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In this paper, we use the concept of homotopy, Laplace transform, and He’s polynomials, to propose the auxiliary Laplace
homotopy parameter method (ALHPM). We construct a homotopy equation consisting on two auxiliary parameters for solving
nonlinear differential equations, which switch nonlinear terms with He’s polynomials. ,e existence of two auxiliary parameters
in the homotopy equation allows us to guarantee the convergence of the obtained series. Compared with numerical techniques,
the method solves nonlinear problems without any discretization and is capable to reduce computational work. We use the
method for different types of singular Emden–Fowler equations. ,e solutions, constructed in the form of a convergent series, are
in excellent agreement with the existing solutions.

1. Introduction

Initial value problems with singularity and of type Lane-
–Emden differential equation,
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� 0, (1)

have been used to model a large category of phenomena in
various science, such as mathematical physics and astro-
physics. ,e first studies on these equations have been
published by Lane in 1870 [1]. A further research was
continued by Emden in [2]. ,en, this equation was used in
the modeling of some problems, such as the thermal be-
havior of spherical cloud of gas.

In astrophysics and in the study of a self-gravitating
spherically symmetric polytropic fluid, this equation appears
as its gravitational Poisson’s equation. ,ere are several
phenomena, such as astrophysics, aerodynamics, stellar
structure, chemistry, biochemistry, and many others which

can be modeled by the Lane–Emden equation [3–5]. Fowler
[6, 7] generalized the Lane–Emden equation to the
Emden–Fowler equation:
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for some given functions f(x) and g(y). In this connection,
we note that the following heat equation,
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zy

zt
, (3)

where 0< x≤ L, 0< t<T, and r> 0, appears in the modeling
of the diffusion of heat perpendicular to surfaces of parallel
planes. For r � 2 and h(x, t) � 0 and for the steady state,
equation (3) is the Emden–Fowler equation. Singularity
behavior that occurs at x � 0 is a difficult element in the
analysis of this type of equations, and due to this problem,
common methods need to be reviewed. For example,
Wazwaz [8] used the Adomian decomposition method to
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solve these equations; however, the appropriate choices of
operator L were required to overcome the singularity be-
havior at the origin. In this paper and in our proposed
method, taking the Laplace transform from both sides of the
equation solves this difficulty. Indeed, in vast majority of
cases in differential equations with variable coefficients, we
cannot obtain an exact solution, so we must look for ap-
proximate solutions, such as asymptotic techniques [9, 10],
analytical [11–14], and numerical methods [15–19].
Emden–Fowler-type equations have been solved using the
Adomian polynomials [20] by Wazwaz in [8], using the
homotopy perturbation method by Chowdhury and Hashim
in [21], and using the variational iteration method by
Wazwaz in [22]. In this paper, we use a new auxiliary
homotopy parameter method using He’s polynomials, called
the auxiliary Laplace homotopy parameter method
(ALHPM) for solving Emden–Fowler equations.

2. Main Results

In this section, we present the new auxiliary Laplace
homotopy parameter method (ALHPM). For this purpose,
let us consider the following nonlinear nonhomogeneous
PDE:

Du(x, t) + Nu(x, t) � h(x, t), (4)

which subject to

u(x, 0) � g1(x), ut(x, 0) � g2(x), (5)

whereD � z2/zt2,N is a general nonlinear term, which may
include nonlinear differential operators, and h(x, t) denotes
the source term. Using the Laplace transform [23] and by its
applying to the both sides of (4), we deduce

L[Du(x, t)] + LN[u(x, t)] � L[h(x, t)]. (6)

,is quickly yields that

L[u(x, t)] −
1
s
g1(x) −

1
s
2g2(x) +

1
s
2 L[Nu(x, t) − h(x, t)] � 0.

(7)

Now, we use the homotopy concept to deduce the fol-
lowing homotopy equation of two parameters:

L v(x, t) − u0  +
Z

s
2 pL[Nv(x, t) − h(x, t)] � 0, (8)

where Z and p are nonzero auxiliary parameters, L is the
Laplace transform, and u0 is an initial guess of the solution.
,e result of applying Laplace inverse on both sides of (8) is
as follows:

v(x, t) � I(x, t) −
Z

s
2L

− 1
[L[pNv(x, t) − ph(x, t)]] � 0,

(9)

where

I(x, t) � g1(x) + tg2(x). (10)

Now, we use the basis of the homotopy perturbation
method to have a series expansion for v(x, t) as follows:

v(x, t) � 
∞

i�0
p

i
vi, (11)

where p is an embedding parameter. To switch nonlinear
operator N, we use He’s polynomials [24] to obtain

N(v(x, t)) � Σ∞n�0p
n
Hn, (12)

where
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Substituting (11) and (12) in (9) and comparing the
coefficient of like powers of p, we obtain

v0(x, t) � I(x, t) � g1(x) + tg2(x),

v1(x, t) � − ZL
− 1 1

s
2 L H0 − f  ,

vn+1 � − ZL
− 1 1

s
2 L Hn  , n � 1, 2, . . .

