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.e correlation coefficient between the two parameters plays a significant part in statistics. Furthermore, the exactness of the assessment of
correlation depends upon information from the set of discourses. .e data collected for various statistical studies are full of ambiguities.
.e idea of interval-valued intuitionistic fuzzy soft sets is an extension of intuitionistic fuzzy soft sets that is used to express insufficient
evaluation, uncertainty, and anxiety in decision-making. Intuitionistic fuzzy soft sets consider two different types of information, such as
membership degree and nonmembership degree. In this paper, the concepts and properties of the correlation coefficient and the weighted
correlation coefficient of interval-valued intuitionistic fuzzy soft sets are proposed. A prioritization technique for order preference by
similarity to the ideal solution based on interval-valued intuitionistic fuzzy soft sets of correlation coefficients and the weighted correlation
coefficient is introduced. We also proposed interval-valued intuitionistic fuzzy soft weighted average and interval-valued intuitionistic
fuzzy soft weighted geometric operators and developed decision-making techniques based on the proposed operators. By using the
developed techniques, a method for solving decision-making problems is proposed. To ensure the applicability of the proposed methods,
an illustrative example is given. Finally, we present a comparison of some existing methods with our proposed techniques.

1. Introduction

Correlation performs a vital part in statistics and engi-
neering; through correlation analysis, the joint relationship
of two variables can be used to evaluate the interdependence
of two variables. Although probabilistic methods have been
applied to various practical engineering problems, there are
some obstacles to probabilistic strategies. For example, the
probability of a process depends on the large amount of data
collected, which is random. However, large-scale complex
systems have many fuzzy uncertainties, so it is difficult to
obtain accurate probability events. .erefore, the results
based on probability theory do not always provide useful
information for experts due to the limited quantitative in-
formation. Besides, in practical applications, sometimes
there is not enough data to properly process standard

statistical data. Due to the abovementioned obstacles, the
results based on probability theory are not always available
to experts. .erefore, probabilistic methods are usually not
enough to resolve such inherent uncertainties in the data. A
lot of researchers in the world proposed and recommended
different approaches to solve those problems that contain
uncertainty. First of all, Zadeh developed the notion of fuzzy
sets (FSs) [1] to solve those problems which contain un-
certainty and vagueness. It is observed that in some cases,
circumstances cannot be handled by FSs, and to overcome
such types of situations, Turksen [2] gave the idea of interval-
valued fuzzy sets (IVFSs). In some cases, we must deliberate
membership unbiased as a nonmembership value for the
suitable representation of an object in uncertain and in-
determinate conditions that could not be handled by FSs nor
by IVFSs. To overcome these difficulties, Atanassov
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presented the idea of intuitionistic fuzzy sets (IFSs) [3]. .e
theory which was presented by Atanassov only deals with
insufficient data because of both the membership and
nonmembership values, but the IFSs cannot handle in-
compatible and imprecise information.

A general mathematical tool was proposed by Molodtsov
[4] to deal with indeterminate, fuzzy, and not clearly defined
substances known as a soft set (SS). Maji et al. [5] extended the
work on SS and developed some operations with their prop-
erties. In [6], they also used the SS theory for decision-making.
Ali et al. [7] revised the Maji approach to SS and developed
some new operations with their properties. DeMorgan’s law on
SS theory was proved [8] by using different operators. Çağman
and Enginoğlu [9] developed the concept of soft matrices with
operations and discussed their properties, and they also in-
troduced a decision-making method to resolve those problems
which contain uncertainty. In [10], they revised the operations
proposed by Molodtsov’s SS. Maji et al. [11] developed the
notion of the fuzzy soft set (FSS) by combining the FS and SS.
.ey also proposed the intuitionistic fuzzy soft sets (IFSSs) with
basic operations and properties [12]. Atanassov andGargov [13]
extended the IFS theory and established a new notion which is
known as interval-valued intuitionistic fuzzy sets (IFSs). .e
authors in [14] established a novel technique to solve multi-
attribute decision-making (MADM) problems by using set pair
analysis (SPA) under the IVIFS environment. Yang et al. [15]
developed the concept of the interval-valued fuzzy soft set
(IVFSS) with operations and proved some important results by
combining the IVFS and SS, and they also used the developed
notion for decision-making. Jiang et al. [16] proposed the
concept of interval-valued intuitionistic fuzzy soft sets (IVIFSSs)
by extending the IVIFS, and they also proposed the necessity
and possibility of operations on IVIFSS with their properties. In
[17], the authors constructed an algorithm based on IVIFSS and
used the developed algorithm for decision-making.

Hwang and Yoon [18] developed the TOPSIS method to
solve decision-making problems. By using the TOPSIS
method, the minimum distance from a positive ideal so-
lution which supports to elect the finest alternative is easily
obtained. After the invention of the TOPSIS method, many
researchers used the TOPSIS method for decision-making
and extended this approach to the fuzzy and intuitionistic
fuzzy environment [19–28]. Garg and Kumar [29] developed
the idea of linguistic interval-valued Atanassov intuitionistic
fuzzy sets and presented basic operational laws, score, and
accuracy functions with their properties. Garg and Arora
[30] developed a generalized version of the intuitionistic
fuzzy soft set (IFSS) with weighted averaging and geometric
aggregation operators and constructed a decision-making
technique to solve problems under an intuitionistic fuzzy
environment. .ey also extended the Maclaurin symmetric
mean (MSM) operators to IFSS based on Archimedean
T-conorm and T-norm [31]. .e idea of entropy measure
and TOPSIS based on the correlation coefficient (CC) has
been developed by using complex Q-rung orthopair fuzzy
information and used the established techniques for deci-
sion-making [32].

In [33], the authors proposed the functional measuring
of the interrelation of IFSs, nowadays, known as correlation,

and developed its coefficient properties. To measure the
interrelation of fuzzy numbers, Yu [34] established the CC of
fuzzy numbers. Evaluating the CC for fuzzy data has been
developed by Chiang and Lin [35]. Hung and Wu [36]
proposed the centroid method to calculate the CC of IFSs
and extended the proposed method to IVIFS. Bustince and
Burillo [37] introduced the correlation and CC of IVIFS and
proved the decomposition theorem on the correlation of
IVIFS. Hong [38] and Mitchell [39] also established the CC
for IFSs and IVIFSs, respectively. Garg and Arora intro-
duced the correlation measures on IFSS and constructed the
TOPSIS technique based on developed correlation measures
[40]. Huang and Guo [41] gave an improved CC on IFS with
their properties, and they also established the coefficient of
IVIFS. Singh et al. [42] developed the one- and two-para-
metric generalization of CC on IFS and used the proposed
technique in multiattribute group decision-making prob-
lems. .ao [43] introduced the variance and covariance to
establish the novel CC among IFS. Garg and Arora [44]
developed the aggregate operators by using dual hesitant
fuzzy soft numbers and utilized the proposed operators to
solve MCDM problems. Jana et al. [45] developed various
aggregation operators under Q-rung orthopair fuzzy
environment.

In this research, the TOPSIS technique extends to
IVIFSS information, where the mechanisms are assumed in
terms of IVIFSNs. To measure the degree of dependency of
IVIFSSs, we propose a new CC on IVIFSSs and examine
some properties of developed CC. To achieve the goal ac-
curately, the TOPSIS technique may be extended to solve
multiattribute decision-making (MADM) problems. In the
present research, our main objective is to introduce a new
CC under IVIFSS information and develop the TOPSIS
method for IVIFSS based on the proposed CC, interval-
valued intuitionistic fuzzy soft weighted average
(IVIFSWA), and interval-valued intuitionistic fuzzy soft
weighted geometric (IVIFSWG) operators. To solve MADM
problems based on the extended TOPSIS approach, an al-
gorithm is developed and the validity of the proposed
technique is checked with a numerical illustration. .e
correlation measures are given that IVIFSS has been con-
sidered for the pairs of IVIFSSs, which will be used to
compute the interrelation as well as the scope of dependence
between the elements. Since the prevailing IFS and IFSS are
special cases of IVIFSSs, therefore, the developed measure is
more generalized than the prevailing measures. .e CC
conserves the linear relationship between the under-
considered elements. To find the closeness coefficient,
generally, researchers used the basic TOPSIS method,
similarity measures, and distance. Meanwhile, in our de-
veloped method, the closeness coefficient can be computed
by utilizing the CC.

.e rest of the article is organized as follows. In Section
2, we remember some basic definitions such as SS, FSS,
IVFSS, IFS, and IVIFSS and IVIFSS with some operations. In
Section 3, we propose the correlation and informational
energies for IVIFSS and develop the CC andWCCwith their
properties by using the correlation and informational en-
ergies. An extended TOPSIS technique is presented based on
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CC, and an algorithm is developed based on the proposed
TOPSIS method to solve the MADM problem with a nu-
merical illustration in Section 4. .e IVIFSWA and
IVIFSWG operators with decision-making techniques are
presented in Section 5. Section 6 provides a comparative
analysis of some existing techniques to developed methods.
Finally, a comprehensive conclusion and future directions
are given in Section 7.

