), then by Nadler’s Lemma 2, there

exists p1 ∈ [Pu1
]α(u1), such that

p0 − p1
����

����≤ (1 + 1)D Pu0
􏽨 􏽩α u0( )

, Pu1
􏽨 􏽩α u1( )

􏼒 􏼓. (85)

For n � 1, u1 ∈ J, p1 ∈ [Pu1
]α(u1), again from ,eorem

2, auxiliary problem (35) has a unique solution u2 ∈ J, such
that

〈u2, ϑ − u2〉 ≥ 〈u1, ϑ − u2〉 − ρ〈M p1( 􏼁, ξ ϑ, p2( 􏼁〉 − ρJ(ϑ)

+ ρJ u2( 􏼁 − ρωξ ϑ, u2( 􏼁
2
, ∀ϑ ∈ J.

(86)

Since p1 ∈ [Pu1
]α(u1), then by Nadler’s Lemma 2, there

exists p2 ∈ [Pu2
]α(u2), such that

p1 − p2
����

����≤ 1 +
1
2

􏼒 􏼓D Pu1
􏽨 􏽩α u1( )

, Pu2
􏽨 􏽩α u2( )

􏼒 􏼓,

·

·

(87)

At step n, we can obtain sequences
un ∈ J,pn ∈ [Pun

]α(un) ∈ CB(J), such that
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(i) pn − pn+1
����

����≤ 1 +
1

1 + n
􏼒 􏼓D Pun

􏽨 􏽩α un( )
, Pun+1
􏽨 􏽩α un+1( )

􏼒 􏼓

(ii) 〈un+1, ϑ − un+1〉 ≥ 〈un, ϑ − un+1〉 − ρ〈M pn( 􏼁, ξ ϑ, un+1( 􏼁〉 − ρJ(ϑ) + ρJ un+1( 􏼁

− ρω ξ ϑ, un+1( 􏼁
����

����
2
, ∀ϑ ∈ J, ∀n≥ 0.

(88)

Theorem 5. Let the operator P,V: J⟶ CB(J) be P-L-
continuous and V-L-continuous with constants λ> 0 and
ξ > 0, respectively, and nonlinear continuous mapping
M: J⟶ J be β-S-mixed monotone, c-L-continuous in
respect of first argument, and α-L-continuous in respect of
second argument with constants β> 0, c> 0, and α> 0, re-
spectively, andJ(.) is nondifferentiable. Let bifunction ξ(., .)

be S-monotone with constant μ> 0 and L-continuous with
constant δ > 0, respectively. If Assumptions 1 and 2 hold, then
for constant ρ> 0,

0< ρ< 2
β − η + 2ωδ2􏼐 􏼑􏼐 􏼑

c
2λ2 − η + 2ωδ2􏼐 􏼑

2, ρ<
1

η + 2ωδ2􏼐 􏼑
, β> η + 2ωδ2,

(89)

where

η � cλ
���������

1 − 2μ + δ2
􏽱

+ αξδ + z. (90)

Then, there exist u ∈ C, p ∈ P(u), q ∈V(u)satisfying
the set-valued “EPMVLI” (10), and the sequences un􏼈 􏼉, pn􏼈 􏼉,

and qn􏼈 􏼉generated by (55) converge strongly to u, p, and q,
respectively.

Proof. By using the set-valued mapping F: J⟶ CB(J),
we define the fuzzy mapping 􏽥P: J⟶ F(J), as follows:

􏽥Pu � XP(u),

􏽥Vu � XV(u),
(91)

whereXP(u)andXV(u)are characteristic functions of the
sets P(u). It is easy to see that 􏽥P, 􏽥Vare closed fuzzy
mappings satisfying condition (B) with constant functions
r(u) � 1,s(u) � 1 for all u ∈ J. Also,

􏽥Pu􏽨 􏽩
r(u)

� XPu􏼂 􏼃1 � ϑ ∈ J: Pu(ϑ) � 1􏼈 􏼉 � P(u),

􏽥Vu􏽨 􏽩
s(u)

� XVu􏼂 􏼃1 � ϑ ∈ J: Vu(ϑ) � 1􏼈 􏼉 � V(u).
(92)

(1) ,en, problem (5) is analogous to finding u ∈ J,
such that

􏽥Pu􏼐 􏼑(p) � 1, i.e. p ∈ P(u),

􏽥Vu􏼐 􏼑(q) � 1, i.e. q ∈ V(u),

〈M(p, q), ξ(ϑ, u)〉 + J(u, ϑ) − J(u, u) + ω‖ξ(ϑ, u)‖
2 ≥ 0, ∀ϑ ∈ J.

