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In this paper, we consider the split common fixed point problem in Hilbert spaces. By using the inertial technique, we propose a
new algorithm for solving the problem. Under some mild conditions, we establish two weak convergence theorems of the
proposed algorithm. Moreover, the stepsize in our algorithm is independent of the norm of the given linear mapping, which can
further improve the performance of the algorithm.

1. Introduction

In recent years, there has been growing interest in the study
of the split common fixed point problem because of its
various applications in signal processing and image re-
construction [1–3]. More specifically, the problem consists
in finding x ∈ H1 satisfying

x ∈ F(U),

Ax ∈ F(T),
(1)

where F(U) and F(T) stand for the fixed point sets of
mappings U: H1⟶ H1 and T: H2⟶ H2, respectively,
and A: H1⟶ H2 is a bounded linear mapping. Here, H1
and H2 are two Hilbert spaces. In particular, if we let the
mappings in (1) be the projections, then it is reduced to the
well-known split feasibility problem (SFP): find x ∈ H1 such
that

x ∈ C, Ax ∈ Q, (2)

where C⊆H1 and Q⊆H2 are two nonempty closed convex
subsets and A: H1⟶ H2 is a bounded linear mapping; see,
e.g., [1, 4–7].

,ere are several algorithms for solving the split com-
mon fixed point problem. Among them, Censor and Segal
[8] introduced an algorithm as

x
k+1

� U x
k

− τA
∗
(I − T)Ax

k
 , (3)

where I stands for the identity mapping, A∗ is the adjoint
mapping of A, and the stepsize τ is a constant in (0, 2‖A‖− 2).
In particular, when U � PC and T � PQ, then the above
algorithm is reduced to the well-known CQ algorithm for
solving the split feasibility problem [4]. Note that this choice
of the stepsize requires the exact value or estimation of the
norm ‖A‖. To avoid the calculation of ‖A‖, Cui andWang [9]
proposed a variable stepsize as

τk �
(I − T)Ax

k
�����

�����
2

A
∗
(I − T)Ax

k
�����

�����
2. (4)

It is readily seen that the above choice of the stepsize does
not need any prior knowledge of the linear operator. Re-
cently, Wang [10] introduced a new method for solving (1)
as
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x
k+1

� x
k

− τk (I − U)x
k

+ A
∗
(I − T)Ax

k
 , (5)

where the stepsize is set as

τk �
(I − U)x

k
�����

�����
2

+ (I − T)Ax
k

�����

�����
2

(I − U)x
k

+ A
∗
(I − T)Ax

k
�����

�����
2. (6)

Recently, the above algorithms were further extended to
the general case; see, e.g., [2, 10–17].

,e inertial method was first introduced in [18], and
now, it has been successfully applied to solving various
optimization problems arising from some applied sciences
[19, 20]. In particular, this method was also applied for
solving the split feasibility problem [21, 22]. By applying the
inertial technique, Dang et al. [21] recently proposed the
inertial relaxed CQ algorithm, which is defined as

⎡⎣
w

k
� x

k
+ θk( x

k
− x

k− 1
),

x
k+1

� PC w
k

− τA
∗
( I − PQ )Aw

k
 ,

(7)

where 0≤ θk < θ < 1 and 0< τ < (2/‖A‖2). It is clear that the
constant stepsize requires the estimation of the norm ‖A‖. To
avoid the estimation of the norm, Gibali et al. [23] modified
the above stepsize as

τk � ρk

I − PQ Aw
k

�����

�����
2

η2k
,

ηk � max 1, A
∗

I − PQ Aw
k

�����

����� ,

(8)

with 0< ρk < 4. It is shown that the inertial relaxed CQ al-
gorithm converges weakly toward a solution of the SFP
provided that 

∞
k�1 θk‖xk − xk− 1‖2 <∞. ,e main advantage

of the inertial method is that it can indeed speed up the
convergence of the original algorithm. It is thus natural to
extend it to the split common fixed point problem. Recently,
Cui et al. [24] proposed a modified algorithm of (3) as

⎡⎣
w

k
� x

k
+ θk( x

k
− x

k− 1
),

x
k+1

� U( w
k

− τkA
∗
( I − T )Aw

k
),

(9)

where 0≤ θk < θ< 1 and τk is defined as in (6). It was shown
that algorithm (9) converges weakly to a solution of the
problem provided that 

∞
k�1 θk‖xk − xk− 1‖2 <∞.

