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,e concept of toughness, introduced by Chva�tal, has been widely used as an important invulnerability parameter.,is parameter
is generalized to weighted graphs, and the concept of weighted toughness is proposed. A polynomial algorithm for computing the
weighted toughness of interval graphs is given.

1. Introduction

,e concept of invulnerability was proposed in the early
research on the connectivity of communication networks,
which reflect the ability of a network to resist deliberate
damage from the outside [1]. As a widely used invulnera-
bility parameter, toughness was introduced by Chva�tal in
1973.

Definition 1 (see [2]). Let G be a noncomplete graph. ,e
toughness of G is defined as

t(G) � min
|X|

ω(G − X)
: X ⊂ V(G), ω(G − X)≥ 2 .

(1)

If there exists X∗⊆V(G) such that
t(G) � |X∗|/ω(G − X∗), then X∗ is called a t-tough set,
denoted as t-set. In particular, for the complete graph Kn,
define t(Kn) �∞.

In reality, the vertices of a graph have different roles.
Usually, vertex-weighted graphs are used to represent such
network models, that is, each vertex is associated with a real
number to distinguish such a difference. To measure the
invulnerability of networks, we introduce the concept of
weighted toughness of graphs.

Definition 2. Let G be a noncomplete vertex-weighted
graph. ,e weighted toughness of G is defined as

t
w

(G) � min
w(X)

ω(G − X)
: X ⊂ V(G), ω(G − X)≥ 2 ,

(2)

where w: V⟶ R+ is a nonnegative weight function and
w(X) � v∈Xw(v) is the weight of the vertex cut X. For a
vertex-weighted complete graph Kn, define tw(Kn) �∞.

By the definition, the greater the weighted toughness, the
stronger the invulnerability of the vertex-weighted graph.

Definition 3. Let G be a vertex-weighted noncomplete
graph. If there exists X∗⊆V(G) such that
tw(G) � w(X∗)/ω(G − X∗), then X∗ is called an achieving
cut of G.

When the weights of all vertices are equal, weighted
toughness is equivalent to toughness.,e problem of toughness
computation isNP-hard [3]. However, there exists a polynomial
algorithm for toughness computation of interval graphs [4].,e
definition of the interval graph is given below.

Definition 4 (see [5]). A graph G is called an interval graph,
if ∀v ∈ V(G) corresponds to a closed interval Iv � [av, bv],
and uv ∈ E(G) if and only if Iu ∩ Iv ≠∅. We call Iv v∈V the
interval representation of G.
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Due to the special structure and properties, interval
graphs are widely used in theoretical research and engi-
neering practice. For example, the archeology chronological
order of unearthed items [6], the scheduling problems in
computer science [7], and the determination of biology
model of DNA sequences [8]. Many scholars have studied
the algorithm and structure of interval graphs. Kratsch et al.
gave a polynomial time algorithm for computing scattering
numbers and toughness of interval graphs [4]. Broersma
et al. gave a linear time algorithm for computing scattering
numbers of interval graphs [9]. Li et al. gave a polynomial
algorithm for computing weighted scattering number of
interval graphs [10].

In this paper, we consider the algorithm of computing
weighted toughness of interval graphs.,e following work is
arranged in two parts. In Section 2, some elementary def-
initions and notations, as well as some preliminary results
are given. An algorithm for computing the weighted
toughness of interval graphs is given based on the investi-
gation of properties of achieving cuts and local minimum
cuts. In Section 3, we summarize our work by the complexity
analysis of the algorithm.

,is paper only considers the finite simple undirected
graphs. For the terminology and notations not defined here,
we refer the reader to [11].

2. An Algorithm for Computing Weighted
Toughness of Interval Graphs

In this section, we firstly investigate the properties of
achieving cuts and local minimum cuts of interval graphs.
,e number of vertex cut of a graph increases with its order
exponentially. Fortunately, it is not necessary to consider all
vertex cuts when computing the weighted toughness of
interval graphs.

Definition 5. (see [12]). Let G be an interval graph and X be
a vertex cut. If for every proper subset Y ⊂ X and
ω(G − Y)<ω(G − X), then X is called a strong cut of G.

Theorem 1. Let G be an interval graph with nonnegative
weights’ function w: V⟶ R+. +en, any achieving cut of G

is a strong cut.