2. Preliminaries

In this section, we recollect some basic definitions which will
be used in the following sequel, such as SS, FSS, IVFSS, IFS,
and IVIFSS.

Definition 1 (see [4]). Let U be the universal set and E be
the set of attributes concerning U. Let P(U) be the power
set ofU andA⊆E. A pair (F, A) is called an SS overU, and
its mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) � F(e) ∈ P(U): e ∈ E,F(e) � ∅, if e ∉ A{ }.

(2)

Definition 2 (see [11]). Let F(U) be a collection of all fuzzy
subsets over U and E be a set of attributes. Let A⊆E, and
then a pair (F, A) is called FSS over U, where F is a
mapping such as F: A⟶ F(U).

Definition 3 (see [15]). A mapping F: A⟶ F(U) is
known as an IVFSS and defined as FUi

(e)

� (ui, σA(ui))|ui ∈ U􏼈 􏼉, where σA(ui) is the interval-valued
fuzzymembership value of ui against parameter e ∈ E, F(U)

is a collection of interval-valued fuzzy subsets of U, and
σA(ui) � [σℓA(ui), σUA(ui)] in which σℓA(ui) and σUA(ui)

represent the lower and upper limits of the interval.

Definition 4 (see [3]). An IFS is an object of the form A �

(ui, σA(ui), τA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉 on a universe U, where σA
and τA: ⟶ [0, 1] represents the degree of membership
and nonmembership, respectively, of any element ui ∈ U( 􏼁

to set A with the following condition 0≤ σA(ui)+ τA
(ui)≤ 1.

Definition 5 (see [12]). A mapping F: A⟶ F(U) is
known as an IFSS and defined as Fui

(e)

� (ui, σA(ui), τA(ui))|ui ∈ U􏼈 􏼉, where σA(ui) and τA(ui)

are the degrees of acceptance and rejection, respectively, for
all ui ∈ U and 0≤ σA(ui), τA(ui), σA(ui) + τA(ui)≤ 1.

Definition 6 (see [13]). An IVIFS is an object of the form
A � (ui, σA(ui), τA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉 on a universeU, where
σA and τA: U⟶ Int([0, 1]). Int([0, 1]) represents all

closed subintervals of [0, 1] which satisfy the following
condition ∀ui ∈ U, supσA(ui) + supτA(ui)≤ 1. IVIFS (U)

represents the class of all IVIFS over U.

Definition 7 (see [13]). Let (F,A) and (g,B) be two
IVIFSs over U, and then

(1) (F,A) is an interval-valued intuitionistic fuzzy
subset of (g,B); if A⊆B, then F(e)⊆G(e) ∀ui ∈ U
and e ∈ A, that is, σℓA(ui)≤ τℓB(ui), σUA(ui)≤
τUB(ui), σℓA(ui)≥ τℓB(ui), and τUA(ui)≥ σUB(ui)

(2) Let (F,A) � (ui, σA(ui), τA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉 be an
IVIFS, and then its complement is defined as follows:
(F,A)c � (ui, τA(ui), σA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉

(3) (F,A) � (g,B), if (F,A)⊆(g,B) and (g,B)⊆
(F,A)

Definition 8 (see [16]). Let U and E be the initial universe
and set of parameters, respectively, and IVIFS (U) be the set
of all IVIFS ofU. LetA⊆E, and then a pair (F,A) is called
IVIFSS over U, where F is a mapping such that
F: A⟶ IVIFS(U).

IVIFSS is a parameterized family of IVIFSs of U, and
consequently its universe is IVIFS (U). .ere exists a
mapping from parameters to IVIFS (U), so we can say that
IVIFSS is also a special case of SS.

F(e) states the interval intuitionistic fuzzy value set of
the parameter for any e ∈ A, and it is an IVIFS of U where
ui ∈ U and e ∈ A can be expressed in the mathematical form
such as F(e) � (ui, σA(ui), τA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉. Here,
σA(ui) � 􏼆σℓA(ui), σUA(ui)􏼇 and σA(u) � [σℓA(ui), σUA(ui)]

represent that the interval-valued fuzzy membership degree
ofU is held or not on parameter. Simply, an interval-valued
intuitionistic fuzzy soft number (IVIFSN) can be expressed
as F � [σℓ, σU], [τℓ, τU]􏼊 􏼋, where 0≤ σU + τU ≤ 1.

Definition 9 (see [16]). Let (F,A) and (g,B) be two
IVIFSSs over U, and then

(1) (F,A) is an interval-valued intuitionistic fuzzy soft
subset of (g,B); ifA⊆B, and ∀ui ∈ U and e ∈ A, we
haveF(e)⊆g(e), that is, σℓA(ui)≤ σℓB(ui),

σUA(ui)≤ σUB(ui), τℓA(ui)≥ τℓB(ui), and τUA(ui)≥ σUB
(ui). It can be represented as (F,A)⊆(g,B).

(2) Let (F,A) � (ui, σA(ui), τA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉 be an
IVIFSS, and then its complement is defined as fol-
lows: (F,A)c � (ui, τA(ui), σA(ui))|ui ∈ U􏼊 􏼋􏼈 􏼉.

(3) (F,A) � (g,B), if (F,A)⊆(g,B) and (g,B)

⊆(F,A).
(4) If σA(ui) � [0, 0], and τA(ui) � [1, 1]∀ui ∈ U and

e ∈ A, then (F,A) are called null IVIFSS over U. It
can be denoted as Φ.

(5) If σA(ui) � [1, 1], and τA(ui) � [0, 0]∀ui ∈ U and
e ∈ A, then (F,A) are called absolute IVIFSS over
U. It can be denoted as Ω.
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3. Correlation Coefficient of Interval-Valued
Intuitionistic Fuzzy Soft Set

In this section, the concept of the correlation coefficient and
the weighted correlation coefficient of IVIFSS has been
proposed with some basic properties.

Definition 10. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g, B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be

two IVIFSSs defined over a set of attributes
e1, e2, e3, . . . , em􏼈 􏼉; here σℓAk

(ui) � [σℓAk
(ui), σひAk

(ui)],
τℓAk

(ui) � [τℓAk
(ui), τひAk

(ui)], σℓBk
(ui) � [σℓBk

(ui), σひBk
(ui)],

and τℓBk
(ui) � [τℓBk

(ui), τひBk
(ui)]. .en, the informational

intuitionistic energies of (F,A) and (g,B) can be de-
scribed as follows:

ςIVIFSS(F,A) � 􏽘
m

k�1
􏽘

n

i�1
σℓAk

ui( 􏼁􏼐 􏼑
2

+ σひAk
ui( 􏼁􏼐 􏼑

2
+ τℓAk

ui( 􏼁􏼐 􏼑
2

+ τひAk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓, (3)

ςIVIFSS(g,B) � 􏽘
m

k�1
􏽘

n

i�1
σℓBk

ui( 􏼁􏼐 􏼑
2

+ σひBk
ui( 􏼁􏼐 􏼑

2
+ τℓBk

ui( 􏼁􏼐 􏼑
2

+ τひBk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓. (4)

Definition 11. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then the correlation between them is
defined as follows:

ςIVIFSS((F,A), (g,B)) � 􏽘
m

k�1
􏽘

n

i�1
σℓAk

ui( 􏼁∗ σℓBk
ui( 􏼁 + σUAk

ui( 􏼁∗ σUBk
ui( 􏼁 + τℓAk

ui( 􏼁∗ τℓBk
ui( 􏼁 + τUAk

ui( 􏼁∗ τUBk
ui( 􏼁􏼐 􏼑. (5)

Proposition 1. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs and CIVIFSS( (F,A), (g,B) ) be a correlation
between them, and then the following properties hold:

(1) CIVIFSS((F,A), (F,A)) � ςIVIFSS(F,A)

(2) CIVIFSS((g,B), (g,B)) � ςIVIFSS(g,B)

Proof. .e proof is trivial. □

Definition 12. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then their correlation coefficient is given as
δIVIFSS( (F,A), (g,B) ) and expressed as follows:

δIVIFSS((F,A), (g,B)) �
CIVIFSS( (F,A), (g,B) )
�����������
ςIVIFSS(F,A)

􏽰 �����������
ςIVIFSS(g,B)

􏽰 .