In this paper, we aim to continue the study of the split
common fixed point problem in Hilbert spaces. Motivated
by the inertial method, we propose a new algorithm for
solving the split common fixed point problem that greatly
improves the performance of the original algorithm.
Moreover, the stepsize in our algorithm is independent of
the norm ‖A‖. Under somemild conditions, we establish two
weak convergence theorems of the proposed algorithm.

2. Preliminary

In the following, we shall assume that problem (1) is con-
sistent, that is, its solution set denoted byf is nonempty.,e
notation “⟶ ” stands for strong convergence, “⇀” weak

convergence, and ωw xn  the set of weak cluster points of a
sequence xn . Let C be a nonempty closed convex subset.
For a mapping T defined on C, we let
F(T) � x ∈ C: Tx � x{ } be its fixed point set and T′ � I − T

be its complement.

Definition 1. A mapping T: C⟶ H is said to be non-
expansive if

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ C. (10)

T is called quasi-nonexpansive if F(T)≠∅, and

‖Tx − y‖≤ ‖x − y‖, ∀x ∈ C, y ∈ F(T). (11)

Definition 2. Let T: C⟶ H be a mapping with F(T)≠∅.
,en, T′ is said to be demiclosed at 0 if, for any xk  in C,
there holds the following implication:

x
k⇀x

T′xk⟶ 0
⎤⎦⇒x ∈ F(T). (12)

It is well known that if T is a nonexpansive mapping,
then T′ is demiclosed at 0; see [25].

Lemma 1 (see [25]). If T: C⟶ H is quasi-nonexpansive,
then

2〈x − z, T′x〉 ≥ T′x
����

����
2
, ∀z ∈ F(T), x ∈ C. (13)

Lemma 2 (see [25]). Assume that xk  is a sequence in H

such that

(i) For each z ∈ C, the limit of ‖xk − z‖  exists
(ii) Any weak cluster point of xk  belongs to C

7en, xk  is weakly convergent to an element in C.

Lemma 3 (see [18]). Let ϕk  and δk  be two nonnegative
real sequences such that 

∞
k�0 δk <∞ and

ϕk+1 − ϕk ≤ θk ϕk − ϕk−1(  + δk, (14)

where 0≤ θk ≤ θ < 1. 7en, the sequence ϕk  is convergent.

Lemma 4 (see [25]). Let s, t ∈ R and x, y ∈ H. It then fol-
lows that

‖tx + sy‖
2

� t(t + s)‖x‖
2

+ s(t + s)‖y‖
2

− ts‖x − y‖
2
.

(15)

3. The Proposed Algorithm

Algorithm 1. Let x0, x1 be arbitrary. Given xk, xk− 1, choose
θk ∈ [0, 1], and set

w
k

� x
k

+ θk x
k

− x
k− 1

 . (16)

If ‖U′wk + A∗T′Awk‖ � 0, then stop; otherwise, update
the next iteration via
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x
k+1

� w
k

− τk U′wk
+ A
∗
T′Aw

k
 , (17)

where

τk �
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

2 U′wk
+ A
∗
T′Aw

k
�����

�����
2. (18)

Remark 1. In comparison, our stepsize (18) is independent
of the norm ‖A‖ so that the calculation or estimation of ‖A‖

is avoided.

Remark 2. If ‖U′wk + A∗T′Awk‖ � 0 for some k ∈ N, then
wk is a solution of the problem. To see this, let z ∈ f. It then
follows from Lemma 1 that ‖U′wk‖2 ≤ 2〈U′wk, wk − z〉, and

T′Aw
k

�����

�����
2
≤ 2〈T′Aw

k
, Aw

k
− Az〉 �〈A∗T′Aw

k
, w

k
− z〉.

(19)

Combining these inequalities yields

U′wk
�����

�����
2

+ T′Aw
k

�����

�����
2
≤ 2〈U′wk

+ A
∗
T′Aw

k
, w

k
− z〉

≤ 2 U′wk
+ A
∗
T′Aw

k
�����

����� w
k

− z
�����

�����.

(20)

,is yields ‖U′wk‖ � ‖T′Awk‖ � 0, which implies
wk ∈ f.

If we let θk ≡ 0 in (16), then we get a new algorithm for
problem (1).