(14)

3. Emden–Fowler Equations

Due to the singularity behavior at the origin, as well as other
various linear and nonlinear singular IVPs, numerical solution
of Emden–Fowler equations is a challenging issue. For nu-
merical treatment, some authors have been forced to propose
alternative approaches. ,ese techniques often focus on the
removal of the singularity of this equation. For example, by
expanding the unknown function as different basis functions,
the problem reduces to a set of algebraic equations to using
operational matrices. However, it is clear that equivalent
numerical techniques aremore computationally expensive. So,
often analytical methods have been considered. In this section,
in order to show the efficiency of the auxiliary Laplace
homotopy parameter method, presented in the previous
section, here, we use this method to solve the initial value
problems related to second order singular Emden–Fowler
differential equations. ,e examples show that our method
leads to the exact solution series of the problem, and in this
case, it is possible to guess the closed form of the solution.

Example 3.1. Let us consider the following nonlinear sin-
gular Lane–Emden equation:

y″ +
2
x

y′ + y
5

� 0, (15)

with
y(0) � 1, y′(0) � 0. (16)

Using the Laplace transform and by applying to the both
sides of (15), we deduce
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where Y(s) � L[y(x)]. As the ALHPM technique, using the
concept of the homotopy perturbation method and He’s
polynomials for nonlinear term y5 and constructing two
parameters homotopy of equation (17), we get the following:
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(18)

and the first few components of He’s polynomials are

H0 � y
5
0,

H1 � 5y
4
0y1,

H2 � 5y
4
0y2 + 10y

3
0y

2
1,

⋮

(19)

Using (12) and by comparing the same powers of p, it is
clear that the recursive relation is

d
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(20)

,erefore, we have

y0(s) �
1
s
, y1(s) � − Z

1
3s

3, y2(s) � Z
1
s
5, y3(s) � − Z

25
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(21)

and so on. Consequently, using the Mathematica symbolic
code, the series solution of (13) and (14) is given by

y(x) � 1 − Z
x
2

6
+ Z

x
4

24
− Z

5x
6

432
+ · · · . (22)

By putting Z � 1, we get a series providing a closed form
of the exact solution:

y(x) �
1

�������
1 + x

2/3
 . (23)

Example 3.2. Now, in this example, we consider the fol-
lowing Emden–Fowler equation:

y″ +
2
x

y′ + ax
m

y
n

� 0, (24)

with

y(0) � 1 and y′(0) � 0, (25)

which has been investigated in several studies from various
points of view because of its interesting mathematical and
physical properties.

Using the Laplace transform and by applying to the both
sides of (24), we deduce
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where Y(s) � L[y(x)]. By constructing two parameters’
homotopy of equation (26) and applying the aforesaid
method, we get the following:
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(27)

where Hn are He’s polynomials. ,e first few components of
He’s polynomials are as follows:

H0 � y
n
0,

H1 � ny
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0 y1,
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Comparing the similar powers of p, we deduce

y0(0) �
1
s
, y1 � − Z

(m + 1)!

(m + 3)

1
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2
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(29)

so that, using Laplace inverse, we obtain

y(x) � 1 − Z
a

(m + 3)(m + 2)
x

m+2

+ Z
a
2
n
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Substituting Z � 1 in equation (30), one has

y(x) � 1 −
a

(m + 3)(m + 2)
x

m+2

+
a
2
n

2(2m + 5)(m + 3)(m + 2)
2x

2m+4
+ · · · ,

(31)

which is the same as that obtained in [8]. We can easily show
that if m ∉ − 3, − 2, − 5/2, − 7/37/3, − 9/4, · · ·{ }, one can obtain
the exact solution of (24) from (31). As an example,
substituting m � 0 and n � 0 into (31), we obtain

y(x) � 1 −
a

3!
x
2
, (32)

which is the exact solution of the following equation:
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y″ +
2
x

y′ + a � 0. (33)