(6)

Example 1. Let (F,A) and (g,B) be two IVIFSSs overU �

u1, u2􏼈 􏼉 and E � e{ } be a set of attributes which consist of
only one parameter given as follows: (F,A)

� e, ((u1, [.2, .4], [.4, .5]), (u2, [.3, .5], [.1, .4]))􏼊 􏼋􏼈 􏼉 and
(g,B) � e, ((u1, [.3, .6], [.1, .4]), (u2, [.3, .5], [.2, .3]))􏼊 􏼋􏼈 􏼉.
.en, by using Definitions 1–3, we have
ςIVIFSS(F,A) � 1.12, ςIVIFSS(g,B) � 1.09, and
CIVIFSS((F,A), (g,B)) � 1.02. Now, by utilizing equation
(6), we get

δIVIFSS((F,A), (g,B)) � 0.92316. (7)

Proposition 2. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then CC between them satisfies the following
properties:

(1) 0≤ δIVIFSS((F,A), (g,B))≤ 1
(2) δIVIFSS((F,A), (g,B)) � δIVIFSS( (g,B), (F,A) )

(3) If (F,A) � (g,B), that is, ∀i, k, σℓAk
(ui) � σℓBk

(ui),
σひAk

(ui) � σひBk
(ui), τℓAk

(ui) � τℓBk
(ui), and τひAk

(ui)

� τひBk
(ui), then δIVIFSS((F,A), (g,B)) � 1

Proof 1. δIVIFSS((F, A), (g, B))≥ 0 is trivial, and here we
only need to prove that δIVIFSS((F,A), (g,B))≤ 1.
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From equation (5), we have

CIVIFSS((F, A), (g, B)) � 􏽘
m

k�1
􏽘

n

i�1
σℓAk

ui( 􏼁∗ σℓBk
ui( 􏼁 + σひAk

ui( 􏼁∗ σひBk
ui( 􏼁 + τℓAk

ui( 􏼁∗ τℓBk
ui( 􏼁 + τひAk

ui( 􏼁∗ τひBk
ui( 􏼁􏼐 􏼑

� 􏽘
m

k�1
σℓAk

u1( 􏼁∗ σℓBk
u1( 􏼁 + σひAk

u1( 􏼁∗ σひBk
u1( 􏼁 + τℓAk

u1( 􏼁∗ τℓBk
u1( 􏼁 + τひAk

u1( 􏼁∗ τひBk
u1( 􏼁􏼐 􏼑

+ 􏽘
m

k�1
σℓAk

u2( 􏼁∗ σℓBk
u2( 􏼁 + σひAk

u2( 􏼁∗ σひBk
u2( 􏼁 + τℓAk

u2( 􏼁∗ τℓBk
u2( 􏼁 + τひAk

u2( 􏼁∗ τひBk
u2( 􏼁􏼐 􏼑

+

⋮

+

􏽘

m

k�1
σℓAk

un( 􏼁∗ σℓBk
un( 􏼁 + σひAk

un( 􏼁∗ σひBk
un( 􏼁 + τℓAk

un( 􏼁∗ τℓBk
un( 􏼁 + τひAk

un( 􏼁∗ τひBk
un( 􏼁􏼐 􏼑,

(8)

CIVIFSS((F,A), (g,B))

�

σℓA1
u1( 􏼁∗ σℓB1

u1( 􏼁 + σひA1
u1( 􏼁∗ σひB1

u1( 􏼁 + τℓA1
u1( 􏼁∗ τℓB1

u1( 􏼁 + τひA1
u1( 􏼁∗ τひB1

u1( 􏼁􏼐 􏼑+

σℓA2
u1( 􏼁∗ σℓB2

u1( 􏼁 + σひA2
u1( 􏼁∗ σひB2

u1( 􏼁 + τℓA2
u1( 􏼁∗ τℓB2

u1( 􏼁 + τひA2
u1( 􏼁∗ τひB2

u1( 􏼁􏼐 􏼑

⋮
σℓAm

u1( 􏼁∗ σℓBm
u1( 􏼁 + σひAm

u1( 􏼁∗ σひBm
u1( 􏼁 + τℓAm

u1( 􏼁∗ τℓBm
u1( 􏼁 + τひAm

u1( 􏼁∗ τひBm
u1( 􏼁􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

σℓA1
u2( 􏼁∗ σℓB1

u2( 􏼁 + σひA1
u2( 􏼁∗ σひB1

u2( 􏼁 + τℓA1
u2( 􏼁∗ τℓB1

u2( 􏼁 + τひA1
u2( 􏼁∗ τひB1

u2( 􏼁􏼐 􏼑+

σℓA2
u2( 􏼁∗ σℓB2

u2( 􏼁 + σひA2
u2( 􏼁∗ σひB2

u2( 􏼁 + τℓA2
u2( 􏼁∗ τℓB2

u2( 􏼁 + τひA2
u2( 􏼁∗ τひB2

u2( 􏼁􏼐 􏼑

⋮
σℓAm

u2( 􏼁∗ σℓBm
u2( 􏼁 + σひAm

u2( 􏼁∗ σひBm
u2( 􏼁 + τℓAm

u2( 􏼁∗ τℓBm
u2( 􏼁 + τひAm

u2( 􏼁∗ τひBm
u2( 􏼁􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

⋮

+

σℓA1
un( 􏼁∗ σℓB1

un( 􏼁 + σひA1
un( 􏼁∗ σひB1

un( 􏼁 + τℓA1
un( 􏼁∗ τℓB1

un( 􏼁 + τひA1
un( 􏼁∗ τひB1

un( 􏼁􏼐 􏼑+

σℓA2
un( 􏼁∗ σℓB2

un( 􏼁 + σひA2
un( 􏼁∗ σひB2

un( 􏼁 + τℓA2
un( 􏼁∗ τℓB2

un( 􏼁 + τひA2
un( 􏼁∗ τひB2

un( 􏼁􏼐 􏼑

⋮
σℓAm

un( 􏼁∗ σℓBm
un( 􏼁 + σひAm

un( 􏼁∗ σひBm
un( 􏼁 + τℓAm

un( 􏼁∗ τℓBm
un( 􏼁 + τひAm

un( 􏼁∗ τひBm
un( 􏼁􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

� 􏽘
m

k�1

σℓAk
u1( 􏼁∗ σℓBk

u1( 􏼁 + σひAk
u1( 􏼁∗ σひBk

u1( 􏼁􏼐 􏼑+

σℓAk
u2( 􏼁∗ σℓBk

u2( 􏼁 + σひAk
u2( 􏼁∗ σひBk

u2( 􏼁􏼐 􏼑 + . . . +

σℓAk
un( 􏼁∗ σℓBk

un( 􏼁 + σひAk
un( 􏼁∗ σひBk

un( 􏼁􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 􏽘
m

k�1

τℓAk
u1( 􏼁∗ τℓBk

u1( 􏼁 + τひAk
u1( 􏼁∗ τひBk

u1( 􏼁􏼐 􏼑+

τℓAk
u2( 􏼁∗ τℓBk

u2( 􏼁 + τひAk
u2( 􏼁∗ τひBk

u2( 􏼁􏼐 􏼑 + . . . +

τℓAk
un( 􏼁∗ τℓBk

un( 􏼁 + τひAk
un( 􏼁∗ τひBk

un( 􏼁􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9)
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By using Cauchy–Schwarz inequality,

CIVIFSS(F,A), (g,B)( 􏼁
2

≤ 􏽘
m

k�1

σℓAk
u1( 􏼁􏼐 􏼑

2
+ σひAk

u1( 􏼁􏼐 􏼑
2

􏼒 􏼓 + σℓAk
u2( 􏼁􏼐 􏼑

2
+ σひAk

u2( 􏼁􏼐 􏼑
2

􏼒 􏼓 + · · · + σℓAk
un( 􏼁􏼐 􏼑

2
+ σひAk

un( 􏼁􏼐 􏼑
2

􏼒 􏼓

+ τℓAk
u1( 􏼁􏼐 􏼑

2
+ τひAk

u1( 􏼁􏼐 􏼑
2

􏼒 􏼓 + τℓAk
u2( 􏼁􏼐 􏼑

2
+ τひAk

u2( 􏼁􏼐 􏼑
2

􏼒 􏼓 + · · · + τℓAk
un( 􏼁􏼐 􏼑

2
+ τひAk

un( 􏼁􏼐 􏼑
2

􏼒 􏼓

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

× 􏽘
m

k�1

σℓBk
u1( 􏼁􏼐 􏼑

2
+ σひBk

u1( 􏼁􏼐 􏼑
2

􏼒 􏼓 + σℓBk
u2( 􏼁􏼐 􏼑

2
+ σひBk

u2( 􏼁􏼐 􏼑
2

􏼒 􏼓 + · · · + σℓBk
un( 􏼁􏼐 􏼑

2
+ σひBk

un( 􏼁􏼐 􏼑
2

􏼒 􏼓

+ τℓBk
u1( 􏼁􏼐 􏼑

2
+ τひBk

u1( 􏼁􏼐 􏼑
2

􏼒 􏼓 + τℓBk
u2( 􏼁􏼐 􏼑

2
+ τひBk

u2( 􏼁􏼐 􏼑
2

􏼒 􏼓 + · · · + τℓBk
un( 􏼁􏼐 􏼑

2
+ τひBk

un( 􏼁􏼐 􏼑
2

􏼒 􏼓

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

ςIVIFSS(F,A), (g,B)( 􏼁
2

� 􏽘

m

k�1
􏽘

n

i�1
σℓAk

ui( 􏼁􏼐 􏼑
2

+ σひAk
ui( 􏼁􏼐 􏼑

2
+ τℓAk

ui( 􏼁􏼐 􏼑
2

+ τひAk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓

× 􏽘
m

k�1
􏽘

n

i�1
σℓBk

ui( 􏼁􏼐 􏼑
2

+ σひBk
ui( 􏼁􏼐 􏼑

2
+ τℓBk

ui( 􏼁􏼐 􏼑
2

+ τひBk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓,

CIVIFSS(F,A), (g,B)( 􏼁
2 ≤ ςIVIFSS(F,A) × ςIVIFSS(g,B).