Algorithm 2. Let x0 be arbitrary. Given xk, if
‖U′xk + A∗T′Axk‖ � 0, then stop; otherwise, update the
next iteration via

x
k+1

� x
k

− τk U′xk
+ A
∗
T′Ax

k
 , (21)

where

τk �
U′xk

�����

�����
2

+ T′Ax
k

�����

�����
2

2 U′xk
+ A
∗
T′Ax

k
�����

�����
2. (22)

4. Convergence Analysis

In this section, we shall establish the convergence of the
proposed algorithm. By Remark 2, we may assume that
Algorithm 1 generates an infinite iterative sequence. To
proceed, we first prove the following lemma.

Lemma 5. Let xk  and wk  be the sequences generated by
Algorithm 1. Let
δk � (1/(4(1 + ‖A‖2)))(‖U′wk‖2 + ‖T′Awk‖2). 7en, for any
z ∈ S, it follows that

x
k+1

− z
�����

�����
2
≤ w

k
− z

�����

�����
2

− δk. (23)

Proof. Since U is quasi-nonexpansive, we have

x
k+1

− z
�����

�����
2

� w
k

− τk U′wk
+ A
∗
T′Aw

k
  − z

�����

�����
2

� w
k

− z
�����

�����
2

+ τ2k U′wk
+ A
∗
T′Aw

k
�����

�����
2

− 2τk〈U′w
k
, w

k
− z〉 − 2τk〈T′Aw

k
, Aw

k
− Az〉

≤ w
k

− z
�����

�����
2

+ τ2k U′wk
+ A
∗
T′Aw

k
�����

�����
2

− τk U′wk
�����

�����
2

− τk T′Aw
k

�����

�����
2
.

(24)

In view of (18), we have

x
k+1

− z
�����

�����
2
≤ w

k
− z

�����

�����
2

−
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

 
2

4 U′wk
+ A
∗
T′Aw

k
�����

�����
2 . (25)

To finish the proof, it suffices to note that

U′wk
�����

�����
2

+ T′Aw
k

�����

�����
2

 
2

U′wk
+ A
∗
T′Aw

k
�����

�����
2

≥
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

 
2

U′wk
�����

����� +‖A‖ T′Aw
k

�����

����� 
2

≥
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

 
2

1 +‖A‖
2

  U′wk
�����

�����
2

+ T′Aw
k

�����

�����
2

 

�
1

1 +‖A‖
2 U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

 .

(26)

,is completes the proof. □

Theorem 1. Assume that U is quasi-nonexpansive such that
U′ is demiclosed at 0, and T is quasi-nonexpansive such that
T′ is demiclosed at 0. If, for each k ∈ N, θk ≤ θ< 1 such that

(c1) 
∞
k�1 θk‖xk − xk− 1‖2 <∞,

then the sequence xk  generated by Algorithm 1
converges weakly to an element in f.

Proof. We first show that the sequence ‖xk − z‖  is con-
vergent for any z ∈ f. From Lemma 4, we deduce

w
k

− z
�����

�����
2

� 1 + θk(  x
k

− z  − θk x
k− 1

− z 
�����

�����
2

� 1 + θk(  x
k

− z
�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ θk 1 + θk(  x
k

− x
k− 1

�����

�����
2
.

(27)

By Lemma 5, this yields

x
k+1

− z
�����

�����
2
≤ 1 + θk(  x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ 2θk x
k

− x
k− 1

�����

�����
2

− δk.

(28)
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Let ϕk: � ‖xk − z‖2. ,en, the above inequality can be
rewritten as

ϕk+1 − ϕk ≤ θk ϕk − ϕk−1(  + 2θk x
k

− x
k− 1

�����

�����
2

− δk. (29)

By condition (c1), we then apply Lemma 3 to deduce that
ϕk  is convergent, and so is the sequence ‖xk − z‖ .

We next show that each weak cluster point of xk 

belongs to f. Since ϕk  is convergent, this implies that ϕk −

ϕk+1 converges to 0 as n⟶∞. It then follows from (29)
that

δk ≤ ϕk − ϕk+1(  + θk ϕk − ϕk−1(  + 2θk x
k

− x
k− 1

�����

�����
2

≤ ϕk − ϕk+1


 + ϕk − ϕk−1


 + 2θk x
k

− x
k− 1

�����

�����
2
.