(93)

Hence, from ,eorems 2 and 3, we can obtain the
conclusion of ,eorem 5 immediately. □

Algorithm 3. At n � 0, start with initial value u0 ∈ J,
p0 ∈ P(u0), q0 ∈V(u0); from ,eorem 5, auxiliary prob-
lem (35) has a unique solution u1 ∈ J, such that

〈u1, ϑ − u1〉 ≥ 〈u0, ϑ − u1〉 − ρ〈M p0, q0( 􏼁, ξ ϑ, u1( 􏼁〉

− ρJ u0, ϑ( 􏼁 + ρJ u0, u1( 􏼁

− ρω ξ ϑ, u1( 􏼁
����

����
2
, ∀ϑ ∈ J.

(94)

Since p0 ∈ P(u0), q0 ∈V(u0), then by Nadler’s Lemma
2, there exist p1 ∈ P(u1), q1 ∈V(u1) such that

p0 − p1
����

����≤ (1 + 1)D P u0( 􏼁,P u1( 􏼁( 􏼁,

q0 − q1
����

����≤ (1 + 1)D V u0( 􏼁,V u1( 􏼁( 􏼁.
(95)

For n � 1, u1 ∈ J,p1 ∈ P(u1), q1 ∈V(u1)again from
,eorem 5, the Auxiliary problem (35) has a unique solution
u2 ∈ J, such that

〈u2, ϑ − u2〉≥ 〈u1, ϑ − u2〉 − ρ〈M p1, q1( 􏼁, ξ ϑ, u2( 􏼁〉

− ρJ u1, ϑ( 􏼁 + ρJ u1, u2( 􏼁

− ρω ξ ϑ, u2( 􏼁
����

����
2
, ∀ϑ ∈ J.

(96)

Since p1 ∈ P(u1), q1 ∈ V(u1), then by Nadler’s Lemma
2, there exist p2 ∈ P(u2), q2 ∈ V(u2) such that
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p1 − p2
����

����≤ 1 +
1
2

􏼒 􏼓D P u1( 􏼁,P u2( 􏼁( 􏼁,

q1 − q2
����

����≤ 1 +
1
2

􏼒 􏼓D V u1( 􏼁,V u2( 􏼁( 􏼁,

·

·

(97)

At step n, we can obtain sequences
un ∈ J,pn ∈ P(un), qn ∈V(un) ∈ CB(J), such that

pn − pn+1
����

����≤ 1 +
1

1 + n
􏼒 􏼓D P un( 􏼁,P un+1( 􏼁( 􏼁,

qn − qn+1
����

����≤ 1 +
1

1 + n
􏼒 􏼓D V un( 􏼁,V un+1( 􏼁( 􏼁,

〈un+1, ϑ − un+1〉 ≥ 〈un, ϑ − un+1〉 − ρ〈M pn, qn( 􏼁, ξ ϑ, un+1( 􏼁〉 − ρJ un, ϑ( 􏼁 + ρJ un, un+1( 􏼁

− ρω ξ ϑ, un+1( 􏼁
����

����
2
, ∀ϑ ∈ C, ∀n≥ 0.

(98)

If ω � 0, then ,eorem 3 reduces to the following result
(see [18]).

Corollary 1. Let statement of =eorem 2 hold and let P,V

beP-L-continuous andV-L-continuous with constants λ> 0
and ξ > 0, respectively. Let nonlinear continuous mapping
M: J × J⟶ J be β-S-mixed monotone with constant
β> 0 and c-L-continuous in respect of first argument and α-L-
continuous in respect of second argument with constants c> 0
and α> 0, respectively. If J(.) is nondifferentiable and the
bifunction ξ(., .): J × J⟶ J is S-monotone with constant
μ> 0, respectively, then for constant ρ> 0,

0< ρ< 2
β − η

c
2λ2 − η2

, ρ<
1
η

, β> η, (99)

where

η � cλ
���������

1 − 2μ + δ2
􏽱

+ αξδ + z. (100)

Then, there exist ∈∈C, p ∈ [Pu]r(u), q ∈ [Vu]s(u) satis-
fying “EPFMVLI” (5), and the sequences un􏼈 􏼉, pn􏼈 􏼉, and qn􏼈 􏼉

generated by (55) converge strongly to u, p, and q,
respectively.