(10)

.erefore, (CIVIFSS(F,A), (g,B))2 ≤ ςIVIFSS(F,A)

×ςIVIFSS(g,B). Hence, by using Definition 12, we get
ςIVIFSS((F,A), (g,B))≤ 1, so 0≤ ςIVIFSS((F,A), (g,B))

≤ 1. □

Proof 2. .e proof is obvious. □

Proof 3. From equation (6), we have

δIVIFSS((F,A), (g,B)) �
􏽐

m
k�1 􏽐

n
i�1 σℓAk

ui( 􏼁∗ σℓBk
ui( 􏼁 + σUAk

ui( 􏼁∗ σUBk
ui( 􏼁 + τℓAk

ui( 􏼁∗ τℓBk
ui( 􏼁 + τUAk

ui( 􏼁∗ τUBk
ui( 􏼁􏼐 􏼑

���������������������������������������������������

􏽐
m
k�1 􏽐

n
i�1 σℓAk

ui( 􏼁􏼐 􏼑
2

+ σUAk
ui( 􏼁􏼐 􏼑

2
+ τℓAk

ui( 􏼁􏼐 􏼑
2

+ τUAk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓

􏽲 ���������������������������������������������������

􏽐
m
k�1 􏽐

n
i�1 σℓBk

ui( 􏼁􏼐 􏼑
2

+ σUBk
ui( 􏼁􏼐 􏼑

2
+ τℓBk

ui( 􏼁􏼐 􏼑
2

+ τUBk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓

􏽲 .

(11)

As we know that σℓAk
(ui) � σℓBk

(ui), σひAk
(ui) � σひBk

(ui),
τℓAk

(ui) � τℓBk
(ui), and τひAk

(ui) � τひBk
(ui)∀i, k, we get

δIVIFSS((F, A), (g, B)) �
􏽐

m
k�1 􏽐

n
i�1 σℓBk

ui( 􏼁􏼐 􏼑
2

+ σひBk
ui( 􏼁􏼐 􏼑

2
+ τℓBk

ui( 􏼁􏼐 􏼑
2

+ τひBk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓

���������������������������������������������������

􏽐
m
k�1 􏽐

n
i�1 σℓAk

ui( 􏼁􏼐 􏼑
2

+ σひAk
ui( 􏼁􏼐 􏼑

2
+ τℓAk

ui( 􏼁􏼐 􏼑
2

+ τひAk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓

􏽲 ���������������������������������������������������

􏽐
m
k�1 􏽐

n
i�1 σℓBk

ui( 􏼁􏼐 􏼑
2

+ σひBk
ui( 􏼁􏼐 􏼑

2
+ τℓBk

ui( 􏼁􏼐 􏼑
2

+ τひBk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓

􏽲 ,

δIVIFSS((F,A), (g,B)) � 1.

(12)

.us, proving the required result. □

Definition 13. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then their correlation coefficient is given as
δ1IVIFSS( (F,A), (g,B) ) and expressed as follows:

δ1IVIFSS((F,A), (g,B)) �
CIVIFSS( (F,A), (g,B) )

max ςIVIFSS(F,A), ςIVIFSS(g,B)􏼈 􏼉
.

(13)

Proposition 3. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then CC between them satisfies the following
properties:

(1) 0≤ δ1IVIFSS((F,A), (g,B))≤ 1
(2) δ1IVIFSS((F,A), (g,B)) � δ1IVIFSS( (g,B), (F,A) )

(3) If (F,A) � (g,B), that is, ∀i, k, σℓAk
(ui) � σℓBk

(ui),
σひAk

(ui) � σひBk
(ui), τℓAk

(ui) � τℓBk
(ui), and

τひAk
(ui) � τひBk

(ui), then δIVIFSS((F,A), (g,B)) � 1
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Proof. .e proof is similar to Proposition 2.
Nowadays, considering the weight of IVIFSS is essential

for practical applications. .e result of a decision may be
varying, whenever decision makers adjust the different
weights to every element in the universe of discourse.
Consequently, it is particularly significant to plan the weight
before decision-making. Let _ωk � _ω1, _ω2, _ω3, . . . , _ωm􏼈 􏼉 be a
weight vector for experts such as _ωk > 0,􏽐

m
k�1 _ωk � 1, and c �

c1, c2, c3, . . . , cn􏼈 􏼉 be a weight vector for parameters such as
ci > 0, 􏽐

n
i�1 ci � 1. In the following, we develop the WCC

IVIFSS by extending Definitions 12 and 13. □

Definition 14. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and(g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be

two IVIFSSs, and then their weighted correlation coefficient
is given as δWIVIFSS( (F,A), (g,B) ) and expressed as
follows:

δWIVIFSS((F,A), (g,B)) �
CIVIFSS( (F,A), (g,B) )

max ςIVIFSS(F,A), ςIVIFSS(g,B)􏼈 􏼉
.

(14)

Definition 15. Let (F,A) � (ui, σAk
(ui), τAk

(ui))|ui􏽄􏽮

∈ U〉} and (g,B) � (ui, σBk
(ui), τBk

(ui))|ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then their weighted correlation coefficient
is also given as δ1WIVIFSS( (F,A), (g,B) ) and expressed as
follows:

δ1WIVIFSS((F,A), (g,B)) �
CIVIFSS( (F,A), (g,B) )

max ςIVIFSS(F,A), ςIVIFSS(g,B)􏼈 􏼉
,

δ1WIVIFSS((F,A), (g,B)) �
􏽐

m
k�1 _ωk 􏽐

n
i�1 ci σℓAk

ui( 􏼁∗ σℓBk
ui( 􏼁 + σひAk

ui( 􏼁∗ σひBk
ui( 􏼁 + τℓAk

ui( 􏼁∗ τℓBk
ui( 􏼁 + τひAk

ui( 􏼁∗ τひBk
ui( 􏼁􏼐 􏼑􏼐 􏼑

max 􏽐
m
k�1 _ωk σℓAk

ui( 􏼁􏼐 􏼑
2

+ σひAk
ui( 􏼁􏼐 􏼑

2
+ τℓAk

ui( 􏼁􏼐 􏼑
2

+ τひAk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓, 􏽐

n
k�1 _ωk 􏽐

n
i�1 c1 σℓBk

ui( 􏼁􏼐 􏼑
2

+ σひBk
ui( 􏼁􏼐 􏼑

2
+ τℓBk

ui( 􏼁􏼐 􏼑
2

+ τひBk
ui( 􏼁􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓􏼚 􏼛

.

(15)

If we consider _ω� {1/m, 1/m, . . ., 1/m} and c � {1/n, 1/n,
. . ., 1/n}, then δWIVIFSS (FA

⌣ , G
B
⌣) and δ1WIVIFSS (FA

⌣ , G
B
⌣) are

reduced to δIVIFSS (F
A
⌣ , G

B
⌣) and δ1IVIFSS (F

A
⌣ , G

B
⌣), respec-

tively, defined in Definitions 12 and 13.

Proposition 4. Let (F,A) � (ui, σAk
(ui), τAk

(ui)) |ui􏽄􏽮

∈ U〉} and (G,B) � (ui, σBk
(ui), τBk

(ui)) |ui ∈ U􏽄 􏽅􏽮 􏽯 be
two IVIFSSs, and then WCC between them satisfies the fol-
lowing properties:

(1) 0 ≤ δWIVIFSS((F,A), (G,B)) ≤ 1
(2) δWIVIFSS((F,A), (G,B)) � δWIVIFSS((G,B),

(F,A))

(3) If (F,A) � (G,B), that is, ∀i, k, σℓAk
(ui) � σℓBk

(ui),
σひAk

(ui) � σひBk
(ui), τℓAk

(ui) � τℓBk
(ui), and τひAk

(ui)

� τひBk
(ui), then δWIVIFSS((F,A), (G,B)) � 1

Proof. Similar to Proposition 2. □

4. TOPSIS Approach on IVIFSS for Solving DM
Problems Based on the
Correlation Coefficient

In this section, we develop a technique to solve decision-
making problems by extending the TOPSIS method for
IVIFSS information on the base of the correlation coeffi-
cient. Hwang and Yoon [18] developed the TOPSIS method
and utilized them to encourage the order of the assessment
substances regarding the positive and negative ideal solu-
tions for decision-making matters. By using the TOPSIS
method, we can find the best alternative from different al-
ternatives having minimum and maximum distance from

PIS and NIS, respectively. .e TOPSIS technique demon-
strates that the correlation measure is used to distinguish the
positive and negative ideals in the choice ranking. Most
researchers used the TOPSIS method to discover the
closeness coefficient with a different type of distance and
comparability measure. TOPSIS technique with a correla-
tion coefficient is more appropriate to find the closeness
coefficient instead of distance and similarity measure, since
the correlation measure preserves the linear relationship
among those factors which are under consideration. By
using the developed CC, an algorithm based on the TOPSIS
method will be introduced to select the most appropriate
option.