(30)

Note that limkθk‖xk − xk− 1‖2 � 0 by condition (c1). By
passing to the limit in the above inequality, we have δk

converging to 0 so that

lim
k⟶∞

U′wk
�����

����� � lim
k⟶∞

T′Aw
k

�����

����� � 0. (31)

Moreover, it is clear that xk  is bounded; thus, the set
ωw(xn) is nonempty. Now, take any x ∈ ωw(xk), and take a
subsequence xkl  such that it weakly converges to x. On the
contrary, we deduce from (c1) that

w
k

− x
k

�����

�����
2

� θ2k x
k

− x
k− 1

�����

�����≤ θk x
k

− x
k− 1

�����

�����⟶ 0 (32)

so that wkl  also weakly converges to x and Awkl  weakly
converges to Ax. Since U′ and T′ are both demiclosed at 0,
this together with (31) indicates x ∈ F(U) and Ax ∈ F(T);
that is, x is an element in f.

Finally, by Lemma 2, the sequence xk  converges weakly
to a solution of problem (1). □

Remark 3. We now construct a sequence satisfying condi-
tion (c1). For each k ∈ N, let

θk �

min 0.5,
1

(k + 1)
2

x
k

− x
k− 1

�����

�����
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, x
k ≠x

k− 1
,

0.5, x
k

� x
k− 1

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(33)

We next study the convergence of Algorithm 1 under
another condition. To proceed, we need the following
lemma.

Lemma 6. Let xk  and wk  be the sequences generated by
Algorithm 1. For any z ∈ f, let ϕk � ‖xk − z‖2 − θk

‖xk− 1 − z‖2 + (θk/2)(3 + θk)‖xk − xk− 1‖2. If θk  is nonde-
creasing, then

2 ϕk − ϕk+1( ≥ 1 − 4θk+1 − θ2k+1  x
k

− x
k+1

�����

�����
2

+ δk, (34)

where δk is defined as in Lemma 5.

Proof. In view of (17) and (18), we get

x
k+1

− w
k

�����

�����
2

�
U′wk

�����

�����
2

+ T′Aw
k

�����

�����
2

 
2

4 U′wk
+ A
∗
T′Aw

k
�����

�����
2 . (35)

It then follows from inequality (25) that

x
k+1

− z
�����

�����
2
≤ w

k
− z

�����

�����
2

−
1
2

x
k+1

− w
k

�����

�����
2

−
1
2
δk. (36)

Moreover, it follows from (27) that

x
k+1

− z
�����

�����
2
≤ 1 + θk(  x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ 2θk x
k

− x
k− 1

�����

�����
2

−
1
2

x
k+1

− w
k

�����

�����
2

−
1
2
δk.

(37)

On the contrary, we have

w
k

− x
k+1

�����

�����
2

� x
k

− x
k+1

+ θk x
k

− x
k− 1

 
�����

�����
2

� x
k

− x
k+1

�����

�����
2

+ θ2k x
k

− x
k− 1

�����

�����
2

+ 2θk〈x
k

− x
k+1

, x
k

− x
k− 1〉

≥ x
k

− x
k+1

�����

�����
2

+ θ2k x
k

− x
k− 1

�����

�����
2

− 2θk x
k

− x
k+1

�����

����� x
k

− x
k− 1

�����

�����

≥ x
k

− x
k+1

�����

�����
2

+ θ2k x
k

− x
k− 1

�����

�����‖
2

− θk x
k

− x
k+1

�����

�����
2

+ x
k

− x
k− 1

�����

�����
2

 

� 1 − θk(  x
k

− x
k+1

�����

�����
2

− θk 1 − θk(  x
k

− x
k− 1

�����

�����
2
.

(38)

Substituting this into (21), we have

x
k+1

− z
�����

�����
2
≤ 1 + θk(  x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+ θk 1 + θk(  x
k

− x
k− 1

�����

�����
2

−
1
2

1 − θk(  x
k

− x
k+1

�����

�����
2

+
θk

2
1 − θk(  x

k
− x

k− 1
�����

�����
2

−
1
2
δk.

(39)

Since θk  is nondecreasing, this implies
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x
k+1

− z
�����

�����
2
≤ 1 + θk(  x

k
− z

�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+
θk

2
3 + θk(  x

k
− x

k− 1
�����

�����
2

−
1
2

1 − θk(  x
k

− x
k+1

�����

�����
2

−
1
2
δk

≤ 1 + θk+1(  x
k

− z
�����

�����
2

− θk x
k− 1

− z
�����

�����
2

+
θk

2
3 + θk(  x

k
− x

k− 1
�����

�����
2

−
1
2

1 − θk+1(  x
k

− x
k+1

�����

�����
2

−
1
2
δk.