Proof. LetX be an achieving cut of G but not a strong cut. By
Definition 5, there must exist a vertex u ∈ X such that
ω(G − X)≤ω(G − (X − u{ })). Since w(X − u{ })<w(X),

w(X − u{ })

ω(G − (X − u{ }))
<

w(X)

ω(G − X)
� t

w
(G). (3)

,is contradicts to that X is an achieving cut of G. ,e
proof is completed. □

Definition 6 (see [12]). Let G be an interval graph. Consider
a point x such that minibi <x<maxiai. If the end point
immediately to the left of x is right end point and the end
point immediately to the right of x is a left end point, then
C(x) is called a minimal local cut of G.

Figure 1 is an example of interval graph and its interval
representation. ,e minimal local cuts of G are
C(4.5) � I2, I3 , C(6.25) � I3, I4 , C(8.75) � I4, I6 ,
C(12.5) � I4, I6 , and C(16.5) � I9, I10 .

Lemma 1 (see [12]). Any strong cut of an interval graph can
be expressed as a union of minimal local cuts.

By,eorem 1 and Lemma 1, we know that any achieving
cut can be expressed as a union of minimal local cuts.
,erefore, the weighted toughness of an interval graph can
be computing by the unions of minimal local cut. In 2006,
Ray et al. presented an algorithm for computing minimal
local cuts of an interval graph and proved that the time
complexity is O(n2) [12].

Definition 7. Let C(α1), C(α2), . . . , C(αk) be all the minimal
local cuts of an interval graph G, where α1 < α2 < · · · < αk.
,en, C(αi) and C(αi+1) are called adjacent,
i � 1, 2, . . . , k − 1.

Theorem 2. Let C(α1), C(α2), . . . , C(αk) be all the minimal
local cuts of a weighted interval graph G. If C(αi) and C(αj)

are disjoint, then

min
w C αi( ( 

ω G − C αi( ( 
,

w C αj  

ω G − C αj  

⎧⎨

⎩

⎫⎬

⎭ ≤
w C αi( ∪C αj  

ω G − C αi( ∪C αj   
.

(4)

Proof. Since C(αi)∩C(αj) � ∅, w(C(αi)∪C(αj)) � w

(C(αi)) + w(C(αj)). On the contrary, ω(G − C(αi)∪C

(αj))≤ω(G − C(αi)) + ω(G − C(αj)). Without loss of
generality, suppose that w(C(αi))/ω(G − C(αi))≥w(C

(αj))/ω(G − C(αj)). ,en,

w C αi( ( ω G − C αj   − w C αj  ω G − C αi( ( ≥ 0.

(5)

,erefore,

w C αi( ∪C αj  

ω G − C αi( ∪C αj   
−

w C αj  

ω G − C αj  

≥
w C αi( (  + w C αj  

ω G − C αi( (  + ω G − C αj  
−

w C αj  

ω G − C αj  

�
w C αi( ( ω G − C αj   − w C αj  ω G − C αi( ( 

ω G − C αj   ω G − C αi( (  + ω G − C αj   

≥ 0.

(6)

,e proof is completed. □

Remark 1. ,e conclusion of ,eorem 2 is true for the cases
where the number of minimal local cuts is greater than 2.
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Theorem 3. Let C(αi), C(αi+1), C(αi+2) be three sequential
adjacent minimal local cuts of an interval graph G. If
C(αi)∩C(αi+1) � ∅, then C(αi)∩C(αi+2) � ∅.

Proof. By contradiction, if C(αi)∩C(αi+2)≠∅, then there
exists a vertex v ∈ C(αi)∩C(αi+2). Let u ∈ C(αi+1),
z ∈ C(αi+2) − C(αi), and the interval representation of v, u, z

be [a, b], [ai+1, bi+1], and [ai+2, bi+2], respectively.
By the definition of interval representation,

a< ai+1 < ai+2. Since v ∈ C(αi+2), bi+1 < b, and
[ai+1, bi+1] ⊂ [a, b]. ,us, v ∈ C(αi+1). ,is contradicts that
C(αi)∩C(αi+1) � ∅. ,e proof is completed.