4.1. TOPSIS Method Based on CC for IVIFSS to Solve MADM
Problem. Assume a set of “s” alternatives such as
β= β1, β2, β3, . . . , βs

􏽮 􏽯 for assessment under the team of
experts such as U= u1, u2, u3, . . . , un􏼈 􏼉 with weights
Ω= (Ω1, Ω1, . . . , Ωn)T such that Ωi > 0, 􏽐

n
i�1Ωi = 1. Let

E= e1, e2, . . . , em􏼈 􏼉 be a set of attributes with weights and
c= (c1, c2, c3, . . . , cm)T be a weight vector for parameters
such as cj > 0, 􏽐

m
j�1 cj = 1. .e team of experts {ui: i= 1, 2,

. . ., n} evaluates the alternatives {β(z): z= 1, 2, . . ., s} under
the considered parameters {ej: j= 1, 2, . . ., m} given in the
form of IVIFSNs such as L

(z)
ij = (σ(z)

ij , τ(z)
ij ), where

σ(z)
ij = [σℓij, σひij ] and τ(z)

ij = [τℓij, τひij ], in which 0 ≤ σℓij, σひij ,
τℓij, τひij ≤ 1 and sup σ(z)

ij + sup τ(z)
ij ≤ 1. So, L

(z)
ij = ([σℓij,

σひij ], [τℓij, τひij ]) for all i, j. A flowchart for the method is
presented in Figure 1, and stepwise calculated results are
presented in Tables 1–8.

Step 1. Construct a matrix for each alternative {β(z):
z= 1, 2, . . ., s} as follows:
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Input
alternatives,

attributes

DM u1

DM u2

DM u3

DM u4

Expert’s rating in 
terms of IVIFSNs 

for β(1) w.r.t
attributes 

Expert’s rating in 
terms of IVIFSNs 

for β(2) w.r.t
attributes 

Expert’s rating in 
terms of IVIFSNs 

for β(3) w.r.t
attributes 

Expert’s rating in 
terms of IVIFSNs 

for β(4) w.r.t
attributes 

Find the indices to
determine the PIA

L+ and NIA L–

Compute the
RCC

Compute the 
weighted decision
 matrix for each

alternative

Analyze the
alternatives

ranking

Find CC between
each element of

LIf and
positive ideal J+

Compute the 
CC for each 
alternative

β(2) and L+, L–,
respectively

(z)

Figure 1: Algorithm of the TOPSIS method based on CC for IVIFSS.

Table 1: Decision matrix for alternative β(1).

β(1) e1 e2 e3 e4

u1 ([.3, .5], [.2, .4]) ([.2, .6], [.2, .3]) ([.5, .7], [.1, .3]) ([.5, .6], [.1, .3])

u2 ([.5, .7], [.1, .2]) ([.4, .6], [.2, .4]) ([.3, .4], [.2, .5]) ([.6, .8], [.1, .2])

u3 ([.4, .6], [.2, .3]) ([.1, .4], [.2, .5]) ([.2, .3], [.1, .6]) ([.3, .4], [.2, .5])

u4 ([.2, .4], [.3, .5]) ([.3, .6], [.2, .3]) ([.2, .4], [.4, .5]) ([.4, .6], [.1, .3])

Table 2: Decision matrix for alternative β(2).

β(2) e1 e2 e3 e4

u1 ([.5, .6], [.2, .3]) ([.3, .4], [.4, .6]) ([.4, .5], [.3, .5]) ([.3, .5], [.4, .5])

u2 ([.3, .5], [.4, .5]) ([.1, .3], [.2, .4]) ([.7, .8], [.1, .2]) ([.1, .2], [.7, .8])

u3 ([.6, .7], [.2, .3]) ([.3, .4], [.4, .5]) ([.5, .8], [.1, .2]) ([.1, .2], [.5, .8])

u4 ([.5, .7], [.1, .2]) ([.2, .4], [.5, .6]) ([.4, .6], [.2, .3]) ([.2, .3], [.4, .6])

Table 3: Decision matrix for alternative β(3).

β(3) e1 e2 e3 e4

u1 ([.4, .5], [.2, .4]) ([.3, .5], [.4, .5]) ([.4, .6], [.3, .4]) ([.3, .4], [.4, .6])

u2 ([.3, .4], [.4, .6]) ([.1, .3], [.3, .7]) ([.6, .8], [.1, .2]) ([.1, .2], [.6, .8])

u3 ([.6, .7], [.1, .2]) ([.3, .4], [.4, .5]) ([.7, .8], [.1, .2]) ([.1, .2], [.7, .8])

u4 ([.5, .6], [.1, .3]) ([.2, .3], [.6, .7]) ([.4, .6], [.3, .4]) ([.3, .4], [.4, .6])

Table 4: Decision matrix for alternative β(4).

β(4) e1 e2 e3 e4

u1 ([.4, .7], [.1, .2]) ([.4, .5], [.2, .4]) ([.2, .4], [.3, .4]) ([.3, .4], [.2, .4])

u2 ([.3, .5], [.3, .4]) ([.2, .4], [.4, .5]) ([.6, .8], [.1, .2]) ([.1, .2], [.6, .8])

u3 ([.6, .7], [.1, .2]) ([.4, .5], [.3, .4]) ([.5, .7], [.1, .3]) ([.1, .3], [.5, .7])

u4 ([.5, .6], [.1, .3]) ([.1, .2], [.7, .8]) ([.5, .7], [.2, .3]) ([.2, .3], [.5, .7])

Table 5: Weighted decision matrix for β
(1)
.

β(1) e1 e2 e3 e4

u1 ([.0307, .0588], [.6687, .9229]) ([.0138, .0557], [.9043, .9275]) ([.0172, .0297], [.9441, .9703]) ([.0507, .0664], [.8414, .9137])

u2 ([.0474, .0808], [.8511, .8935]) ([.0252, .0448], [.9227, .9552]) ([.0071, .0102], [.9683, .9862]) ([.0535, .0921], [.8709, .9079])

u3 ([.0265.0469], [.9189, .9387]) ([.0039, .0189], [.9414, .9743]) ([.0033, .0053], [.9661, .9924]) ([.0159, .0227], [.9301, .9693])

u4 ([.0308, .0690], [.8449, .9075]) ([.0350, .0876], [.8513, .8866]) ([.0089, .0202], [.9640, .9727]) ([.0595, .1041], [.7586, .8655])
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(16)

Step 2. Develop the weighted decision matrix
β

(z)
= (L

(z)

ij )n×m, where

L
(z)

ij � cjΩiL
(z)
ij � 1 − 1 − σℓij, σ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi

􏼒 􏼓
cj

, τℓij, τ
ひ
ij􏽨 􏽩􏼐 􏼑
Ωi

􏼒 􏼓
cj

􏼒 􏼓 � σ(z)
ij , τ(z)

ij ),􏼐 (17)

in whichΩi and cj are the weights for the ith expert and
the jth parameter, respectively.
Step 3. To find the CC of every element ofL(z)

ij with the
perfect positive ideal I+ = ([1, 1], [0, 0]) as follows:

δIVIFSS L
(z)

ij ,I
+

􏼒 􏼓 �
CIVIFSS L

(z)

ij ,I
+

􏼒 􏼓
�������������������

ςIVIFSSL
(z)

ij ∗ ςIVIFSSI
+

􏽱 . (18)

We obtained a correlation coefficient matrix which can
be represented as θ(z) = (θ(z)

ij )n×m, where θ
(z)
ij is the CC

between every element of L(z)

ij and I+.

Step 4. For each expert ui and parameter from CC
matrices ej, we find the indices such as hij = arg
maxz θ(z)

ij􏽮 􏽯 and gij = arg minz θ(z)
ij􏽮 􏽯 and determine the

PIA and NIA based on indices as follows:

L
+

� σ+
, τ+

( 􏼁n×m � σ hij( 􏼁
ij , τ hij( 􏼁

ij􏼠 􏼡, (19)

L
−

� σ−
, τ−

( )n×m � σ gij( 􏼁
ij , τ gij( 􏼁

ij􏼠 􏼡. (20)

Step 5. To find the CC between each alternative of
weighted decision matrices β

(z)
and PIAL+ as follows:

p
(z)

� δIVIFSS( β
(z)

,L
+

) �
CIVIFSS( β

(z)
, L

+
)

������������������

ςIVIFSSβ
(z) ∗ ςIVIFSSL

+

􏽱 �
􏽐

m
j�1 􏽐

n
i�1 σ(z)

ij ∗ σ
+

+ τ(z)
ij ∗ τ

+
􏼐 􏼑

�������������������������

􏽐
m
j�1􏽐

n
i�1 �σ(z)

ij􏼒 􏼓
2

+ �τ(z)

ij􏼒 􏼓
2

􏼠 􏼡

􏽳
���������������������

􏽐
m
j�1􏽐

n
i�1 σ+

( 􏼁
2

+ τ+
( 􏼁

2
􏼐 􏼑

􏽱
.