(40)

From the definition of ϕk, we get the desired
inequality. □

Theorem 2. Assume that U is quasi-nonexpansive such that
U′ is demiclosed at 0, and T is quasi-nonexpansive such that
T′ is demiclosed at 0. If

(c2) θk  is nondecreasing and converges to
θ ∈ [ 0,

�
5

√
− 2 ),

then the sequence xk  generated by Algorithm 1
converges weakly to an element in f.

Proof. We first show that ‖xk − z‖  is convergent for each
z ∈ f. It then follows from Lemma 6 and the range of θk that

2 ϕk − ϕk+1( ≥ 1 − 4θ − θ2  x
k

− x
k+1

�����

�����
2

+ δk ≥ 0 (41)

so that ϕk  is nonincreasing. From the definition of ϕk, we
get

x
k

− z
�����

�����
2
≤ θk x

k− 1
− z

�����

�����
2

+ ϕk ≤ θ x
k− 1

− z
�����

�����
2

+ ϕ1. (42)

By induction, we have

x
k

− z
�����

�����
2
≤ x

0
− z

����
����
2

+
ϕ1

1 − θ
. (43)

,us, xk  is bounded. Moreover, from the definition of
ϕk,

ϕk+1 ≥ − θk+1 x
k

− z
�����

�����
2
≥ − x

k
− z

�����

�����
2
≥ − x

0
− z

����
����
2

−
ϕ1

1 − θ
,

(44)

which implies that ϕk  is bounded from below, and thus, it
is convergent. Passing to the limit in (41) yields

lim
k⟶∞

δk � lim
k⟶∞

x
k+1

− x
k

�����

����� � 0. (45)

On the contrary,

θk x
k− 1

− z
�����

�����
2

− x
k

− z
�����

�����
2



� θk x
k− 1

− z
�����

����� − x
k

− z
�����

�����



 x
k− 1

− z
�����

����� + x
k

− z
�����

����� 

≤ x
k− 1

− x
k

�����

����� x
k− 1

− z
�����

����� + x
k

− z
�����

����� ⟶ 0,

(46)

from which it follows that

lim
k⟶∞

x
k

− z
�����

�����
2

�
1

1 − θ
lim

k⟶∞
ϕk. (47)

Here, we used the fact (by the definition of ϕk ) that

x
k

− z
�����

�����
2

�
1

1 − θk

ϕk + θk x
k− 1

− z
�����

�����
2

− x
k

− z
�����

�����
2

  −
θk 3 + θk( 

2
x

k
− x

k− 1
�����

�����
2

 . (48)

,us, ‖xk − z‖  is convergent.
We next show that the sequence xk  converges weakly

to a solution of problem (1). By Lemma 2, it suffices to show
that each weak cluster point of xk  belongs to f. Moreover,
it is clear that xk  is bounded; thus, the set ωw(xn) is
nonempty. Now, take any x ∈ ωw(xk). On the contrary, we
deduce from (16) and (45) that

w
k

− x
k

�����

����� � θk x
k

− x
k− 1

�����

�����≤ x
k

− x
k− 1

�����

�����⟶ 0. (49)

In a similar way, we deduce that x ∈ F(U) and
Ax ∈ F(T); that is, x is an element in f. Hence, the proof is
complete.

If we let θk ≡ 0, then it satisfies (c1) and (c2). As a result,
we get the following conclusion. □

Corollary 1. Assume that U is quasi-nonexpansive such that
U′ is demiclosed at 0, and T is quasi-nonexpansive such that

T′ is demiclosed at 0. 7en, the sequence xk  generated by
Algorithm 2 converges weakly to an element in f.

5. Concluding Remarks

,e main contribution of this paper is to propose a new
algorithm for solving the split common fixed point problem
in Hilbert spaces. ,ere are two advantages of the proposed
algorithm. Compared with the original algorithm for solving
the problem, our proposed algorithm is faster in conver-
gence rate. Furthermore, the stepsize in the proposed al-
gorithm is independent of the norm of the given linear
mapping, which can further improve its performance.
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