,eorem 3 shows that, for an interval graph, nonadja-
cent minimal local are disjoint.,e algorithm for finding the
union of minimal local cuts with nonempty intersection is
given below. □

Theorem 4. +e time complexity of Algorithm 1 is O(n3)

Proof. Step 3 needs |C(αi)||C(αi+1)| comparisons to de-
termine whether C(αi)∩C(αi+1) � ∅. Step 5 finds union of
two minimal local cuts with nonempty intersection, which
need |C(αi)||C(αi+1)| comparisons. Similarly, Step 7 needs
|Xr− 1||Sj| comparisons. It is easy to know that Step 2 to Step
8 need k − 1 circulations, and the total computations does
not exceed (k − 1)[2(|C(αi)||(αi+1)|) + |Xr− 1||Sj| + 2]. Since
an interval graph of order n has at most n − 2 minimal local
cuts and each minimal local cut contains at most n − 2
vertices, the complexity of Algorithm 2 is O(n3). ,e proof is
completed.

By the discussion above, to computing the weighted
toughness of an interval graph, it is sufficient to consider the
union of minimally local cuts with nonempty intersection, as
well as the number of connected components of the
remaining subgraphs. □

Theorem 5. +e time complexity of Algorithm 2 is O(n3).

Proof. ,e total computations of Step 2 is n. In Step 3,
obtaining graph G � G − S0 requires 2|V||S0| operations.
Step 4 requires 1 + |V − X|log|V− X| comparisons at most.

Step 6 requires |Si− 1||Mj| comparisons. Step 7 requires |Mj|

comparisons to determine whether Mj � ∅. Similarly, |V −

Si| comparisons are needed to determine whether
V − Si � ∅. If Mj � ∅ and V − Si � ∅, then the total
computations for Step 4 to Step 7 does not exceed
ω(|V − X|log|V− X| + 2 + |Si− 1||Mj| + |Mj| + |V − Si| + 3). If
Mj ≠∅, finding vertex y  with the largest subscript in Mj,
|Mj|log

|Mj| comparisons are needed. If y  has an ‘unvisited’
neighbor z{ } in V − X, finding the neighbor of y  in V − X

needs at most n − 1 comparisons. ,e total circulations of
Step 9 to Step 13 are |V − X| − 1, so the total computations of
Step 8 to Step 13 is (|V − X| − 1)(|Mj|log

|Mj| + n − 1). If y 

does not have ‘unvisited’ neighbors, the computations for
Step 7 to Step 8 is |Mj|. ,erefore, the total computations for
Step 7 to Step 13 is(|V − X| − 1)(|Mj|log

|Mj| + n − 1) + |Mj|.
Since |Mj|≤ n − |X|, |Si− 1|≤ n, |Si|≤ n,ω≤ n, |X|≤ n − 2, the
time complexity of algorithm 2 is O(n3). ,e proof is
completed.

Now, we give an algorithm for computing the weighted
toughness and achieving cuts of interval graphs. □

Example 1. Use Algorithm 3 to compute the weighted
toughness of G1 and G2 in Figure 2.

Consider cuts X1 � I2, I3 , X2 � I3, I4 , X3 � I4, I6 ,
X4 � I9, I10 , X5 � I2, I3, I4 , and X6 � I3, I4, I6 . Let
λi � w(Xi)/ω(G − Xi), i ∈ 1, 2, . . . , 6{ }.

For G1, λ1 � 7.00, λ2 � 7.50, λ3 � 5, 33, λ4 � 7.00,
λ5 � 12.00, and λ6 � 5.25. ,erefore, tw(G1) � mini∈ 1,2,...,6{ }

λi  � λ6 � 5.25, and the achieving cut is X2 ∪X3. Similarly,
tw(G2) � 0.20, and the achieving cut is X3.

,is example shows that the value of weighted toughness
is not only related to the structure and weights of the graph
but also related to the way of weight association.

Remark 2. ,eweight of G1 and G2 are randomly generated.

3. Conclusion Remarks

At last, we consider the complexity of Algorithm 3. Let
A(G) � (aij)n×n be the adjacency matrix of an interval graph
G of order n. In Algorithm 3, computing w(X) and
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Figure 1: An interval graph G and its interval representation.
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Input: An interval graph G; minimal local cuts C(α1), C(α2), . . . , C(αk).
Output: Union of minimal local cuts with nonempty intersection.