(21)

Table 6: Weighted decision matrix for β
(2)
.

β
(2) e1 e2 e3 e4

u1 ([.0588, .0770], [.8686, .9000]) ([.0220, .0314], [.9443, .9686]) ([.0127, .0172], [.9703, .9828]) ([.0264, .0507], [.9336, .9493])

u2 ([.0247, .0474], [.9379, .9526]) ([.0053, .0177], [.9227, .9552]) ([.0238, .0317], [.9549, .9683]) ([.0063, .0133], [.9788, .9867])

u3 ([.0469.0613], [.9189, .9387]) ([.0133, .0189], [.9414, .9559]) ([.0103, .0239], [.9661, .9761]) ([.0047, .0099], [.9693, .9900])

u4 ([.0925, .1551], [.7244, .7983]) ([.0221, .0498], [.9330, .9502]) ([.0202, .0359], [.9377, .9529]) ([.0264, .0419], [.8959, .9405])

Table 7: Weighted decision Matrix for β(3)
.

β
(3) e1 e2 e3 e4

u1 ([.0437, .0588], [.8686, .9229]) ([.0220, .0424], [.9443, .9576]) ([.0127, .0226], [.9703, .9774]) ([.0264, .0376], [.9336, .9624])

u2 ([.0247, .0351], [.9379, .9649]) ([.0053, .0177], [.9416, .9823]) ([.0182, .0317], [.9549, .9683]) ([.0063, .0133], [.9698, .9867])

u3 ([.0469 .0613], [.8861, .9189]) ([.0133, .0189], [.9662, .9743]) ([.0179, .0239], [.9661, .9761]) ([.0047, .0099], [.9841, .9900])

u4 ([.0925, .1204], [.7244, .8449]) ([.0221, .0350], [.9309, .9649]) ([.0202, .0359], [.9529, .0.9640]) ([.0264, .0419], [.8959, .9405])

Table 8: Weighted decision Matrix for β
(4)
.

β(4) e1 e2 e3 e4

u1 ([.0437, .0999], [.8175, .8686]) ([.0314, .0424], [.9043, .9443]) ([.0056, .0127], [.9703, .9774]) ([.0264, .0376], [.8863, .9336])

u2 ([.0247, .0474], [.9192, .9379]) ([.0111, .0252], [.9552, .9659]) ([.0182, .0317], [.9549, .9683]) ([.0063, .0133], [.9698, .9867])

u3 ([.0469.0613], [.8861, .9189]) ([.0189, .0257], [.9559, .9662]) ([.0103, .0179], [.9661, .9821]) ([.0047, .0159], [.9693, .9841])

u4 ([.0925, .1204], [.7244, .8449]) ([.0105, .0221], [.9649, .9779]) ([.0273, .0470], [.9377, .0.9529]) ([.0264, .0419], [.9202, .9581])
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Step 6. To find the CC between each alternative of
weighted decision matrix β

(z)
and NIA L− as follows:

q
(z)

� δIVIFSS( β
(z)

,L
−

) �
CIVIFSS( β

(z)
,L

−
)

������������������

ςIVIFSSβ
(z) ∗ ςIVIFSSL

−

􏽱 �
􏽐

m
j�1 􏽐

n
i�1 σ(z)

ij ∗ σ
−

+ τ(z)
ij ∗ τ

−
􏼐 􏼑

�������������������������

􏽐
m
j�1􏽐

n
i�1 �σ(z)

ij􏼒 􏼓
2

+ �τ(z)

ij􏼒 􏼓
2

􏼠 􏼡

􏽳
���������������������
􏽐

m
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n
i�1 σ −

( )
2

+ τ−
( )

2
􏼐 􏼑

􏽱
.

(22)

Step 7. To find the closeness coefficient for each
alternative:

R
(z)

�
K β

(z)
,L

−
􏼒 􏼓

K β
(z)

,L
+

􏼒 􏼓 + K β
(z)

,L
−

􏼒 􏼓

, (23)

where K(β
(z)

,L− )= 1 − q(z) and
K(β

(z)
,L+)= 1 − p(z).

Step 8. Ranking the alternatives and choosing the best
alternative.

4.2. Application of Proposed TOPSIS Technique for
Decision-Making. An electrical company calls for the ap-
pointment of an electrical engineer, and after initial scrutiny,
four candidates (alternatives) remained for further assess-
ment such as β(1), β(2), β(3), β(4)

􏽮 􏽯. .e managing director of
an electrical company hires a team of four decision makers
u1, u2, u3, u4􏼈 􏼉 having weight vectors (0.25, 0.2, 0.15, 0.4)T to
conduct the interview. .e team of decision makers eval-
uates the alternatives according to the following parameters:
e1 = qualification, e2 = experience, e3 = leadership quality,
and e4 = personality with weights (0.35, 0.25, 0.10, 0.30)T.
Every decision maker evaluates the ratings for every alter-
native in IVIFSN form under the considered parameters.
.e developed method to find the best alternative for the
electric company is given as follows:

Step 1. Develop the decision matrices for each alter-
native under defined parameters according to the
ratings of each decision maker in terms of IVIFSNs.

Step 2. Develop the weighted decision matrices for each
alternative by using equation (17).
Step 3. Compute the CC between each alternative β

(z)

and perfect positive ideal I+ = ([1, 1], [0, 0]) and
construct a matrix for each alternative which is known
as the CC matrix as follows:

θ(1)
�

0.0554 0.0379 0.0245 0.0065

0.0733 0.0682 0.0089 0.0815

0.0395 0.0276 0.0044 0.0203

0.0568 0.0703 0.0150 0.0999

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

θ(2)
�

0.0765 0.0279 0.0153 0.0409

0.0381 0.0122 0.0288 0.0099

0.0581 0.0169 0.0176 0.0075

0.1604 0.0381 0.0297 0.0372

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

θ(3)
�

0.0571 0.0338 0.0181 0.0337

0.0314 0.0119 0.0259 0.0100

0.0598 0.0166 0.0215 0.0074

0.1340 0.0301 0.0293 0.0372

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

θ(4)
�

0.0848 0.0399 0.0094 0.0352

0.0388 0.0189 0.0259 0.0100

0.0598 0.0232 0.0144 0.0105

0.1340 0.0168 0.0393 0.0363

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)

Step 4. Find the PIA and NIA by using equations (19)
and (20):

L
+

�

([.0588, .0770], [.8686, .9000]) ([.0314, .0424], [.9043, .9443]) ([.0172, .0297], [.9441, .9703]) ([.0507, .0664], [.8414, .9137])

([.0247, .0351], [.9379, .9649]) ([.0053, .0177], [.9416, .9823]) ([.0071, .0102], [.9683, .9862]) ([.0063, .0133], [.9698, .9867])

([.0469.0613], [.8861, .9189]) ([.0039, .0189], [.9414, .9743]) ([.0033, .0053], [.9661, .9924]) ([.0159, .0227], [.9301, .9693])

([.0925, .1204], [.7244, .8449]) ([.0221, .0350], [.9309, .9649]) ([.0202, .0359], [.9529, .0.9640]) ([.0595, .1041], [.7586, .8655])

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L
−

�

([.0437, .0999], [.8175, .8686]) ([.0220, .0424], [.9443, .9576]) ([.0056, .0127], [.9703, .9774]) ([.0264, .0507], [.9336, .9493])

([.0247, .0474], [.9192, .9379]) ([.0111, .0252], [.9552, .9659]) ([.0182, .0317], [.9549, .9683]) ([.0063, .0133], [.9788, .9867])

([.0265 .0469], [.9189, .9387]) ([.0133, .0189], [.9662, .9743]) ([.0103, .0239], [.9661, .9761]) ([.0047, .0099], [.9841, .9900])

([.0925, .1551], [.7244, .7983]) ([.0105, .0221], [.9649, .9779]) ([.0202, .0359], [.9377, .9529]) ([.0264, .0419], [.9202, .9581])

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)
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Step 5. Compute the CC between each alternative of the
weighted decision matrix β

(z)
and PIA L+.

Correlation coefficient between β
(z)

and L+ is com-
puted by using equation (21), and p(1) = 0.99701,
p(2) = 0.99822, p(3) = 0.99986, and p(4) = 0.99759 are
obtained.
Step 6. Find the CC between each alternative of the
weighted decision matrix β

(z)
and NIA L− .

Correlation coefficient between β
(z)

and L− is com-
puted by using equation (22), and q(1) = 0.99776,
q(2) = 0.99811, q(3) = 0.99988, and q(4) = 0.99237 are
obtained.
Step 7. By using equation (23), we get the closeness
coefficient of alternatives given as follows:
R(1) = 0.42839, R(2) = 0.51499, R(3) = 0.46154, and
R(4) = 0.98198.
Step 8. We conclude from the above calculations that
R(4) > R(2) >R(3) > R(1), so the ranking of the al-
ternatives is described as β(4) > β(2) > β(3) > β(1).
.erefore, β(4) is the best alternative for the electrical
company.