Similarly, for m � 0 and n � 1, we obtain a series as a
closed form of

y(x) �
sin(

��
a

√
x)

��
a

√
x

, (34)

which is the exact solution of the equation:

y″ +
2
x

y′ + ay � 0. (35)

More choices of m and n can be easily checked. However,
for the values of m and n which the obtained series (31) is not
defined, the solution of (21) must be investigated separately.
If m � − 1 and n � 1, equation (24) is the well-known Euler
equation and the solution can be obtained easily. For
m ∈ − 3, − 5/2, − 7/3, − 9/4, · · ·{ }, n � 1, x> 0 (and generally
m � − 2η + 1/η), the exact solution of (21) can be represented
by the Bessel functions of the first and the second kinds.

Example 3.3. Now, let us suppose f(x) � xm and g(y) � ey,
so we consider

y″ +
2
x

y′ + ax
m

e
y

� 0, (36)

with

y(0) � y′(0) � 0. (37)

Similar to the previous examples, using the Laplace
transform and by its applying to the both sides of (36), we
deduce
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In a similar way as above, one writes

d

ds
y0 + y1P + y2p

2
+ · · · 

− (− 1)
m+1 a

s
2

d
m+1

ds
m+1 L H0p + H1p

2
+ H2p

3
+ · · ·  � 0.

(39)
By equating the powers of p, one can obtain
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,erefore, we have the following series solution:
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a
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Putting Z � 1 in equation (41) recovers the solution
obtained in [8]. ,en,

y(x) � −
a
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x
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+

a
2
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3m+6

· · · .

(42)

In the direction of method efficiency, we consider the
case m � 0 and a � 1. ,e numerical results are compared
with the solutions obtained via collocation scheme in Ta-
ble 1. On the contrary, it is possible to improve the results of
the series solution by using the Pade’ approximations. We
have applied the Pade’ [5, 5] approximation to the obtained
series solution (ALHPMP [11]).

,e accuracy is obtained when the computational cost of
our method is much less than the comparative method.

4. Conclusion

,e new auxiliary Laplace homotopy parameter method was
presented. Using the concept of homotopy and Laplace
transformation, a two-parameter depending homotopy
equation was constructed. Nonlinear terms were dealt with
by He’s polynomials. Using of two auxiliary parameters in
homotopy equation enables us to make the solutions more
reliable. We used this method to solve the initial value
problems related to second-order singular Emden–Fowler

Table 1: Comparison of the numerical solutions and absolute errors obtained by our ALHPM method, ALHPMP, and collocation scheme
for Example 3.3.

x ALHPM Collocation scheme [25] ALHPMP [11] err1 err2 err3
0.1 − 0.0016658423 − 0.0016658367 − 0.0016658417 7.77600, − 12 3.00000, − 10 4.78000, − 14
0.2 − 0.0066533652 − 0.0066533643 − 0.0066533621 3.52000, − 12 0.00000, 00 2.42000, − 14
0.3 − 0.0149328847 − 0.0149328883 − 0.0149328822 2.07700, − 11 2.00000, − 10 1.07000, − 13
0.4 − 0.0264554801 − 0.0264554779 − 0.0264554792 1.90900, − 10 3.70000, − 9 3.92300, − 13
0.5 − 0.0411539505 − 0.0411539500 − 0.0411539533 3.17060, − 9 3.24000, − 8 7.70100, − 11
0.6 − 0.0589440799 − 0.0589440832 − 0.0589440787 2.42100, − 9 1.98900, − 7 2.12100, − 10
0.7 − 0.0797260101 − 0.0797260049 − 0.0797260088 5.78890, − 8 9.17600, − 7 4.12100, − 9
0.8 − 0.1033860573 − 0.1033860422 − 0.1033860677 6.61120, − 8 3.43540, − 6 4.41000, − 7
0.9 − 0.1297985455 − 0.1297985388 − 0.1297985675 5.67120, − 7 1.09758, − 5 6.71000, − 7
1 − 0.1588278601 − 0.1588278334 − 0.1588278677 6.77000, − 7 3.09241, − 5 9.89090, − 7
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differential equations. In these equations, the singularity
behavior at the origin prevents us from using the usual
methods, and to overcome this problem, these methods
must be changed. In our proposed method, this limitation is
easily removed. Obtained solutions, constructed in the form
of a convergent series, were in excellent agreement with the
existing solutions.
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