(1) Step 1: j � 0; Sj � ∅; r � 0; Xr � ∅; i � 1;
(2) Step 2: If i≠ k, turn to Step 3, otherwise, stop;
(3) Step 3: If C(αi)∩C(αi+1)≠∅, turn to Step 4, otherwise, j � 0, output Xr, i � i + 1, turn to Step 2;
(4) Step 4: j � j + 1;
(5) Step 5: Sj � C(αi)∪C(αi+1);
(6) Step 6: r � r + 1;
(7) Step 7: Xr � Xr− 1 ∪ Sj;
(8) Step 8: i � i + 1.

ALGORITHM 1: Union of minimal local cuts with nonempty intersection.

Input: interval graph G, a union of minimally local cuts with nonempty intersection X.
Output: ω(G − X).

(1) Step 1: ω � 0, S0 � ∅, j � 0, i � 1.
(2) Step 2: set the vertices in X to ‘visited’, the vertices in V − X to ‘unvisited’, S0 � X.
(3) Step 3: G � G − S0.
(4) Step 4: visit the vertices of V − X in order of the vertex subscripts, find the ‘unvisited’ vertex u which has the minimum subscript,

and set the vertex ‘visited’.
(5) Step 5: Mj � Mj ∪ u{ }.
(6) Step 6: Si � Si− 1 ∪Mj.
(7) Step 7: if Mj ≠∅, turn to Step 8; otherwise, if V − Si ≠∅, ω � ω + 1, j � 0, i � i + 1, return to Step 4 and if V − Si � ∅, output

ω + 1.
(8) Step 8: find a vertex with the largest subscript in Mj, y ; if y  has an ‘unvisited’ neighbor z{ }, turn to Step 9; otherwise,

Mj � Mj − y , return to Step 7.
(9) Step 9: set z{ } to ‘visited’.
(10) Step 10: j � j + 1.
(11) Step 11: Mj � Mj− 1 ∪ z{ }.
(12) Step 12: i � i + 1.
(13) Step 13: Si � Si− 1 ∪ z{ }, return to Step 8.

ALGORITHM 2: Component number corresponding to the union of minimally local cuts with nonempty intersection.

Input: An interval weighted graph G, all minimal local cuts C(α1), C(α2), . . . , C(αk).
Output: tw(G) and achieving cuts.

(1) Step 1: use Algorithm 1 to find the union of minimal local cuts with nonempty intersection.
(2) Step 2: use Algorithm 2 to find the number of connected components.
(3) Step 3: for each cut X, compute w(X)/ω(G − X).
(4) Step 4: compute minw(X)/ω(G − X); output tw(G) and achieving cuts.

ALGORITHM 3: Weighted toughness and achieving cuts of interval graphs.

w (I1) = 8
w (I3) = 5

w (I5) = 11

w (I10) = 7

w (I12) = 3 w (I11) = 1

w (I9) = 7

w (I7) = 2

w (I8) = 4

w (I4) = 10

w (I6) = 6

w (I2) = 9

(a)

w (I2) = 0.1

w (I1) = 0.3
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(b)

Figure 2: ,e weighted interval graphs (a) G1 and (b) G2.
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w(X)/ω(G − X) in Step 3 requires |X| − 1 additions and 1
division. Since at most k(k + 1)/2 cuts be considered, the
total operations of Step 3 is at most k(k + 1)/2|X|. Step 4
requires k(k + 1)/2logk(k+1)/2 comparisons, where k≤ n − 2.
Combining ,eorem 4 and ,eorem 5, the complexity of
Algorithm 3 is O(n3). ,erefore, it is a good algorithm.

In this paper, we introduce a new parameter, weighted
toughness, which generalizes the concept of toughness to
weighted graphs. ,is parameter can be used to measure the
invulnerability of weighted graphs. A polynomial algorithm
for computing the weighted toughness of interval graphs is
given.

However, computing the weighted toughness for general
graphs is NP-hard. Algorithms and complexity analysis of
weighted toughness for graphs such as trees, chordal graphs,
and permutation graphs may be interesting. We can also use
other parameters to measure the invulnerability of weighted
graphs.
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