5. Aggregation Operators for Interval-Valued
Intuitionistic Fuzzy Soft Numbers (IVIFSNs)

In this section, interval-valued intuitionistic fuzzy soft
weighted average and interval-valued intuitionistic fuzzy
soft weighted geometric operators for IVIFSNs are
presented.

5.1. Operational Laws for IVIFSNs

Definition 16. Let ℵe � [σℓ, σひ], [τℓ, τひ]􏽄 􏽅, ℵe11
� [σℓ11,􏼊

σひ11], [τℓ11, τ
ひ
11]〉, and ℵe12

� [σℓ12, σ
ひ
12], [τℓ12, τ

ひ
12]􏽄 􏽅 be three

IVIFSNs and α be a positive real number, and by algebraic
norms, we have

(1) ℵe11
⊕ℵe12

� [σℓ11 + σℓ12 − σℓ11σℓ12, σひ11 + σひ12 − σひ11σひ12],

[τℓ11τ
ℓ
12, τ

ひ
11τ

ひ
12]

(2) ℵe11
⊗ℵe12

� [σℓ11σℓ12, σひ11σひ12], [τℓ11 + τℓ12 − τℓ11τℓ12,
τひ11 + τひ12 − τひ11τ

ひ
12]

(3) αℵe � [1 − (1 − [σℓ, σひ])α, ([τℓ, τひ])α]􏽄 􏽅

(4) ℵαe � [([σℓ, σひ])α, 1 − (1 − [σℓ, σひ])α]􏽄 􏽅

Some averaging and geometric aggregation operators for
IVIFSNs have been defined based on the above laws for the
collection of IVIFSN Δ.

Definition 17. Let ℵeij
� [σℓij, σ

ひ
ij ], [τℓij, τ

ひ
ij ]􏽄 􏽅 be a collec-

tion of IVIFSNs, and Ωi and cj are the weight vector for
experts and parameters, respectively, with given conditions
Ωi > 0, 􏽐

n
i�1Ωi = 1; cj > 0, 􏽐

m
j�1 cj = 1, where

(i � 1, 2, . . . , n and j � 1, 2, . . . , m). .en, the IVIFSWA
operator is defined as IVIFSWA: Δn ⟶ Δ defined as
follows:

IVIFSWA ℵe11
,ℵe12

, . . . ,ℵenm
􏼐 􏼑 � ⊕mj�1cj ⊕

n
i�1Ωiℵeij

􏼒 􏼓.

(26)

Theorem 1. Let ℵeij
� [σℓij, σ

ひ
ij ], [τℓij, τ

ひ
ij ]􏽄 􏽅 be an IVIFSN,

where (i � 1, 2, . . . , n and j � 1, 2, . . . , m), and the aggre-
gated value is also an IVIFSN, such as

IVIFSWA ℵe11
,ℵe12

, . . . ,ℵenm
􏼐 􏼑 � 1 − 􏽙

m

j�1
􏽙

n

i�1
1 − σℓij, σ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi⎛⎝ ⎞⎠

cj

, 􏽙

m

j�1
􏽙

n

i�1
τℓij, τ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi⎛⎝ ⎞⎠

cj

􏼪 􏼫. (27)

Proof. Similar to .eorem 3.1 [46]. □

Example 2. Let U� {u1, u2, u3, u4} be a set of decision
makers, who are going to describe the beauty of a city under
the defined set of attributes E� e1, e2, e3􏼈 􏼉. Assume
Ωi � (0.35, 0.25, 0.10, 0.30)T and cj � (0.3, 0.5, 0.2)T be the
weight vectors for experts and attributes, respectively. .e
assumed rating values of the experts for each attribute in the

form of IVIFSNs (ℵ,E) � [σℓij, σ
ひ
ij ], [τℓij, τ

ひ
ij ]􏽄 􏽅4×3 are given

as follows:

(ℵ,E) �

([.3, .5], [.2, .4]) ([.2, .6], [.2, .3]) ([.5, .7], [.1, .3])

([.5, .7], [.1, .2]) ([.4, .6], [.2, .4]) ([.3, .4], [.2, .5])

([.4.6], [.2, .3]) ([.1, .4], [.2, .5]) ([.2, .3], [.1, .6])

([.2, .4], [.3, .5]) ([.3, .6], [.2, .3]) ([.2, .4], [.4, .5])

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(28)
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By using equation (27),

IVIFSWA ℵe11
,ℵe12

, . . . ,ℵe43
􏼐 􏼑 � 1 − 􏽙

3

j�1
􏽙

4

i�1
1 − σℓij, σ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi⎛⎝ ⎞⎠

cj

, 􏽙
3

j�1
􏽙

4

i�1
τℓij, τ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi⎛⎝ ⎞⎠

cj

􏼪 􏼫

� 1 −
[.5, .7]

0.35
[.3, .5]

0.25
[.4, .6]

0.1
[.6, .8]

0.3
􏽮 􏽯

.3
[.4, .8]

0.35
[.4, .6]

0.25
[.6, .9]

0.1
[.4, .7]

0.3
􏽮 􏽯

.5

[.3, .5]
0.35

[.6, .7]
0.25

[.7, .8]
0.1

[.6, .8]
0.3

􏽮 􏽯
.2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠􏼪

[.2, .4]
0.35

[.1, .2]
0.25

[.2, .3]
0.1

[.3, .5]
0.3

􏽮 􏽯
.3

[.2, .3]
0.35

[.2, .4]
0.25

[.2, .5]
0.1

[.2, .3]
0.3

􏽮 􏽯
.5

[.1, .3]
0.35

[.2, .5]
0.25

[.1, .6]
0.1

[.4, .5]
0.3

􏽮 􏽯
.2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠􏼫

� [0.3098, 0.5554], [0.1929, 0.3582]〈 〉.

(29)

Definition 18. Let ℵeij
� [σℓij, σ

ひ
ij ], [τℓij, τ

ひ
ij ]􏽄 􏽅 be an

IVIFSN, and the experts ui’s and parameters ej’s have
standardized weight vectorsΩi and cj, respectively; then the
IVIFSWG operator is defined as

IVIFSWG ℵe11
,ℵe12

, . . . , ℵenm
􏼐 􏼑 � ⊗m

j�1 ⊗
n
i�1ℵ
Ωi

enm
􏼐 􏼑

cj
.

(30)

Theorem 2. By using the IVIFSWG operator, the obtained
value is also an IVIFSN and given as follows:

IVIFSWA ℵe11
,ℵe12

, . . . ,ℵenm
􏼐 􏼑

� 􏽙

m

j�1
􏽙

n

i�1
σℓij, σ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi⎛⎝ ⎞⎠

cj

, 1 − 􏽙

m

j�1
􏽙

n

i�1
1 − τℓij, τ

ひ
ij􏽨 􏽩􏼐 􏼑
Ωi⎛⎝ ⎞⎠

cj

􏼪 􏼫.
(31)

Proof. Similar to .eorem 3.2 [46]. □

Example 3. Let U� {u1, u2, u3, u4} be a set of experts with
weight vector Ωi � (0.35, 0.25, 0.10, 0.30)T, and all the ex-
perts give their suggestion for the beauty of a city under

considered attributes E� e1, e2, e3􏼈 􏼉 with weight vector
cj � (0.3, 0.5, 0.2)T. Suggested values of the experts in the
form of IVIFSNs are given (ℵ,E) in the form of a decision
matrix as follows:

(ℵ,E) �

([.3, .5], [.2, .4]) ([.2, .6], [.2, .3]) ([.5, .7], [.1, .3])

([.5, .7], [.1, .2]) ([.4, .6], [.2, .4]) ([.3, .4], [.2, .5])

([.4 6], [.2, .3]) ([.1, .4], [.2, .5]) ([.2, .3], [.1, .6])

([.2, .4], [.3, .5]) ([.3, .6], [.2, .3]) ([.2, .4], [.4, .5])

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

By using equation (31), we get

IVIFSWG ℵe11
,ℵe12

, . . . ,ℵe43
􏼐 􏼑 � [.2779, .5364], [.2079, .3797]〈 〉.