If ω � 0, then ,eorem 5 reduces to the following result
(see [13]).

Corollary 2. Let the operatorP,V: J⟶ CB(J) beP-L-
continuous and V-L-continuous with constants λ> 0 and
ξ > 0, respectively, and nonlinear continuous mapping
M: J⟶ J be β-S-mixed monotone, c-L-continuous in
respect of first argument, and α-L-continuous in respect of
second argument with constants β> 0, c> 0, and α> 0, re-
spectively, andJ(.) is nondifferentiable. Let bifunction ξ(., .)

be S-monotone with constant μ> 0 and L-continuous with
constant δ > 0, respectively. If Assumptions 1 and 2 hold, then
for constant ρ> 0,

0< ρ< 2
β − η

c
2λ2 − η2

, ρ<
1
η

, β> η, (101)

where

η � cλ
���������

1 − 2μ + δ2
􏽱

+ αξδ + z. (102)

Then, there exist u ∈ C, p ∈ P(u), q ∈ V(u) satisfying
the set-valued “EPMVLI” (10), and the sequences un􏼈 􏼉, pn􏼈 􏼉,
and qn􏼈 􏼉 generated by (55) converge strongly to u, p, and q,
respectively.

If M � I(identity mapping), p ∈ J, and P: J⟶ J is
single valued, then,eorem 5 reduces to the following result
(see [12]).

Corollary 3. Let P: J⟶ J be P-S-monotone with con-
stant β> 0 and P-L-continuous with constant λ> 0, re-
spectively. Let J: J⟶ R be a nondifferentiable mapping
and the bifunction ξ(., .) be S-monotone with constant μ> 0
and L-continuous with constant δ > 0, respectively. If ξ(., .)

satisfies following condition:

ξ(ϑ, u) + ξ(u, ϑ) � 0(and so ξ(u, u)

� 0, for all u ∈ J), for all u, ϑ ∈ J,

(103)

then for constant ρ> 0,

0< ρ< 2
β − η + 2ωδ2􏼐 􏼑􏼐 􏼑

(c)
2

− η + 2ωδ2􏼐 􏼑
2, ρ<

1
η + 2ωδ2􏼐 􏼑

, β> η + 2ωδ2,

(104)

where

η � c

���������

1 − 2μ + δ2
􏽱

. (105)
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Then, there exists u ∈ C, satisfying “PMVLI” (13), and
the sequence un􏼈 􏼉 generated by (55) converges strongly to u.

If M � Iandω � 0, p ∈ J, and P: J⟶ J is single
valued, then ,eorem 5 reduces to the following result (see
[22]).

Corollary 4. Let P: J⟶ J be P-S-monotone with con-
stant β> 0 and P-L-continuous with constant λ> 0, re-
spectively. Let J: J⟶ R be a nondifferentiable mapping
and the bifunction ξ(., .) be S-monotone with constant μ> 0
and L-continuous with constant δ > 0, respectively. If ξ(., .)

satisfies following condition:

ξ(ϑ, u) + ξ(u, ϑ) � 0(and so ξ(u, u)

� 0, for all u ∈ J), for all u, ϑ ∈ J,

(106)

then for constant ρ> 0,

0< ρ< 2
(β − η)

(c)
2

− η + 2ωδ2􏼐 􏼑
2, ρη< 1, β> η, (107)

where

η � c

���������

1 − 2μ + δ2
􏽱

. (108)

Then, there exists u ∈ C, satisfying “MVLI” (15), and the
sequence un􏼈 􏼉generated by (55) converges strongly to u.

5. Conclusion

In this paper, we have proposed the idea of “EPFMVLI.” As a
particular case of “EPFMVLI,” extended perturbed mixed
variational-like inequalities are also introduced. With the
help of the extended auxiliary principle technique and some
new analytic techniques, some existence theorems of aux-
iliary “EPFMVLI” are studied for “EPFMVLI,” and some
iterative methods are obtained for the solution of
“EPFMVLI.” ,en, we have obtained some known and new
results. We would like to mention that many earlier defined
familiar methods as well as decent, projection techniques
and its mixed forms such as relaxation and Newton’s
methods can be obtained from auxiliary “SPFMVLI.” ,ere
are much rooms for exploring of this concept, as the suitable
choices of fuzzy mappings can be obtained from EPFMVLI
(5), see [3–8, 12–14, 18–22].
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