(33)

5.2. Decision-Making Approach with the Proposed Operators.
An MADM approach is presented here based on the pro-
posed operators and describes numerical examples for
showing their effectivity.
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5.2.1. Proposed Approach. Assume a set of “s” alternatives
such as β= β1, β2, β3, . . . , βs

􏽮 􏽯 for assessment under the
team of experts such as U= u1, u2, u3, . . . , un􏼈 􏼉 with weights
Ω= (Ω1,Ω1, . . . ,Ωn)T such that Ωi > 0, 􏽐

n
i�1Ωi =1. Let

E= e1, e2, . . . , em􏼈 􏼉 be a set of attributes with weights
andc= (c1, c2, c3, . . . , cm)T be a weight vector for parameters
such as cj > 0, 􏽐

m
j�1 cj = 1. .e team of experts {ui: i= 1, 2,

. . ., n} evaluates the alternatives {β(z): z=1, 2, . . ., s} under the
considered parameters {ej: j=1, 2, . . ., m} given in the form
of IVIFSNs such asL(z)

ij = (σ(z)
ij , τ(z)

ij ), where σ(z)
ij = [σℓij, σひij ]

and τ(z)
ij = [τℓij, τひij ], in which 0 ≤ σℓij, σひij , τℓij, τひij ≤ 1 and

sup σ(z)
ij + sup τ(z)

ij ≤ 1. So, L
(z)
ij = ([σℓij, σ

ひ
ij ], [τℓij, τ

ひ
ij ]) for

all i, j. Experts give their preferences for each alternative in
terms of IVIFSNs such as ℵeij

= 〈[σℓij, σひij ], [τℓij, τ
ひ
ij ]〉 and are

given in Tables 1–4. Develop the aggregated IVIFSNs Δk

based on the expert’s preference values for each alternative by
using IVIFSWG and IVIFSWA operators. Finally, utilizing
the alternative, the scoring values [47] of the aggregated
IVIFSNs are obtained for the ranking of the alternatives. .e
algorithm is presented in Figure 2.

5.2.2. Algorithm

Step 1. Develop the interval-valued intuitionistic fuzzy
soft matrix for each alternative.
Step 2. Aggregate the IVIFSNs for each alternative into
a collective decision matrix Δk by using the IVIFSWA
or IVIFSWG operator.
Step 3. Find the scoring values Δk for each alternative
[47]:

S Δk( 􏼁 �
σℓij + σひij + τℓij + τひij

4
. (34)

Step 4. Analyze the ranking.

5.2.3. Numerical Example. An electrical organization calls
for the appointment of an electrical engineer. After the first
preliminary review, there are still four candidates (substi-
tutes) that need further evaluation, such as {β(1), β(2), β(3),
β(4)}. .e manager of the company hires a group of four
decision makers {u1, u2, u3, u4} whose weight vector is
(0.25, 0.2, 0.15, 0.4)T..e decisionmakers give their opinion
for each alternative under considered parameters {e1, e2, e3,
e4} with weights (0.35, 0.25, 0.10, 0.30)T. Listed below are the
steps to get the best alternative by utilizing the developed
method.

5.2.4. By Using the IVIFSWA Operator

Step 1. .ese experts will evaluate the condition in the
case of IVIFSNs, and there are just four alternatives;

parameters and a summary of their scores are given in
Tables 1–4.
Step 2. .e opinions of the experts for each alternative
are aggregated by using equation (27), and hence we get
Δ1 � [.3547.5695], [.1689, .3457]〈 〉,
Δ2 � [.3303.4884], [.3018, .4429]〈 〉,
Δ3 � [.4296.5670], [.2988, .4815]〈 〉, and
Δ4 � [.3391.4956], [.2473, .7105]〈 〉.
Step 3. Scoring values by using equation (34):
S(Δ1) � 0.3597, S(Δ2) � 0.3909, S(Δ3) � 0.4442, and
S(Δ4) � 0.4631.
Step 4. .erefore, the ranking of the alternatives is as
follows S(Δ4) > S(Δ3) > S(Δ2) > S(Δ1). So,
β(4) > β(3) > β(2) > β(1), and hence the alternative β(4)

is the most suitable alternative for the company.

5.2.5. By Using the IVIFSWG Operator

Step 1. .e experts will evaluate the condition in the
case of IVIFSNs, and there are just four alternatives;
parameters and a summary of their scores are given in
Tables 1–4.
Step 2. Experts’ opinions on each alternative are
summarized by using equation (30). .erefore, we get
Δ1 � [.3144.5379], [.1819, .3711]〈 〉,
Δ2 � [.2815.4420], [.3546, .5037]〈 〉,
Δ3 � [.2904.4223], [.3761, .5547]〈 〉, and
Δ4 � [.2713.5445][.3530, .5200]〈 〉.
Step 3. Scoring values by using equation (34):
S(Δ1) � 0.3533, S(Δ2) � 0.3955, S(Δ3) � 0.4109, and
S(Δ4) � 0.4222.
Step 4. .erefore, the ranking of the alternatives is as
follows S(Δ4) > S(Δ3) > S(Δ2) > S(Δ1). So,
β(4) > β(3) > β(2) > β(1), and hence the alternative β(4)

is the most suitable alternative for the company.

6. Result Comparison and Discussion

Since interval-valued soft sets are more precise than fuzzy
soft sets when the case study consists of uncertain and in-
consistent information, thus, its extension, an interval-val-
ued intuitionistic fuzzy soft set, will play a vital role in
uncertain and indeterminate problems. Existing

Step 1 

Step 2

Step 3

Step 4
• Develop the
IVIFSM for

each
alternative.

• Aggregate using
IVIFSWA or

IVIFSWG
operator

• Find the
scoring values

for each
alternative

•Analyze the
ranking.

Figure 2: Decision-making approaches with the proposed
operators.
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methodologies of IFSSs have some limitations on mem-
bership and nonmembership grades, and they cannot deal
with parameterizations. .e proposed algorithms of IVFSSs
enhance the existing methodologies, and the decision maker
can choose the values from the interval with membership
and nonmembership as its limitation. .ere is a strong
relationship between the proposed model and MADM
problems. In this paper, we have proposed two types of
algorithms. Firstly, the TOPSIS algorithm is proposed based
on the correlation coefficients, and a numerical example is
solved. Secondly, averaging aggregate and geometric ag-
gregate operators is proposed. Moving on to the next, all the
algorithms are applied to the real-world problem, i.e., the
selection of electrical engineers. .e graphical representa-
tion of all results is presented in Figure 3. .e results show
that the proposed algorithms are valid and practical. Finally,
the rank of all the alternatives using the existing algorithms
gives the same final decision that β(4) is selected for the post
of the “electrical engineer.” All rankings are also calculated
by applying the existing approaches. .e proposed methods
are also compared with other existing methods by Imtiaz
et al. [48], Wu and Su [49], and Mukherjee and Sarkar [50].
.e listing in Table 9 shows the results of the comparison in
the final ranking of the top 4 alternatives. It can be observed
that the best selections made by the proposed methods are
compared with the already established methods which are

expressive in itself and approves the reliability and validity of
the proposed method. .e final score values of the proposed
TOPSIS method, IVIFSWA, and IVIFSWG can be seen in
Table 10.

7. Conclusion

.e investigated study utilizes the IVIFSS to address the
unsatisfactory, obscure, and inconsistent data by consider-
ing the membership degree and nonmembership degree
over the set of parameters. .e novel concept of the cor-
relation coefficient and weighted correlation coefficient for
IVIFSS with their properties is proposed in the present
research. Based on the developed correlation measures, an
extended TOPSIS method has been introduced by consid-
ering the set of attributes and decision makers..e proposed
method not only debates the discrimination but also handles
the degree of similarity to prevent short decisions during
observation. We also develop the correlation matrices and
find the correlation indices; the PIA and NIA are also de-
veloped by using the correlation indices. To find the ranking
of the alternatives, we define the closeness coefficient for the
developed method. Moreover, the IVIFSWA and IVIFSWG
operators have also defined and presented the decision-
making techniques based on developed operators. Finally, a
numerical illustration has been described to solve the
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Total score comparison
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β (4)

Figure 3: Comparison of the alternative rank with the proposed algorithm.

Table 9: Alternative rank comparison using the existing and proposed techniques.

Method Alternative final ranking Optimal choice
Proposed algorithm using IVIFSWG operator β(4) > β(3) > β(2) > β(1) β(4)

Proposed algorithm using IVIFSWA operator β(4) > β(3) > β(2) > β(1) β(4)

Proposed TOPSIS algorithm β(4) > β(2) > β(3) > β(1) β(4)

Mukherjee and Sarkar [50] β(4) > β(2) > β(3) > β(1) β(4)

Imtiaz et al. [48] β(4) > β(3) > β(2) > β(1) β(4)

Wu and Su [49] β(4) > β(3) > β(2) > β(1) β(4)

Table 10: Alternative final scores using the proposed techniques.

Alternative Proposed algorithm using IVIFSWG operator Proposed algorithm using IVIFSWA operator Proposed TOPSIS algorithm
β(1) 0.3533 0.3597 0.42839
β(2) 0.3955 0.3909 0.51499
β(3) 0.4109 0.4442 0.46154
β(4) 0.4222 0.4631 0.98198
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MADM problem by using the proposed TOPSIS method
and other developed techniques. Furthermore, we have
compared our proposed method with some already existing
techniques. In the future, we plan to extend our work to (i)
CC for multipolar interval-valued intuitionistic fuzzy soft
sets, (ii) CC for interval-valued neutrosophic soft sets, and
(iii) CC for the multipolar interval-valued neutrosophic soft
sets.
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